Merge branch 'main' of https://github.com/propeller-heads/propeller-protocol-lib into feat/curve-maverick

This commit is contained in:
0xMochan
2024-05-09 11:27:50 -05:00
19 changed files with 2072 additions and 195 deletions

View File

@@ -1,7 +1,7 @@
name: test evm
name: test & check evm
on:
push:
pull_request:
paths:
- "evm/**"
@@ -15,6 +15,9 @@ jobs:
name: Foundry project
runs-on: ubuntu-latest
defaults:
run:
working-directory: evm
steps:
- uses: actions/checkout@v3
with:
@@ -27,20 +30,18 @@ jobs:
- name: Run Forge build
run: |
cd evm
forge --version
forge build --sizes
id: build
- name: Run Forge format check
run: |
forge --version
forge fmt --check
id: format
forge --version
forge fmt --check
id: format
- name: Run Forge tests
run: |
cd evm
forge test -vvv
id: test
env:

View File

@@ -0,0 +1,710 @@
// SPDX-License-Identifier: AGPL-3.0-or-later
pragma experimental ABIEncoderV2;
pragma solidity ^0.8.13;
import {ISwapAdapter} from "src/interfaces/ISwapAdapter.sol";
import {IERC20} from "openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
import {IERC20Metadata} from
"openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {SafeERC20} from
"openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";
/// @dev custom reserve limit factor to prevent revert errors in OrderSide.Buy
uint256 constant RESERVE_LIMIT_FACTOR = 10;
uint256 constant STANDARD_TOKEN_DECIMALS = 10 ** 18;
/// @title AngleAdapter
/// @dev Information about prices: When swapping collateral to agEUR, the trade
/// price will not decrease(amountOut). Instead, when swapping agEUR to
/// collateral, it will, because agEUR is minted, and this mechanism is used to
/// stabilize the agEUR price.
contract AngleAdapter is ISwapAdapter {
using SafeERC20 for IERC20;
ITransmuter immutable transmuter;
constructor(ITransmuter _transmuter) {
transmuter = _transmuter;
}
/// @inheritdoc ISwapAdapter
/**
* @dev It is not possible to reproduce the swap in a view mode (like
* Bancor, Uniswap v2, etc..) as the swap produce a change of storage in
* the Angle protocol, that impacts the price post trade. Due to the
* architecture of Angle, it's not possible to calculate the storage
* modifications of Angle inside the adapter.
*/
function price(bytes32, address, address, uint256[] memory)
external
pure
override
returns (Fraction[] memory)
{
revert NotImplemented("AngleAdapter.price");
}
/// @inheritdoc ISwapAdapter
/**
* @dev The price post trade is indipendent by the amount, since is the
* price with minimal fees with 0 slippage. In Angle there is no price with
* 0 slippage, so we use the PRECISE_UNIT (10^18, that is a small value) as
* input amount to have a slippage ---> 0.
*/
function swap(
bytes32,
address sellToken,
address buyToken,
OrderSide side,
uint256 specifiedAmount
) external returns (Trade memory trade) {
if (specifiedAmount == 0) {
return trade;
}
uint256 gasBefore = gasleft();
if (side == OrderSide.Sell) {
trade.calculatedAmount = sell(sellToken, buyToken, specifiedAmount);
} else {
trade.calculatedAmount = buy(sellToken, buyToken, specifiedAmount);
}
trade.gasUsed = gasBefore - gasleft();
uint8 decimals = side == OrderSide.Sell
? IERC20Metadata(sellToken).decimals()
: IERC20Metadata(buyToken).decimals();
trade.price = getPriceAt(sellToken, buyToken, side, decimals);
}
/// @inheritdoc ISwapAdapter
/// @dev Mint may have no limits, but we underestimate them to make sure,
/// with the same amount of sellToken. We use the quoteIn (incl. fee),
/// because calculating fee requires a part of the implementation of the
/// Angle Diamond Storage, and therefore redundant functions and excessive
/// contract size, with an high complexity. In addition, we underestimate to
/// RESERVE_LIMIT_FACTOR to ensure swaps with OrderSide.Buy won't fail
/// anyway.
function getLimits(bytes32, address sellToken, address buyToken)
external
view
override
returns (uint256[] memory limits)
{
limits = new uint256[](2);
address transmuterAddress = address(transmuter);
if (buyToken == transmuter.agToken()) {
// mint(buy agToken)
Collateral memory collatInfo =
transmuter.getCollateralInfo(sellToken);
if (collatInfo.isManaged > 0) {
limits[0] =
LibManager.maxAvailable(collatInfo.managerData.config);
} else {
limits[0] = IERC20(sellToken).balanceOf(transmuterAddress);
}
limits[1] = transmuter.quoteIn(limits[0], sellToken, buyToken);
limits[1] = limits[1] / RESERVE_LIMIT_FACTOR;
limits[0] = limits[0] / RESERVE_LIMIT_FACTOR;
} else {
// burn(sell agToken)
Collateral memory collatInfo =
transmuter.getCollateralInfo(buyToken);
if (collatInfo.isManaged > 0) {
limits[1] =
LibManager.maxAvailable(collatInfo.managerData.config);
} else {
limits[1] = IERC20(buyToken).balanceOf(transmuterAddress);
}
limits[0] = transmuter.quoteIn(limits[1], buyToken, sellToken);
limits[1] = limits[1] / RESERVE_LIMIT_FACTOR;
limits[0] = limits[0] / RESERVE_LIMIT_FACTOR;
}
}
/// @inheritdoc ISwapAdapter
function getCapabilities(bytes32, address, address)
external
pure
override
returns (Capability[] memory capabilities)
{
capabilities = new Capability[](2);
capabilities[0] = Capability.SellOrder;
capabilities[1] = Capability.BuyOrder;
}
/// @inheritdoc ISwapAdapter
/// @dev Since Angle has no pool IDs but supports 3 tokens(agToken and the
/// collaterals), we return all the available collaterals and the
/// agToken(agEUR)
function getTokens(bytes32)
external
view
override
returns (address[] memory tokens)
{
address[] memory collateralsAddresses = transmuter.getCollateralList();
tokens = new address[](collateralsAddresses.length + 1);
for (uint256 i = 0; i < collateralsAddresses.length; i++) {
tokens[i] = address(collateralsAddresses[i]);
}
tokens[collateralsAddresses.length] = transmuter.agToken();
}
function getPoolIds(uint256, uint256)
external
pure
override
returns (bytes32[] memory)
{
revert NotImplemented("AngleAdapter.getPoolIds");
}
/// @notice Calculates pool prices for specified amounts
/// @param tokenIn The token being sold
/// @param tokenOut The token being bought
/// @param side Order side
/// @param decimals Decimals of the sell token
/// @return The price as a fraction corresponding to the provided amount.
function getPriceAt(
address tokenIn,
address tokenOut,
OrderSide side,
uint8 decimals
) internal view returns (Fraction memory) {
uint256 amountOut;
uint256 amountIn;
if (side == OrderSide.Sell) {
amountIn = 10 ** decimals;
amountOut = transmuter.quoteIn(amountIn, tokenIn, tokenOut);
} else {
amountOut = 10 ** decimals;
amountIn = transmuter.quoteOut(amountOut, tokenIn, tokenOut);
}
return Fraction(amountOut, amountIn);
}
/// @notice Executes a sell order on the contract.
/// @param sellToken The token being sold.
/// @param buyToken The token being bought.
/// @param amount The amount to be traded.
/// @return calculatedAmount The amount of tokens received.
function sell(address sellToken, address buyToken, uint256 amount)
internal
returns (uint256 calculatedAmount)
{
IERC20(sellToken).safeTransferFrom(msg.sender, address(this), amount);
IERC20(sellToken).approve(address(transmuter), amount);
calculatedAmount = transmuter.swapExactInput(
amount, 0, sellToken, buyToken, msg.sender, 0
);
}
/// @notice Executes a buy order on the contract.
/// @param sellToken The token being sold.
/// @param buyToken The token being bought.
/// @param amountOut The amount of buyToken to receive.
/// @return calculatedAmount The amount of tokens received.
function buy(address sellToken, address buyToken, uint256 amountOut)
internal
returns (uint256 calculatedAmount)
{
calculatedAmount = transmuter.quoteOut(amountOut, sellToken, buyToken);
IERC20(sellToken).safeTransferFrom(
msg.sender, address(this), calculatedAmount
);
IERC20(sellToken).approve(address(transmuter), calculatedAmount);
transmuter.swapExactOutput(
amountOut, type(uint256).max, sellToken, buyToken, msg.sender, 0
);
}
}
interface IAgToken is IERC20 {
/*//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
MINTER ROLE ONLY FUNCTIONS
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////*/
/// @notice Lets a whitelisted contract mint agTokens
/// @param account Address to mint to
/// @param amount Amount to mint
function mint(address account, uint256 amount) external;
/// @notice Burns `amount` tokens from a `burner` address after being asked
/// to by `sender`
/// @param amount Amount of tokens to burn
/// @param burner Address to burn from
/// @param sender Address which requested the burn from `burner`
/// @dev This method is to be called by a contract with the minter right
/// after being requested
/// to do so by a `sender` address willing to burn tokens from another
/// `burner` address
/// @dev The method checks the allowance between the `sender` and the
/// `burner`
function burnFrom(uint256 amount, address burner, address sender)
external;
/// @notice Burns `amount` tokens from a `burner` address
/// @param amount Amount of tokens to burn
/// @param burner Address to burn from
/// @dev This method is to be called by a contract with a minter right on
/// the AgToken after being
/// requested to do so by an address willing to burn tokens from its address
function burnSelf(uint256 amount, address burner) external;
/*//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
TREASURY ONLY FUNCTIONS
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////*/
/// @notice Adds a minter in the contract
/// @param minter Minter address to add
/// @dev Zero address checks are performed directly in the `Treasury`
/// contract
function addMinter(address minter) external;
/// @notice Removes a minter from the contract
/// @param minter Minter address to remove
/// @dev This function can also be called by a minter wishing to revoke
/// itself
function removeMinter(address minter) external;
/// @notice Sets a new treasury contract
/// @param _treasury New treasury address
function setTreasury(address _treasury) external;
/*//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
EXTERNAL FUNCTIONS
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////*/
/// @notice Checks whether an address has the right to mint agTokens
/// @param minter Address for which the minting right should be checked
/// @return Whether the address has the right to mint agTokens or not
function isMinter(address minter) external view returns (bool);
/// @notice Amount of decimals of the stablecoin
function decimals() external view returns (uint8);
}
enum ManagerType {
EXTERNAL
}
enum WhitelistType {
BACKED
}
struct ManagerStorage {
IERC20[] subCollaterals; // Subtokens handled by the manager or strategies
bytes config; // Additional configuration data
}
struct Collateral {
uint8 isManaged; // If the collateral is managed through external strategies
uint8 isMintLive; // If minting from this asset is unpaused
uint8 isBurnLive; // If burning to this asset is unpaused
uint8 decimals; // IERC20Metadata(collateral).decimals()
uint8 onlyWhitelisted; // If only whitelisted addresses can burn or redeem
// for this token
uint216 normalizedStables; // Normalized amount of stablecoins issued from
// this collateral
uint64[] xFeeMint; // Increasing exposures in [0,BASE_9[
int64[] yFeeMint; // Mint fees at the exposures specified in `xFeeMint`
uint64[] xFeeBurn; // Decreasing exposures in ]0,BASE_9]
int64[] yFeeBurn; // Burn fees at the exposures specified in `xFeeBurn`
bytes oracleConfig; // Data about the oracle used for the collateral
bytes whitelistData; // For whitelisted collateral, data used to verify
// whitelists
ManagerStorage managerData; // For managed collateral, data used to handle
// the strategies
}
struct TransmuterStorage {
IAgToken agToken; // agToken handled by the system
uint8 isRedemptionLive; // If redemption is unpaused
uint8 statusReentrant; // If call is reentrant or not
uint128 normalizedStables; // Normalized amount of stablecoins issued by the
// system
uint128 normalizer; // To reconcile `normalizedStables` values with the
// actual amount
address[] collateralList; // List of collateral assets supported by the
// system
uint64[] xRedemptionCurve; // Increasing collateral ratios > 0
int64[] yRedemptionCurve; // Value of the redemption fees at
// `xRedemptionCurve`
mapping(address => Collateral) collaterals; // Maps a collateral asset to
// its parameters
mapping(address => uint256) isTrusted; // If an address is trusted to update
// the normalizer value
mapping(address => uint256) isSellerTrusted; // If an address is trusted to
// sell accruing reward tokens
mapping(WhitelistType => mapping(address => uint256)) isWhitelistedForType;
}
interface IManager {
/// @notice Returns the amount of collateral managed by the Manager
/// @return balances Balances of all the subCollaterals handled by the
/// manager
/// @dev MUST NOT revert
function totalAssets()
external
view
returns (uint256[] memory balances, uint256 totalValue);
/// @notice Hook to invest `amount` of `collateral`
/// @dev MUST revert if the manager cannot accept these funds
/// @dev MUST have received the funds beforehand
function invest(uint256 amount) external;
/// @notice Sends `amount` of `collateral` to the `to` address
/// @dev Called when `agToken` are burnt and during redemptions
// @dev MUST revert if there are not funds enough available
/// @dev MUST be callable only by the transmuter
function release(address asset, address to, uint256 amount) external;
/// @notice Gives the maximum amount of collateral immediately available for
/// a transfer
/// @dev Useful for integrators using `quoteIn` and `quoteOut`
function maxAvailable() external view returns (uint256);
}
/// @title LibManager
/// @author Angle Labs, Inc.
/// @dev Managed collateral assets may be handled through external smart
/// contracts or directly through this library
/// @dev There is no implementation at this point for a managed collateral
/// handled through this library, and
/// a new specific `ManagerType` would need to be added in this case
library LibManager {
/// @notice Checks to which address managed funds must be transferred
function transferRecipient(bytes memory config)
internal
view
returns (address recipient)
{
(ManagerType managerType, bytes memory data) =
parseManagerConfig(config);
recipient = address(this);
if (managerType == ManagerType.EXTERNAL) {
return abi.decode(data, (address));
}
}
/// @notice Performs a transfer of `token` for a collateral that is managed
/// to a `to` address
/// @dev `token` may not be the actual collateral itself, as some
/// collaterals have subcollaterals associated
/// with it
/// @dev Eventually pulls funds from strategies
function release(
address token,
address to,
uint256 amount,
bytes memory config
) internal {
(ManagerType managerType, bytes memory data) =
parseManagerConfig(config);
if (managerType == ManagerType.EXTERNAL) {
abi.decode(data, (IManager)).release(token, to, amount);
}
}
/// @notice Gets the balances of all the tokens controlled through
/// `managerData`
/// @return balances An array of size `subCollaterals` with current balances
/// of all subCollaterals
/// including the one corresponding to the `managerData` given
/// @return totalValue The value of all the `subCollaterals` in `collateral`
/// @dev `subCollaterals` must always have as first token (index 0) the
/// collateral itself
function totalAssets(bytes memory config)
internal
view
returns (uint256[] memory balances, uint256 totalValue)
{
(ManagerType managerType, bytes memory data) =
parseManagerConfig(config);
if (managerType == ManagerType.EXTERNAL) {
return abi.decode(data, (IManager)).totalAssets();
}
}
/// @notice Calls a hook if needed after new funds have been transfered to a
/// manager
function invest(uint256 amount, bytes memory config) internal {
(ManagerType managerType, bytes memory data) =
parseManagerConfig(config);
if (managerType == ManagerType.EXTERNAL) {
abi.decode(data, (IManager)).invest(amount);
}
}
/// @notice Returns available underlying tokens, for instance if liquidity
/// is fully used and
/// not withdrawable the function will return 0
function maxAvailable(bytes memory config)
internal
view
returns (uint256 available)
{
(ManagerType managerType, bytes memory data) =
parseManagerConfig(config);
if (managerType == ManagerType.EXTERNAL) {
return abi.decode(data, (IManager)).maxAvailable();
}
}
/// @notice Decodes the `managerData` associated to a collateral
function parseManagerConfig(bytes memory config)
internal
pure
returns (ManagerType managerType, bytes memory data)
{
(managerType, data) = abi.decode(config, (ManagerType, bytes));
}
}
interface ITransmuter {
function implementation() external view returns (address);
function setDummyImplementation(address _implementation) external;
function facetAddress(bytes4 _functionSelector)
external
view
returns (address facetAddress_);
function facetAddresses()
external
view
returns (address[] memory facetAddresses_);
function facetFunctionSelectors(address _facet)
external
view
returns (bytes4[] memory _facetFunctionSelectors);
function accessControlManager() external view returns (address);
function agToken() external view returns (address);
function getCollateralBurnFees(address collateral)
external
view
returns (uint64[] memory xFeeBurn, int64[] memory yFeeBurn);
function getCollateralDecimals(address collateral)
external
view
returns (uint8);
function getCollateralInfo(address collateral)
external
view
returns (Collateral memory);
function getCollateralList() external view returns (address[] memory);
function getCollateralMintFees(address collateral)
external
view
returns (uint64[] memory xFeeMint, int64[] memory yFeeMint);
function getCollateralRatio()
external
view
returns (uint64 collatRatio, uint256 stablecoinsIssued);
function getCollateralWhitelistData(address collateral)
external
view
returns (bytes memory);
function getIssuedByCollateral(address collateral)
external
view
returns (uint256 stablecoinsFromCollateral, uint256 stablecoinsIssued);
function getManagerData(address collateral)
external
view
returns (bool, address[] memory, bytes memory);
function getOracle(address collateral)
external
view
returns (
uint8 oracleType,
uint8 targetType,
bytes memory oracleData,
bytes memory targetData
);
function getOracleValues(address collateral)
external
view
returns (
uint256 mint,
uint256 burn,
uint256 ratio,
uint256 minRatio,
uint256 redemption
);
function getRedemptionFees()
external
view
returns (
uint64[] memory xRedemptionCurve,
int64[] memory yRedemptionCurve
);
function getTotalIssued() external view returns (uint256);
function isPaused(address collateral, uint8 action)
external
view
returns (bool);
function isTrusted(address sender) external view returns (bool);
function isTrustedSeller(address sender) external view returns (bool);
function isValidSelector(bytes4 selector) external view returns (bool);
function isWhitelistedCollateral(address collateral)
external
view
returns (bool);
function isWhitelistedForCollateral(address collateral, address sender)
external
returns (bool);
function isWhitelistedForType(uint8 whitelistType, address sender)
external
view
returns (bool);
function sellRewards(uint256 minAmountOut, bytes memory payload)
external
returns (uint256 amountOut);
function addCollateral(address collateral) external;
function adjustStablecoins(
address collateral,
uint128 amount,
bool increase
) external;
function changeAllowance(address token, address spender, uint256 amount)
external;
function recoverERC20(
address collateral,
address token,
address to,
uint256 amount
) external;
function revokeCollateral(address collateral) external;
function setAccessControlManager(address _newAccessControlManager)
external;
function setOracle(address collateral, bytes memory oracleConfig)
external;
function setWhitelistStatus(
address collateral,
uint8 whitelistStatus,
bytes memory whitelistData
) external;
function toggleTrusted(address sender, uint8 t) external;
function setFees(
address collateral,
uint64[] memory xFee,
int64[] memory yFee,
bool mint
) external;
function setRedemptionCurveParams(uint64[] memory xFee, int64[] memory yFee)
external;
function togglePause(address collateral, uint8 pausedType) external;
function toggleWhitelist(uint8 whitelistType, address who) external;
function quoteIn(uint256 amountIn, address tokenIn, address tokenOut)
external
view
returns (uint256 amountOut);
function quoteOut(uint256 amountOut, address tokenIn, address tokenOut)
external
view
returns (uint256 amountIn);
function swapExactInput(
uint256 amountIn,
uint256 amountOutMin,
address tokenIn,
address tokenOut,
address to,
uint256 deadline
) external returns (uint256 amountOut);
function swapExactInputWithPermit(
uint256 amountIn,
uint256 amountOutMin,
address tokenIn,
address to,
uint256 deadline,
bytes memory permitData
) external returns (uint256 amountOut);
function swapExactOutput(
uint256 amountOut,
uint256 amountInMax,
address tokenIn,
address tokenOut,
address to,
uint256 deadline
) external returns (uint256 amountIn);
function swapExactOutputWithPermit(
uint256 amountOut,
uint256 amountInMax,
address tokenIn,
address to,
uint256 deadline,
bytes memory permitData
) external returns (uint256 amountIn);
function quoteRedemptionCurve(uint256 amount)
external
view
returns (address[] memory tokens, uint256[] memory amounts);
function redeem(
uint256 amount,
address receiver,
uint256 deadline,
uint256[] memory minAmountOuts
) external returns (address[] memory tokens, uint256[] memory amounts);
function redeemWithForfeit(
uint256 amount,
address receiver,
uint256 deadline,
uint256[] memory minAmountOuts,
address[] memory forfeitTokens
) external returns (address[] memory tokens, uint256[] memory amounts);
function updateNormalizer(uint256 amount, bool increase)
external
returns (uint256);
}

View File

@@ -0,0 +1,35 @@
# information about the author helps us reach out in case of issues.
author:
name: shadowycoders.dev
email: hello@shadowycreators.com
# Protocol Constants
constants:
protocol_gas: 30000
# minimum capabilities we can expect, individual pools may extend these
capabilities:
- SellSide
- BuySide
# The file containing the adapter contract
contract: AngleAdapter.sol
# Deployment instances used to generate chain specific bytecode.
instances:
- chain:
name: mainnet
id: 0
arguments:
- "0x00253582b2a3FE112feEC532221d9708c64cEFAb"
# Specify some automatic test cases in case getPoolIds and
# getTokens are not implemented.
tests:
instances:
- pool_id: "0xB4e16d0168e52d35CaCD2c6185b44281Ec28C9Dc"
sell_token: "0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2"
buy_token: "0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48"
block: 17000000
chain:
id: 0
name: mainnet

View File

@@ -1,7 +1,11 @@
// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.13;
import {IERC20, ISwapAdapter} from "src/interfaces/ISwapAdapter.sol";
import {ISwapAdapter} from "src/interfaces/ISwapAdapter.sol";
import {
IERC20,
SafeERC20
} from "openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";
// Maximum Swap In/Out Ratio - 0.3
// https://balancer.gitbook.io/balancer/core-concepts/protocol/limitations#v2-limits
@@ -9,6 +13,8 @@ uint256 constant RESERVE_LIMIT_FACTOR = 4;
uint256 constant SWAP_DEADLINE_SEC = 1000;
contract BalancerV2SwapAdapter is ISwapAdapter {
using SafeERC20 for IERC20;
IVault immutable vault;
constructor(address payable vault_) {
@@ -27,8 +33,8 @@ contract BalancerV2SwapAdapter is ISwapAdapter {
/// as a Fraction struct.
function priceSingle(
bytes32 poolId,
IERC20 sellToken,
IERC20 buyToken,
address sellToken,
address buyToken,
uint256 sellAmount
) public returns (Fraction memory calculatedPrice) {
IVault.BatchSwapStep[] memory swapSteps = new IVault.BatchSwapStep[](1);
@@ -40,8 +46,8 @@ contract BalancerV2SwapAdapter is ISwapAdapter {
userData: ""
});
address[] memory assets = new address[](2);
assets[0] = address(sellToken);
assets[1] = address(buyToken);
assets[0] = sellToken;
assets[1] = buyToken;
IVault.FundManagement memory funds = IVault.FundManagement({
sender: msg.sender,
fromInternalBalance: false,
@@ -63,8 +69,8 @@ contract BalancerV2SwapAdapter is ISwapAdapter {
function getSellAmount(
bytes32 poolId,
IERC20 sellToken,
IERC20 buyToken,
address sellToken,
address buyToken,
uint256 buyAmount
) public returns (uint256 sellAmount) {
IVault.BatchSwapStep[] memory swapSteps = new IVault.BatchSwapStep[](1);
@@ -76,8 +82,8 @@ contract BalancerV2SwapAdapter is ISwapAdapter {
userData: ""
});
address[] memory assets = new address[](2);
assets[0] = address(sellToken);
assets[1] = address(buyToken);
assets[0] = sellToken;
assets[1] = buyToken;
IVault.FundManagement memory funds = IVault.FundManagement({
sender: msg.sender,
fromInternalBalance: false,
@@ -94,31 +100,23 @@ contract BalancerV2SwapAdapter is ISwapAdapter {
sellAmount = uint256(assetDeltas[0]);
}
function priceBatch(
function price(
bytes32 poolId,
IERC20 sellToken,
IERC20 buyToken,
address sellToken,
address buyToken,
uint256[] memory specifiedAmounts
) external returns (Fraction[] memory calculatedPrices) {
calculatedPrices = new Fraction[](specifiedAmounts.length);
for (uint256 i = 0; i < specifiedAmounts.length; i++) {
calculatedPrices[i] =
priceSingle(poolId, sellToken, buyToken, specifiedAmounts[i]);
}
}
function price(bytes32, IERC20, IERC20, uint256[] memory)
external
pure
override
returns (Fraction[] memory)
{
revert NotImplemented("BalancerV2SwapAdapter.price");
}
function swap(
bytes32 poolId,
IERC20 sellToken,
IERC20 buyToken,
address sellToken,
address buyToken,
OrderSide side,
uint256 specifiedAmount
) external override returns (Trade memory trade) {
@@ -136,16 +134,18 @@ contract BalancerV2SwapAdapter is ISwapAdapter {
limit = type(uint256).max;
}
sellToken.transferFrom(msg.sender, address(this), sellAmount);
sellToken.approve(address(vault), sellAmount);
IERC20(sellToken).safeTransferFrom(
msg.sender, address(this), sellAmount
);
IERC20(sellToken).safeIncreaseAllowance(address(vault), sellAmount);
uint256 gasBefore = gasleft();
trade.calculatedAmount = vault.swap(
IVault.SingleSwap({
poolId: poolId,
kind: kind,
assetIn: address(sellToken),
assetOut: address(buyToken),
assetIn: sellToken,
assetOut: buyToken,
amount: specifiedAmount,
userData: ""
}),
@@ -162,14 +162,14 @@ contract BalancerV2SwapAdapter is ISwapAdapter {
trade.price = priceSingle(poolId, sellToken, buyToken, specifiedAmount);
}
function getLimits(bytes32 poolId, IERC20 sellToken, IERC20 buyToken)
function getLimits(bytes32 poolId, address sellToken, address buyToken)
external
view
override
returns (uint256[] memory limits)
{
limits = new uint256[](2);
(IERC20[] memory tokens, uint256[] memory balances,) =
(address[] memory tokens, uint256[] memory balances,) =
vault.getPoolTokens(poolId);
for (uint256 i = 0; i < tokens.length; i++) {
@@ -182,22 +182,23 @@ contract BalancerV2SwapAdapter is ISwapAdapter {
}
}
function getCapabilities(bytes32, IERC20, IERC20)
function getCapabilities(bytes32, address, address)
external
pure
override
returns (Capability[] memory capabilities)
{
capabilities = new Capability[](2);
capabilities = new Capability[](3);
capabilities[0] = Capability.SellOrder;
capabilities[1] = Capability.BuyOrder;
capabilities[2] = Capability.PriceFunction;
}
function getTokens(bytes32 poolId)
external
view
override
returns (IERC20[] memory tokens)
returns (address[] memory tokens)
{
(tokens,,) = vault.getPoolTokens(poolId);
}
@@ -472,7 +473,7 @@ interface IVault {
external
view
returns (
IERC20[] memory tokens,
address[] memory tokens,
uint256[] memory balances,
uint256 lastChangeBlock
);

View File

@@ -0,0 +1,480 @@
// SPDX-License-Identifier: AGPL-3.0-or-later
pragma experimental ABIEncoderV2;
pragma solidity ^0.8.13;
import {ISwapAdapter} from "src/interfaces/ISwapAdapter.sol";
import {IERC20} from "openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from
"openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";
/// @title Etherfi Adapter
/// @dev This contract supports the following swaps: ETH->eETH, weETH<->eETH,
/// ETH->weETH
contract EtherfiAdapter is ISwapAdapter {
using SafeERC20 for IERC20;
uint256 constant PRECISE_UNIT = 10 ** 18;
IWeEth immutable weEth;
IeEth immutable eEth;
ILiquidityPool immutable liquidityPool;
constructor(address _weEth) {
weEth = IWeEth(_weEth);
eEth = weEth.eETH();
liquidityPool = eEth.liquidityPool();
}
/// @dev Check if swap between provided sellToken and buyToken are supported
/// by this adapter
modifier checkInputTokens(address sellToken, address buyToken) {
if (sellToken == buyToken) {
revert Unavailable(
"This pool only supports ETH->eETH, weETH<->eETH and ETH->weETH swaps"
);
}
if (
sellToken != address(weEth) && sellToken != address(eEth)
&& sellToken != address(0)
) {
revert Unavailable(
"This pool only supports ETH->eETH, weETH<->eETH and ETH->weETH swaps"
);
}
if (buyToken != address(weEth) && buyToken != address(eEth)) {
revert Unavailable(
"This pool only supports ETH->eETH, weETH<->eETH and ETH->weETH swaps"
);
}
_;
}
/// @dev enable receive as this contract supports ETH
receive() external payable {}
/// @inheritdoc ISwapAdapter
function price(
bytes32,
address sellToken,
address buyToken,
uint256[] memory specifiedAmounts
)
external
view
override
checkInputTokens(sellToken, buyToken)
returns (Fraction[] memory prices)
{
prices = new Fraction[](specifiedAmounts.length);
uint256 totalPooledEther = liquidityPool.getTotalPooledEther();
uint256 eEthTotalShares = eEth.totalShares();
for (uint256 i = 0; i < specifiedAmounts.length; i++) {
if (sellToken == address(0)) {
uint256 sharesForDepositAmount = _sharesForDepositAmount(
specifiedAmounts[i], totalPooledEther, eEthTotalShares
);
prices[i] = getPriceAt(
sellToken,
buyToken,
specifiedAmounts[i],
totalPooledEther + specifiedAmounts[i],
eEthTotalShares + sharesForDepositAmount
);
} else {
prices[i] = getPriceAt(
sellToken,
buyToken,
specifiedAmounts[i],
totalPooledEther,
eEthTotalShares
);
}
}
}
/// @inheritdoc ISwapAdapter
function swap(
bytes32,
address sellToken,
address buyToken,
OrderSide side,
uint256 specifiedAmount
)
external
override
checkInputTokens(sellToken, buyToken)
returns (Trade memory trade)
{
if (specifiedAmount == 0) {
return trade;
}
uint256 gasBefore = gasleft();
if (sellToken == address(0)) {
if (buyToken == address(eEth)) {
trade.calculatedAmount = swapEthForEeth(specifiedAmount, side);
} else {
trade.calculatedAmount = swapEthForWeEth(specifiedAmount, side);
}
} else {
if (sellToken == address(eEth)) {
trade.calculatedAmount = swapEethForWeEth(specifiedAmount, side);
} else {
trade.calculatedAmount = swapWeEthForEeth(specifiedAmount, side);
}
}
trade.gasUsed = gasBefore - gasleft();
/// @dev as the price is constant for all the traded amounts and depends
/// only on the totalPooledEther and totalShares, we can use a standard
/// amount(PRECISE_UNIT) to render a well-formatted price without
/// precisions loss
trade.price = getPriceAt(
sellToken,
buyToken,
PRECISE_UNIT,
liquidityPool.getTotalPooledEther(),
eEth.totalShares()
);
}
/// @inheritdoc ISwapAdapter
function getLimits(bytes32, address sellToken, address buyToken)
external
view
override
checkInputTokens(sellToken, buyToken)
returns (uint256[] memory limits)
{
limits = new uint256[](2);
/// @dev Limits are underestimated to 90% of totalSupply as both weEth
/// and eEth have no limits but revert in some cases
if (sellToken == address(weEth) || buyToken == address(weEth)) {
limits[0] = IERC20(address(weEth)).totalSupply() * 90 / 100;
} else {
limits[0] = IERC20(address(eEth)).totalSupply() * 90 / 100;
}
limits[1] = limits[0];
}
/// @inheritdoc ISwapAdapter
function getCapabilities(bytes32, address, address)
external
pure
override
returns (Capability[] memory capabilities)
{
capabilities = new Capability[](3);
capabilities[0] = Capability.SellOrder;
capabilities[1] = Capability.BuyOrder;
capabilities[2] = Capability.PriceFunction;
}
/// @inheritdoc ISwapAdapter
function getTokens(bytes32)
external
view
override
returns (address[] memory tokens)
{
tokens = new address[](3);
tokens[0] = address(0);
tokens[1] = address(eEth);
tokens[2] = address(weEth);
}
/// @inheritdoc ISwapAdapter
function getPoolIds(uint256, uint256)
external
view
override
returns (bytes32[] memory ids)
{
ids = new bytes32[](1);
ids[0] = bytes20(address(liquidityPool));
}
/// @notice Swap ETH for eETH
/// @param amount amountIn or amountOut depending on side
function swapEthForEeth(uint256 amount, OrderSide side)
internal
returns (uint256)
{
if (side == OrderSide.Buy) {
uint256 amountIn = getAmountIn(address(0), address(eEth), amount);
liquidityPool.deposit{value: amountIn}();
IERC20(address(eEth)).safeTransfer(address(msg.sender), amount);
return amountIn;
} else {
uint256 receivedAmount = liquidityPool.deposit{value: amount}();
uint256 balBeforeUser =
IERC20(address(eEth)).balanceOf(address(msg.sender));
IERC20(address(eEth)).safeTransfer(msg.sender, receivedAmount);
return IERC20(address(eEth)).balanceOf(address(msg.sender))
- balBeforeUser;
}
}
/// @notice Swap ETH for weEth
/// @param amount amountIn or amountOut depending on side
function swapEthForWeEth(uint256 amount, OrderSide side)
internal
returns (uint256)
{
IERC20 eEth_ = IERC20(address(eEth));
if (side == OrderSide.Buy) {
uint256 amountIn = getAmountIn(address(0), address(weEth), amount);
uint256 receivedAmountEeth =
liquidityPool.deposit{value: amountIn}();
eEth_.safeIncreaseAllowance(address(weEth), receivedAmountEeth);
uint256 receivedAmount = weEth.wrap(receivedAmountEeth);
IERC20(address(weEth)).safeTransfer(
address(msg.sender), receivedAmount
);
return amountIn;
} else {
uint256 receivedAmountEeth = liquidityPool.deposit{value: amount}();
eEth_.safeIncreaseAllowance(address(weEth), receivedAmountEeth);
uint256 receivedAmount = weEth.wrap(receivedAmountEeth);
IERC20(address(weEth)).safeTransfer(
address(msg.sender), receivedAmount
);
return receivedAmount;
}
}
/// @notice Swap eETH for weETH
/// @param amount amountIn or amountOut depending on side
function swapEethForWeEth(uint256 amount, OrderSide side)
internal
returns (uint256)
{
if (side == OrderSide.Buy) {
uint256 amountIn =
getAmountIn(address(eEth), address(weEth), amount);
IERC20(address(eEth)).safeTransferFrom(
msg.sender, address(this), amountIn
);
IERC20(address(eEth)).safeIncreaseAllowance(
address(weEth), amountIn
);
uint256 receivedAmount = weEth.wrap(amountIn);
IERC20(address(weEth)).safeTransfer(
address(msg.sender), receivedAmount
);
return amountIn;
} else {
IERC20(address(eEth)).safeTransferFrom(
msg.sender, address(this), amount
);
IERC20(address(eEth)).safeIncreaseAllowance(address(weEth), amount);
uint256 receivedAmount = weEth.wrap(amount);
IERC20(address(weEth)).safeTransfer(
address(msg.sender), receivedAmount
);
return receivedAmount;
}
}
/// @notice Swap weETH for eEth
/// @param amount amountIn or amountOut depending on side
function swapWeEthForEeth(uint256 amount, OrderSide side)
internal
returns (uint256)
{
if (side == OrderSide.Buy) {
uint256 amountIn =
getAmountIn(address(weEth), address(eEth), amount);
IERC20(address(weEth)).safeTransferFrom(
msg.sender, address(this), amountIn
);
uint256 receivedAmount = weEth.unwrap(amountIn);
IERC20(address(eEth)).safeTransfer(
address(msg.sender), receivedAmount
);
return amountIn;
} else {
IERC20(address(weEth)).safeTransferFrom(
msg.sender, address(this), amount
);
uint256 receivedAmount = weEth.unwrap(amount);
uint256 balBeforeUser =
IERC20(address(eEth)).balanceOf(address(msg.sender));
IERC20(address(eEth)).safeTransfer(msg.sender, receivedAmount);
return IERC20(address(eEth)).balanceOf(address(msg.sender))
- balBeforeUser;
}
}
/// @dev copy of '_sharesForDepositAmount' internal function in
/// LiquidityPool, without ether subtraction
function _sharesForDepositAmount(
uint256 _depositAmount,
uint256 _totalPooledEther,
uint256 _eEthTotalShares
) internal pure returns (uint256) {
if (_totalPooledEther == 0) {
return _depositAmount;
}
return (_depositAmount * _eEthTotalShares) / _totalPooledEther;
}
/// @dev copy of 'getWeETHByeEth' function in weETH, dynamic
function _getWeETHByeEth(
uint256 _depositAmount,
uint256 _totalPooledEther,
uint256 _eEthTotalShares
) internal pure returns (uint256) {
if (_totalPooledEther == 0) {
return 0;
}
return (_depositAmount * _eEthTotalShares) / _totalPooledEther;
}
/// @dev copy of 'getEethByWeEth' function in weETH, dynamic
function _getEethByWeEth(
uint256 _depositAmount,
uint256 _totalPooledEther,
uint256 _eEthTotalShares
) internal pure returns (uint256) {
if (_eEthTotalShares == 0) {
return 0;
}
return (_depositAmount * _totalPooledEther) / _eEthTotalShares;
}
/// @notice Get swap price
/// @param sellToken token to sell
/// @param buyToken token to buy
/// @param totalPooledEther total pooled ether after or before trade if
/// required
/// @param eEthTotalShares total shares of eETH after or before trade if
/// required
function getPriceAt(
address sellToken,
address buyToken,
uint256 amount,
uint256 totalPooledEther,
uint256 eEthTotalShares
) internal view returns (Fraction memory) {
if (sellToken == address(0)) {
if (buyToken == address(eEth)) {
return Fraction(
_sharesForDepositAmount(
amount, totalPooledEther, eEthTotalShares
),
amount
);
} else {
uint256 eEthOut = _sharesForDepositAmount(
amount, totalPooledEther, eEthTotalShares
);
return Fraction(
_getWeETHByeEth(
eEthOut,
totalPooledEther + amount,
eEthTotalShares + eEthOut
),
amount
);
}
} else if (sellToken == address(eEth)) {
return Fraction(
_getWeETHByeEth(amount, totalPooledEther, eEthTotalShares),
amount
);
} else {
return Fraction(
_getEethByWeEth(amount, totalPooledEther, eEthTotalShares),
amount
);
}
}
/// @notice Get amountIn for swap functions with OrderSide buy
function getAmountIn(address sellToken, address buyToken, uint256 amountOut)
internal
view
returns (uint256)
{
if (sellToken == address(0)) {
if (buyToken == address(eEth)) {
return liquidityPool.amountForShare(amountOut);
} else {
uint256 ethRequiredForEeth =
liquidityPool.amountForShare(amountOut);
return liquidityPool.amountForShare(ethRequiredForEeth);
}
} else if (sellToken == address(eEth)) {
// eEth-weEth
return weEth.getEETHByWeETH(amountOut);
} else {
// weEth-eEth
return weEth.getWeETHByeETH(amountOut);
}
}
}
interface ILiquidityPool {
function numPendingDeposits() external view returns (uint32);
function totalValueOutOfLp() external view returns (uint128);
function totalValueInLp() external view returns (uint128);
function getTotalEtherClaimOf(address _user)
external
view
returns (uint256);
function getTotalPooledEther() external view returns (uint256);
function sharesForAmount(uint256 _amount) external view returns (uint256);
function sharesForWithdrawalAmount(uint256 _amount)
external
view
returns (uint256);
function amountForShare(uint256 _share) external view returns (uint256);
function deposit() external payable returns (uint256);
function deposit(address _referral) external payable returns (uint256);
function deposit(address _user, address _referral)
external
payable
returns (uint256);
function requestWithdraw(address recipient, uint256 amount)
external
returns (uint256);
}
interface IeEth {
function liquidityPool() external view returns (ILiquidityPool);
function totalShares() external view returns (uint256);
function shares(address _user) external view returns (uint256);
}
interface IWeEth {
function eETH() external view returns (IeEth);
function getWeETHByeETH(uint256 _eETHAmount)
external
view
returns (uint256);
function getEETHByWeETH(uint256 _weETHAmount)
external
view
returns (uint256);
function wrap(uint256 _eETHAmount) external returns (uint256);
function unwrap(uint256 _weETHAmount) external returns (uint256);
}

View File

@@ -0,0 +1,36 @@
# information about the author helps us reach out in case of issues.
author:
name: shadowycoders.dev
email: hello@shadowycreators.com
# Protocol Constants
constants:
protocol_gas: 30000
# minimum capabilities we can expect, individual pools may extend these
capabilities:
- SellSide
- BuySide
- PriceFunction
# The file containing the adapter contract
contract: EtherfiAdapter.sol
# Deployment instances used to generate chain specific bytecode.
instances:
- chain:
name: mainnet
id: 0
arguments:
- "0xCd5fE23C85820F7B72D0926FC9b05b43E359b7ee"
# Specify some automatic test cases in case getPoolIds and
# getTokens are not implemented.
tests:
instances:
- pool_id: "0xB4e16d0168e52d35CaCD2c6185b44281Ec28C9Dc"
sell_token: "0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2"
buy_token: "0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48"
block: 17000000
chain:
id: 0
name: mainnet

View File

@@ -1,10 +1,13 @@
// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.13;
import {IERC20, ISwapAdapter} from "src/interfaces/ISwapAdapter.sol";
import {ERC20} from "openzeppelin-contracts/contracts/token/ERC20/ERC20.sol";
import {SafeERC20} from
"openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";
import {ISwapAdapter} from "src/interfaces/ISwapAdapter.sol";
import {IERC20Metadata} from
"openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {
IERC20,
SafeERC20
} from "openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";
/// @dev Integral submitted deadline of 3600 seconds (1 hour) to Paraswap, but
/// it is not strictly necessary to be this long
@@ -38,24 +41,23 @@ contract IntegralSwapAdapter is ISwapAdapter {
/// values to make sure the return value is the expected from caller.
function price(
bytes32,
IERC20 _sellToken,
IERC20 _buyToken,
address _sellToken,
address _buyToken,
uint256[] memory _specifiedAmounts
) external view override returns (Fraction[] memory _prices) {
_prices = new Fraction[](_specifiedAmounts.length);
Fraction memory price =
getPriceAt(address(_sellToken), address(_buyToken));
Fraction memory uniformPrice = getPriceAt(_sellToken, _buyToken);
for (uint256 i = 0; i < _specifiedAmounts.length; i++) {
_prices[i] = price;
_prices[i] = uniformPrice;
}
}
/// @inheritdoc ISwapAdapter
function swap(
bytes32,
IERC20 sellToken,
IERC20 buyToken,
address sellToken,
address buyToken,
OrderSide side,
uint256 specifiedAmount
) external override returns (Trade memory trade) {
@@ -72,18 +74,18 @@ contract IntegralSwapAdapter is ISwapAdapter {
trade.calculatedAmount = buy(sellToken, buyToken, specifiedAmount);
}
trade.gasUsed = gasBefore - gasleft();
trade.price = getPriceAt(address(sellToken), address(buyToken));
trade.price = getPriceAt(sellToken, buyToken);
}
/// @inheritdoc ISwapAdapter
function getLimits(bytes32, IERC20 sellToken, IERC20 buyToken)
function getLimits(bytes32, address sellToken, address buyToken)
external
view
override
returns (uint256[] memory limits)
{
(,,, uint256 limitMax0,, uint256 limitMax1) =
relayer.getPoolState(address(sellToken), address(buyToken));
relayer.getPoolState(sellToken, buyToken);
limits = new uint256[](2);
limits[0] = limitMax0;
@@ -98,7 +100,7 @@ contract IntegralSwapAdapter is ISwapAdapter {
}
/// @inheritdoc ISwapAdapter
function getCapabilities(bytes32, IERC20, IERC20)
function getCapabilities(bytes32, address, address)
external
pure
override
@@ -116,12 +118,12 @@ contract IntegralSwapAdapter is ISwapAdapter {
external
view
override
returns (IERC20[] memory tokens)
returns (address[] memory tokens)
{
tokens = new IERC20[](2);
tokens = new address[](2);
ITwapPair pair = ITwapPair(address(bytes20(poolId)));
tokens[0] = IERC20(pair.token0());
tokens[1] = IERC20(pair.token1());
tokens[0] = pair.token0();
tokens[1] = pair.token1();
}
/// @inheritdoc ISwapAdapter
@@ -147,23 +149,22 @@ contract IntegralSwapAdapter is ISwapAdapter {
/// @param buyToken The address of the token being bought.
/// @param amount The amount to be traded.
/// @return uint256 The amount of tokens received.
function sell(IERC20 sellToken, IERC20 buyToken, uint256 amount)
function sell(address sellToken, address buyToken, uint256 amount)
internal
returns (uint256)
{
uint256 amountOut =
relayer.quoteSell(address(sellToken), address(buyToken), amount);
uint256 amountOut = relayer.quoteSell(sellToken, buyToken, amount);
if (amountOut == 0) {
revert Unavailable("AmountOut is zero!");
}
sellToken.safeTransferFrom(msg.sender, address(this), amount);
sellToken.safeIncreaseAllowance(address(relayer), amount);
IERC20(sellToken).safeTransferFrom(msg.sender, address(this), amount);
IERC20(sellToken).safeIncreaseAllowance(address(relayer), amount);
relayer.sell(
ITwapRelayer.SellParams({
tokenIn: address(sellToken),
tokenOut: address(buyToken),
tokenIn: sellToken,
tokenOut: buyToken,
wrapUnwrap: false,
to: msg.sender,
submitDeadline: uint32(block.timestamp + SWAP_DEADLINE_SEC),
@@ -180,24 +181,22 @@ contract IntegralSwapAdapter is ISwapAdapter {
/// @param buyToken The address of the token being bought.
/// @param amountBought The amount of buyToken tokens to buy.
/// @return uint256 The amount of tokens received.
function buy(IERC20 sellToken, IERC20 buyToken, uint256 amountBought)
function buy(address sellToken, address buyToken, uint256 amountBought)
internal
returns (uint256)
{
uint256 amountIn = relayer.quoteBuy(
address(sellToken), address(buyToken), amountBought
);
uint256 amountIn = relayer.quoteBuy(sellToken, buyToken, amountBought);
if (amountIn == 0) {
revert Unavailable("AmountIn is zero!");
}
sellToken.safeTransferFrom(msg.sender, address(this), amountIn);
sellToken.safeIncreaseAllowance(address(relayer), amountIn);
IERC20(sellToken).safeTransferFrom(msg.sender, address(this), amountIn);
IERC20(sellToken).safeIncreaseAllowance(address(relayer), amountIn);
relayer.buy(
ITwapRelayer.BuyParams({
tokenIn: address(sellToken),
tokenOut: address(buyToken),
tokenIn: sellToken,
tokenOut: buyToken,
wrapUnwrap: false,
to: msg.sender,
submitDeadline: uint32(block.timestamp + SWAP_DEADLINE_SEC),
@@ -217,20 +216,18 @@ contract IntegralSwapAdapter is ISwapAdapter {
view
returns (Fraction memory)
{
uint256 priceWithoutFee = relayer.getPriceByTokenAddresses(
address(sellToken), address(buyToken)
);
uint256 priceWithoutFee =
relayer.getPriceByTokenAddresses(sellToken, buyToken);
ITwapFactory factory = ITwapFactory(relayer.factory());
address pairAddress =
factory.getPair(address(sellToken), address(buyToken));
address pairAddress = factory.getPair(sellToken, buyToken);
// get swapFee formatted; swapFee is a constant
uint256 swapFeeFormatted =
(STANDARD_TOKEN_DECIMALS - relayer.swapFee(pairAddress));
// get token decimals
uint256 sellTokenDecimals = 10 ** ERC20(sellToken).decimals();
uint256 buyTokenDecimals = 10 ** ERC20(buyToken).decimals();
uint256 sellTokenDecimals = 10 ** IERC20Metadata(sellToken).decimals();
uint256 buyTokenDecimals = 10 ** IERC20Metadata(buyToken).decimals();
/**
* @dev

View File

@@ -1,7 +1,6 @@
// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.13;
import {IERC20} from "openzeppelin-contracts/contracts/interfaces/IERC20.sol";
import {ISwapAdapterTypes} from "src/interfaces/ISwapAdapterTypes.sol";
/// @title ISwapAdapter
@@ -35,10 +34,10 @@ interface ISwapAdapter is ISwapAdapterTypes {
/// provided amounts.
function price(
bytes32 poolId,
IERC20 sellToken,
IERC20 buyToken,
address sellToken,
address buyToken,
uint256[] memory specifiedAmounts
) external view returns (Fraction[] memory prices);
) external returns (Fraction[] memory prices);
/**
* @notice Simulates swapping tokens on a given pool.
@@ -59,8 +58,8 @@ interface ISwapAdapter is ISwapAdapterTypes {
*/
function swap(
bytes32 poolId,
IERC20 sellToken,
IERC20 buyToken,
address sellToken,
address buyToken,
OrderSide side,
uint256 specifiedAmount
) external returns (Trade memory trade);
@@ -76,25 +75,27 @@ interface ISwapAdapter is ISwapAdapterTypes {
/// @param sellToken The token being sold.
/// @param buyToken The token being bought.
/// @return limits An array of limits.
function getLimits(bytes32 poolId, IERC20 sellToken, IERC20 buyToken)
function getLimits(bytes32 poolId, address sellToken, address buyToken)
external
returns (uint256[] memory limits);
/// @notice Retrieves the capabilities of the selected pool.
/// @param poolId The ID of the trading pool.
/// @return capabilities An array of Capability.
function getCapabilities(bytes32 poolId, IERC20 sellToken, IERC20 buyToken)
external
returns (Capability[] memory capabilities);
function getCapabilities(
bytes32 poolId,
address sellToken,
address buyToken
) external returns (Capability[] memory capabilities);
/// @notice Retrieves the tokens in the selected pool.
/// @dev Mainly used for testing as this is redundant with the required
/// substreams implementation.
/// @param poolId The ID of the trading pool.
/// @return tokens An array of IERC20 contracts.
/// @return tokens An array of address contracts.
function getTokens(bytes32 poolId)
external
returns (IERC20[] memory tokens);
returns (address[] memory tokens);
/// @notice Retrieves a range of pool IDs.
/// @dev Mainly used for testing. It is alright to not return all available

View File

@@ -1,8 +1,6 @@
// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.13;
import {IERC20} from "openzeppelin-contracts/contracts/interfaces/IERC20.sol";
interface ISwapAdapterTypes {
/// @dev The OrderSide enum represents possible sides of a trade: Sell or
/// Buy. E.g. if OrderSide is Sell, the sell amount is interpreted to be

View File

@@ -1,7 +1,7 @@
// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.13;
import {IERC20, ISwapAdapter} from "src/interfaces/ISwapAdapter.sol";
import {ISwapAdapter} from "src/interfaces/ISwapAdapter.sol";
/// @title TemplateSwapAdapter
/// @dev This is a template for a swap adapter.
@@ -10,8 +10,8 @@ import {IERC20, ISwapAdapter} from "src/interfaces/ISwapAdapter.sol";
contract TemplateSwapAdapter is ISwapAdapter {
function price(
bytes32 _poolId,
IERC20 _sellToken,
IERC20 _buyToken,
address _sellToken,
address _buyToken,
uint256[] memory _specifiedAmounts
) external view override returns (Fraction[] memory _prices) {
revert NotImplemented("TemplateSwapAdapter.price");
@@ -19,31 +19,32 @@ contract TemplateSwapAdapter is ISwapAdapter {
function swap(
bytes32 poolId,
IERC20 sellToken,
IERC20 buyToken,
address sellToken,
address buyToken,
OrderSide side,
uint256 specifiedAmount
) external returns (Trade memory trade) {
revert NotImplemented("TemplateSwapAdapter.swap");
}
function getLimits(bytes32 poolId, IERC20 sellToken, IERC20 buyToken)
function getLimits(bytes32 poolId, address sellToken, address buyToken)
external
returns (uint256[] memory limits)
{
revert NotImplemented("TemplateSwapAdapter.getLimits");
}
function getCapabilities(bytes32 poolId, IERC20 sellToken, IERC20 buyToken)
external
returns (Capability[] memory capabilities)
{
function getCapabilities(
bytes32 poolId,
address sellToken,
address buyToken
) external returns (Capability[] memory capabilities) {
revert NotImplemented("TemplateSwapAdapter.getCapabilities");
}
function getTokens(bytes32 poolId)
external
returns (IERC20[] memory tokens)
returns (address[] memory tokens)
{
revert NotImplemented("TemplateSwapAdapter.getTokens");
}

View File

@@ -5,8 +5,9 @@ author:
# Protocol Constants
constants:
# The expected average gas cost of a swap
protocol_gas: 30000
# minimum capabilities we can expect, individual pools may extend these
# Minimum capabilities we can expect, individual pools may extend these
capabilities:
- SellSide
- BuySide

View File

@@ -1,12 +1,18 @@
// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.13;
import {IERC20, ISwapAdapter} from "src/interfaces/ISwapAdapter.sol";
import {ISwapAdapter} from "src/interfaces/ISwapAdapter.sol";
import {
IERC20,
SafeERC20
} from "openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";
// Uniswap handles arbirary amounts, but we limit the amount to 10x just in case
uint256 constant RESERVE_LIMIT_FACTOR = 10;
contract UniswapV2SwapAdapter is ISwapAdapter {
using SafeERC20 for IERC20;
IUniswapV2Factory immutable factory;
constructor(address factory_) {
@@ -16,8 +22,8 @@ contract UniswapV2SwapAdapter is ISwapAdapter {
/// @inheritdoc ISwapAdapter
function price(
bytes32 poolId,
IERC20 sellToken,
IERC20 buyToken,
address sellToken,
address buyToken,
uint256[] memory specifiedAmounts
) external view override returns (Fraction[] memory prices) {
prices = new Fraction[](specifiedAmounts.length);
@@ -60,8 +66,8 @@ contract UniswapV2SwapAdapter is ISwapAdapter {
/// @inheritdoc ISwapAdapter
function swap(
bytes32 poolId,
IERC20 sellToken,
IERC20 buyToken,
address sellToken,
address buyToken,
OrderSide side,
uint256 specifiedAmount
) external override returns (Trade memory trade) {
@@ -104,7 +110,7 @@ contract UniswapV2SwapAdapter is ISwapAdapter {
/// @return calculatedAmount The amount of tokens received.
function sell(
IUniswapV2Pair pair,
IERC20 sellToken,
address sellToken,
bool zero2one,
uint112 reserveIn,
uint112 reserveOut,
@@ -113,8 +119,7 @@ contract UniswapV2SwapAdapter is ISwapAdapter {
address swapper = msg.sender;
uint256 amountOut = getAmountOut(amount, reserveIn, reserveOut);
// TODO: use safeTransferFrom
sellToken.transferFrom(swapper, address(pair), amount);
IERC20(sellToken).safeTransferFrom(swapper, address(pair), amount);
if (zero2one) {
pair.swap(0, amountOut, swapper, "");
} else {
@@ -156,7 +161,7 @@ contract UniswapV2SwapAdapter is ISwapAdapter {
/// @return calculatedAmount The amount of tokens sold.
function buy(
IUniswapV2Pair pair,
IERC20 sellToken,
address sellToken,
bool zero2one,
uint112 reserveIn,
uint112 reserveOut,
@@ -168,8 +173,8 @@ contract UniswapV2SwapAdapter is ISwapAdapter {
if (amount == 0) {
return 0;
}
// TODO: use safeTransferFrom
sellToken.transferFrom(swapper, address(pair), amount);
IERC20(sellToken).safeTransferFrom(swapper, address(pair), amount);
if (zero2one) {
pair.swap(0, amountOut, swapper, "");
} else {
@@ -203,7 +208,7 @@ contract UniswapV2SwapAdapter is ISwapAdapter {
}
/// @inheritdoc ISwapAdapter
function getLimits(bytes32 poolId, IERC20 sellToken, IERC20 buyToken)
function getLimits(bytes32 poolId, address sellToken, address buyToken)
external
view
override
@@ -222,7 +227,7 @@ contract UniswapV2SwapAdapter is ISwapAdapter {
}
/// @inheritdoc ISwapAdapter
function getCapabilities(bytes32, IERC20, IERC20)
function getCapabilities(bytes32, address, address)
external
pure
override
@@ -239,12 +244,12 @@ contract UniswapV2SwapAdapter is ISwapAdapter {
external
view
override
returns (IERC20[] memory tokens)
returns (address[] memory tokens)
{
tokens = new IERC20[](2);
tokens = new address[](2);
IUniswapV2Pair pair = IUniswapV2Pair(address(bytes20(poolId)));
tokens[0] = IERC20(pair.token0());
tokens[1] = IERC20(pair.token1());
tokens[0] = address(pair.token0());
tokens[1] = address(pair.token1());
}
/// @inheritdoc ISwapAdapter

200
evm/test/AngleAdapter.t.sol Normal file
View File

@@ -0,0 +1,200 @@
// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.13;
import "forge-std/Test.sol";
import "openzeppelin-contracts/contracts/interfaces/IERC20.sol";
import "src/angle/AngleAdapter.sol";
import "src/interfaces/ISwapAdapterTypes.sol";
import "src/libraries/FractionMath.sol";
import "forge-std/console.sol";
contract AngleAdapterTest is Test, ISwapAdapterTypes {
using FractionMath for Fraction;
AngleAdapter adapter;
IERC20 agEUR;
IERC20 constant EURC = IERC20(0x1aBaEA1f7C830bD89Acc67eC4af516284b1bC33c);
ITransmuter constant transmuter =
ITransmuter(0x00253582b2a3FE112feEC532221d9708c64cEFAb);
uint256 constant TEST_ITERATIONS = 100;
function setUp() public {
uint256 forkBlock = 18921770;
vm.createSelectFork(vm.rpcUrl("mainnet"), forkBlock);
adapter = new AngleAdapter(transmuter);
agEUR = IERC20(transmuter.agToken());
vm.label(address(adapter), "AngleAdapter");
vm.label(address(agEUR), "agEUR");
vm.label(address(EURC), "EURC");
}
function testSwapFuzzAngleMint(uint256 specifiedAmount, bool isBuy)
public
{
OrderSide side = isBuy ? OrderSide.Buy : OrderSide.Sell;
bytes32 pair = bytes32(0);
uint256[] memory limits =
adapter.getLimits(pair, address(EURC), address(agEUR));
if (side == OrderSide.Buy) {
vm.assume(specifiedAmount < limits[1] && specifiedAmount > 0);
deal(address(EURC), address(this), type(uint256).max);
EURC.approve(address(adapter), type(uint256).max);
} else {
vm.assume(specifiedAmount < limits[0] && specifiedAmount > 0);
deal(address(EURC), address(this), specifiedAmount);
EURC.approve(address(adapter), specifiedAmount);
}
uint256 eurc_balance = EURC.balanceOf(address(this));
uint256 agEUR_balance = agEUR.balanceOf(address(this));
Trade memory trade = adapter.swap(
pair, address(EURC), address(agEUR), side, specifiedAmount
);
if (trade.calculatedAmount > 0) {
if (side == OrderSide.Buy) {
assertEq(
specifiedAmount,
agEUR.balanceOf(address(this)) - agEUR_balance
);
assertEq(
trade.calculatedAmount,
eurc_balance - EURC.balanceOf(address(this))
);
} else {
assertEq(
specifiedAmount,
eurc_balance - EURC.balanceOf(address(this))
);
assertEq(
trade.calculatedAmount,
agEUR.balanceOf(address(this)) - agEUR_balance
);
}
}
}
function testSwapFuzzAngleRedeem(uint256 specifiedAmount, bool isBuy)
public
{
OrderSide side = isBuy ? OrderSide.Buy : OrderSide.Sell;
bytes32 pair = bytes32(0);
uint256[] memory limits =
adapter.getLimits(pair, address(agEUR), address(EURC));
if (side == OrderSide.Buy) {
vm.assume(specifiedAmount < limits[1] && specifiedAmount > 0);
deal(address(agEUR), address(this), type(uint256).max);
agEUR.approve(address(adapter), type(uint256).max);
} else {
vm.assume(specifiedAmount < limits[0] && specifiedAmount > 0);
deal(address(agEUR), address(this), specifiedAmount);
agEUR.approve(address(adapter), specifiedAmount);
}
uint256 eurc_balance = EURC.balanceOf(address(this));
uint256 agEUR_balance = agEUR.balanceOf(address(this));
Trade memory trade = adapter.swap(
pair, address(agEUR), address(EURC), side, specifiedAmount
);
if (trade.calculatedAmount > 0) {
if (side == OrderSide.Buy) {
assertEq(
specifiedAmount,
EURC.balanceOf(address(this)) - eurc_balance
);
assertEq(
trade.calculatedAmount,
agEUR_balance - agEUR.balanceOf(address(this))
);
} else {
assertEq(
specifiedAmount,
agEUR_balance - agEUR.balanceOf(address(this))
);
assertEq(
trade.calculatedAmount,
EURC.balanceOf(address(this)) - eurc_balance
);
}
}
}
function testSwapSellIncreasingAngle() public {
executeIncreasingSwapsAngle(OrderSide.Sell);
}
function executeIncreasingSwapsAngle(OrderSide side) internal {
bytes32 pair = bytes32(0);
uint256[] memory amounts = new uint256[](TEST_ITERATIONS);
for (uint256 i = 0; i < TEST_ITERATIONS; i++) {
amounts[i] = side == OrderSide.Sell
? (100 * i * 10 ** 18)
: (100 * i * 10 ** 6);
}
Trade[] memory trades = new Trade[](TEST_ITERATIONS);
uint256 beforeSwap;
for (uint256 i = 1; i < TEST_ITERATIONS; i++) {
beforeSwap = vm.snapshot();
if (side == OrderSide.Sell) {
deal(address(agEUR), address(this), amounts[i]);
agEUR.approve(address(adapter), amounts[i]);
} else {
deal(address(agEUR), address(this), type(uint256).max);
agEUR.approve(address(adapter), type(uint256).max);
}
trades[i] = adapter.swap(
pair, address(agEUR), address(EURC), side, amounts[i]
);
vm.revertTo(beforeSwap);
}
for (uint256 i = 1; i < TEST_ITERATIONS - 1; i++) {
assertLe(trades[i].calculatedAmount, trades[i + 1].calculatedAmount);
assertFalse(
trades[i].price.compareFractions(trades[i + 1].price) == -1
);
}
}
function testSwapBuyIncreasingAngle() public {
executeIncreasingSwapsAngle(OrderSide.Buy);
}
function testGetCapabilitiesAngle(bytes32 pair, address t0, address t1)
public
{
Capability[] memory res = adapter.getCapabilities(pair, t0, t1);
assertEq(res.length, 2);
}
function testGetTokensAngle() public {
address[] memory tokens = adapter.getTokens(bytes32(0));
assertGe(tokens.length, 2);
}
function testGetLimitsAngle() public {
bytes32 pair = bytes32(0);
uint256[] memory limits =
adapter.getLimits(pair, address(agEUR), address(EURC));
assertEq(limits.length, 2);
}
}

View File

@@ -17,8 +17,8 @@ contract BalancerV2SwapAdapterTest is Test, ISwapAdapterTypes {
IVault(payable(0xBA12222222228d8Ba445958a75a0704d566BF2C8));
BalancerV2SwapAdapter adapter;
IERC20 constant WETH = IERC20(0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2);
IERC20 constant BAL = IERC20(0xba100000625a3754423978a60c9317c58a424e3D);
address constant WETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
address constant BAL = 0xba100000625a3754423978a60c9317c58a424e3D;
address constant B_80BAL_20WETH = 0x5c6Ee304399DBdB9C8Ef030aB642B10820DB8F56;
bytes32 constant B_80BAL_20WETH_POOL_ID =
0x5c6ee304399dbdb9c8ef030ab642b10820db8f56000200000000000000000014;
@@ -34,20 +34,22 @@ contract BalancerV2SwapAdapterTest is Test, ISwapAdapterTypes {
vm.label(address(balancerV2Vault), "IVault");
vm.label(address(adapter), "BalancerV2SwapAdapter");
vm.label(address(WETH), "WETH");
vm.label(address(BAL), "BAL");
vm.label(BAL, "BAL");
vm.label(address(B_80BAL_20WETH), "B_80BAL_20WETH");
}
function testPrice() public {
uint256[] memory amounts = new uint256[](2);
amounts[0] = 100;
amounts[1] = 200;
vm.expectRevert(
abi.encodeWithSelector(
NotImplemented.selector, "BalancerV2SwapAdapter.price"
)
);
adapter.price(B_80BAL_20WETH_POOL_ID, BAL, WETH, amounts);
amounts[0] = 1e18;
amounts[1] = 2e18;
Fraction[] memory prices =
adapter.price(B_80BAL_20WETH_POOL_ID, BAL, WETH, amounts);
for (uint256 i = 0; i < prices.length; i++) {
assertGt(prices[i].numerator, 0);
assertGt(prices[i].denominator, 0);
}
}
function testPriceSingleFuzz() public {
@@ -97,17 +99,17 @@ contract BalancerV2SwapAdapterTest is Test, ISwapAdapterTypes {
// TODO calculate the amountIn by using price function as in
// testPriceDecreasing
deal(address(BAL), address(this), type(uint256).max);
BAL.approve(address(adapter), type(uint256).max);
deal(BAL, address(this), type(uint256).max);
IERC20(BAL).approve(address(adapter), type(uint256).max);
} else {
vm.assume(specifiedAmount < limits[0]);
deal(address(BAL), address(this), specifiedAmount);
BAL.approve(address(adapter), specifiedAmount);
deal(BAL, address(this), specifiedAmount);
IERC20(BAL).approve(address(adapter), specifiedAmount);
}
uint256 bal_balance = BAL.balanceOf(address(this));
uint256 weth_balance = WETH.balanceOf(address(this));
uint256 bal_balance = IERC20(BAL).balanceOf(address(this));
uint256 weth_balance = IERC20(WETH).balanceOf(address(this));
Trade memory trade = adapter.swap(
B_80BAL_20WETH_POOL_ID, BAL, WETH, side, specifiedAmount
@@ -117,19 +119,20 @@ contract BalancerV2SwapAdapterTest is Test, ISwapAdapterTypes {
if (side == OrderSide.Buy) {
assertEq(
specifiedAmount,
WETH.balanceOf(address(this)) - weth_balance
IERC20(WETH).balanceOf(address(this)) - weth_balance
);
assertEq(
trade.calculatedAmount,
bal_balance - BAL.balanceOf(address(this))
bal_balance - IERC20(BAL).balanceOf(address(this))
);
} else {
assertEq(
specifiedAmount, bal_balance - BAL.balanceOf(address(this))
specifiedAmount,
bal_balance - IERC20(BAL).balanceOf(address(this))
);
assertEq(
trade.calculatedAmount,
WETH.balanceOf(address(this)) - weth_balance
IERC20(WETH).balanceOf(address(this)) - weth_balance
);
}
}
@@ -144,8 +147,8 @@ contract BalancerV2SwapAdapterTest is Test, ISwapAdapterTypes {
uint256 beforeSwap = vm.snapshot();
deal(address(BAL), address(this), amounts[i]);
BAL.approve(address(adapter), amounts[i]);
deal(BAL, address(this), amounts[i]);
IERC20(BAL).approve(address(adapter), amounts[i]);
trades[i] = adapter.swap(
B_80BAL_20WETH_POOL_ID, BAL, WETH, OrderSide.Sell, amounts[i]
);
@@ -175,8 +178,8 @@ contract BalancerV2SwapAdapterTest is Test, ISwapAdapterTypes {
uint256 amountIn =
(amounts[i] * price.denominator / price.numerator) * 2;
deal(address(BAL), address(this), amountIn);
BAL.approve(address(adapter), amountIn);
deal(BAL, address(this), amountIn);
IERC20(BAL).approve(address(adapter), amountIn);
trades[i] = adapter.swap(
B_80BAL_20WETH_POOL_ID, BAL, WETH, OrderSide.Buy, amounts[i]
);
@@ -203,19 +206,19 @@ contract BalancerV2SwapAdapterTest is Test, ISwapAdapterTypes {
function testGetCapabilitiesFuzz(bytes32 pool, address t0, address t1)
public
{
Capability[] memory res =
adapter.getCapabilities(pool, IERC20(t0), IERC20(t1));
Capability[] memory res = adapter.getCapabilities(pool, t0, t1);
assertEq(res.length, 2);
assertEq(res.length, 3);
assertEq(uint256(res[0]), uint256(Capability.SellOrder));
assertEq(uint256(res[1]), uint256(Capability.BuyOrder));
assertEq(uint256(res[2]), uint256(Capability.PriceFunction));
}
function testGetTokens() public {
IERC20[] memory tokens = adapter.getTokens(B_80BAL_20WETH_POOL_ID);
address[] memory tokens = adapter.getTokens(B_80BAL_20WETH_POOL_ID);
assertEq(address(tokens[0]), address(BAL));
assertEq(address(tokens[1]), address(WETH));
assertEq(tokens[0], BAL);
assertEq(tokens[1], address(WETH));
}
function testGetPoolIds() public {

View File

@@ -0,0 +1,410 @@
// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.13;
import "forge-std/Test.sol";
import "openzeppelin-contracts/contracts/interfaces/IERC20.sol";
import "src/interfaces/ISwapAdapterTypes.sol";
import "src/libraries/FractionMath.sol";
import "src/etherfi/EtherfiAdapter.sol";
contract EtherfiAdapterTest is Test, ISwapAdapterTypes {
using FractionMath for Fraction;
EtherfiAdapter adapter;
IWeEth weEth = IWeEth(0xCd5fE23C85820F7B72D0926FC9b05b43E359b7ee);
IeEth eEth;
uint256 constant TEST_ITERATIONS = 100;
function setUp() public {
uint256 forkBlock = 19218495;
vm.createSelectFork(vm.rpcUrl("mainnet"), forkBlock);
adapter = new EtherfiAdapter(address(weEth));
eEth = weEth.eETH();
vm.label(address(weEth), "WeETH");
vm.label(address(eEth), "eETH");
}
receive() external payable {}
function testPriceFuzzEtherfi(uint256 amount0, uint256 amount1) public {
bytes32 pair = bytes32(0);
uint256[] memory limits = adapter.getLimits(
pair, address(address(weEth)), address(address(eEth))
);
vm.assume(amount0 < limits[0] && amount0 > 0);
vm.assume(amount1 < limits[1] && amount1 > 0);
uint256[] memory amounts = new uint256[](2);
amounts[0] = amount0;
amounts[1] = amount1;
Fraction[] memory prices = adapter.price(
pair, address(address(weEth)), address(address(eEth)), amounts
);
for (uint256 i = 0; i < prices.length; i++) {
assertGt(prices[i].numerator, 0);
assertGt(prices[i].denominator, 0);
}
}
function testSwapFuzzEtherfiEethWeEth(uint256 specifiedAmount, bool isBuy)
public
{
OrderSide side = isBuy ? OrderSide.Buy : OrderSide.Sell;
IERC20 eEth_ = IERC20(address(eEth));
IERC20 weEth_ = IERC20(address(weEth));
bytes32 pair = bytes32(0);
uint256[] memory limits =
adapter.getLimits(pair, address(eEth_), address(weEth_));
if (side == OrderSide.Buy) {
vm.assume(specifiedAmount < limits[1] && specifiedAmount > 100);
/// @dev workaround for eETH "deal", as standard ERC20 does not
/// work(balance is shares)
deal(address(adapter), type(uint256).max);
adapter.swap(
pair,
address(address(0)),
address(eEth_),
OrderSide.Buy,
limits[0]
);
eEth_.approve(address(adapter), type(uint256).max);
} else {
vm.assume(specifiedAmount < limits[0] && specifiedAmount > 100);
/// @dev workaround for eETH "deal", as standard ERC20 does not
/// work(balance is shares)
deal(address(adapter), type(uint128).max);
adapter.swap(
pair,
address(address(0)),
address(eEth_),
OrderSide.Buy,
specifiedAmount
);
eEth_.approve(address(adapter), specifiedAmount);
}
uint256 eEth_balance = eEth_.balanceOf(address(this));
uint256 weEth_balance = weEth_.balanceOf(address(this));
Trade memory trade = adapter.swap(
pair, address(eEth_), address(weEth_), side, specifiedAmount
);
if (trade.calculatedAmount > 0) {
if (side == OrderSide.Buy) {
assertGe(
weEth_.balanceOf(address(this)) - weEth_balance,
specifiedAmount - 2
);
/// @dev Transfer function contains rounding errors because of
/// rewards in weETH contract, therefore we assume a +/-2
/// tolerance
assertLe(
weEth_.balanceOf(address(this)) - weEth_balance,
specifiedAmount
);
assertLe(
eEth_balance - eEth_.balanceOf(address(this)),
trade.calculatedAmount + 2
);
assertGe(
eEth_balance - eEth_.balanceOf(address(this)),
trade.calculatedAmount - 1
);
} else {
assertGe(
specifiedAmount,
eEth_balance - eEth_.balanceOf(address(this))
);
/// @dev Transfer function contains rounding errors because of
/// rewards in eETH contract, therefore we assume a +/-2
/// tolerance
assertLe(
specifiedAmount - 2,
eEth_balance - eEth_.balanceOf(address(this))
);
assertEq(
trade.calculatedAmount,
weEth_.balanceOf(address(this)) - weEth_balance
);
}
}
}
function testSwapFuzzEtherfiWeEthEeth(uint256 specifiedAmount, bool isBuy)
public
{
OrderSide side = isBuy ? OrderSide.Buy : OrderSide.Sell;
IERC20 eEth_ = IERC20(address(eEth));
IERC20 weEth_ = IERC20(address(weEth));
uint256 weEth_bal_before = weEth_.balanceOf(address(this));
bytes32 pair = bytes32(0);
uint256[] memory limits =
adapter.getLimits(pair, address(weEth_), address(eEth_));
if (side == OrderSide.Buy) {
vm.assume(specifiedAmount < limits[1] && specifiedAmount > 100);
/// @dev workaround for eETH "deal", as standard ERC20 does not
/// work(balance is shares)
deal(address(adapter), type(uint256).max);
adapter.swap(
pair,
address(address(0)),
address(weEth_),
OrderSide.Buy,
limits[0]
);
weEth_.approve(address(adapter), type(uint256).max);
} else {
vm.assume(specifiedAmount < limits[0] && specifiedAmount > 100);
/// @dev workaround for eETH "deal", as standard ERC20 does not
/// work(balance is shares)
deal(address(adapter), type(uint128).max);
adapter.swap(
pair,
address(address(0)),
address(weEth_),
OrderSide.Buy,
specifiedAmount
);
weEth_.approve(address(adapter), specifiedAmount);
}
uint256 eEth_balance = eEth_.balanceOf(address(this));
uint256 weEth_balance = weEth_.balanceOf(address(this));
/// @dev as of rounding errors in Etherfi, specifiedAmount might lose
/// small digits for small numbers
/// therefore we use weEth_balance - weEth_bal_before as specifiedAmount
uint256 realAmountWeEth_ = weEth_balance - weEth_bal_before;
Trade memory trade = adapter.swap(
pair, address(weEth_), address(eEth_), side, realAmountWeEth_
);
if (trade.calculatedAmount > 0) {
if (side == OrderSide.Buy) {
assertGe(
realAmountWeEth_,
eEth_.balanceOf(address(this)) - eEth_balance
);
/// @dev Transfer function contains rounding errors because of
/// rewards in weETH contract, therefore we assume a +/-2
/// tolerance
assertLe(
realAmountWeEth_ - 2,
eEth_.balanceOf(address(this)) - eEth_balance
);
assertLe(
trade.calculatedAmount - 2,
weEth_balance - weEth_.balanceOf(address(this))
);
} else {
assertEq(
realAmountWeEth_,
weEth_balance - weEth_.balanceOf(address(this))
);
assertLe(
trade.calculatedAmount - 2,
eEth_.balanceOf(address(this)) - eEth_balance
);
assertGe(
trade.calculatedAmount,
eEth_.balanceOf(address(this)) - eEth_balance
);
}
}
}
function testSwapFuzzEtherfiEthEeth(uint256 specifiedAmount, bool isBuy)
public
{
OrderSide side = isBuy ? OrderSide.Buy : OrderSide.Sell;
address eth_ = address(0);
IERC20 eEth_ = IERC20(address(eEth));
bytes32 pair = bytes32(0);
uint256[] memory limits = adapter.getLimits(pair, eth_, address(eEth_));
if (side == OrderSide.Buy) {
vm.assume(specifiedAmount < limits[1] && specifiedAmount > 10);
deal(address(adapter), eEth_.totalSupply());
} else {
vm.assume(specifiedAmount < limits[0] && specifiedAmount > 10);
deal(address(adapter), specifiedAmount);
}
uint256 eth_balance = address(adapter).balance;
uint256 eEth_balance = eEth_.balanceOf(address(this));
Trade memory trade =
adapter.swap(pair, eth_, address(eEth_), side, specifiedAmount);
if (trade.calculatedAmount > 0) {
if (side == OrderSide.Buy) {
assertGe(
specifiedAmount,
eEth_.balanceOf(address(this)) - eEth_balance
);
/// @dev Transfer function contains rounding errors because of
/// rewards in eETH contract, therefore we assume a +/-2
/// tolerance
assertLe(
specifiedAmount - 2,
eEth_.balanceOf(address(this)) - eEth_balance
);
assertEq(
trade.calculatedAmount,
eth_balance - address(adapter).balance
);
} else {
assertEq(
specifiedAmount, eth_balance - address(adapter).balance
);
assertEq(
trade.calculatedAmount,
eEth_.balanceOf(address(this)) - eEth_balance
);
}
}
}
function testSwapFuzzEtherfiEthWeEth(uint256 specifiedAmount, bool isBuy)
public
{
OrderSide side = isBuy ? OrderSide.Buy : OrderSide.Sell;
address eth_ = address(0);
IERC20 weEth_ = IERC20(address(weEth));
bytes32 pair = bytes32(0);
uint256[] memory limits = adapter.getLimits(pair, eth_, address(weEth_));
if (side == OrderSide.Buy) {
vm.assume(specifiedAmount < limits[1] && specifiedAmount > 10);
deal(address(adapter), weEth_.totalSupply());
} else {
vm.assume(specifiedAmount < limits[0] && specifiedAmount > 10);
deal(address(adapter), specifiedAmount);
}
uint256 eth_balance = address(adapter).balance;
uint256 weEth_balance = weEth_.balanceOf(address(this));
Trade memory trade =
adapter.swap(pair, eth_, address(weEth_), side, specifiedAmount);
if (trade.calculatedAmount > 0) {
if (side == OrderSide.Buy) {
assertGe(
specifiedAmount,
weEth_.balanceOf(address(this)) - weEth_balance
);
/// @dev Transfer function contains rounding errors because of
/// rewards in eETH contract, therefore we assume a +/-2
/// tolerance
assertLe(
specifiedAmount - 2,
weEth_.balanceOf(address(this)) - weEth_balance
);
assertEq(
trade.calculatedAmount,
eth_balance - address(adapter).balance
);
} else {
assertEq(
specifiedAmount, eth_balance - address(adapter).balance
);
assertEq(
trade.calculatedAmount,
weEth_.balanceOf(address(this)) - weEth_balance
);
}
}
}
function testSwapSellIncreasingEtherfi() public {
executeIncreasingSwapsEtherfi(OrderSide.Sell);
}
function testSwapBuyIncreasingEtherfi() public {
executeIncreasingSwapsEtherfi(OrderSide.Buy);
}
function executeIncreasingSwapsEtherfi(OrderSide side) internal {
bytes32 pair = bytes32(0);
uint256 amountConstant_ = 10 ** 18;
uint256[] memory amounts = new uint256[](TEST_ITERATIONS);
amounts[0] = amountConstant_;
for (uint256 i = 1; i < TEST_ITERATIONS; i++) {
amounts[i] = amountConstant_ * i;
}
Trade[] memory trades = new Trade[](TEST_ITERATIONS);
uint256 beforeSwap;
for (uint256 i = 1; i < TEST_ITERATIONS; i++) {
beforeSwap = vm.snapshot();
deal(address(weEth), address(this), amounts[i]);
IERC20(address(weEth)).approve(address(adapter), amounts[i]);
trades[i] = adapter.swap(
pair,
address(address(weEth)),
address(address(eEth)),
side,
amounts[i]
);
vm.revertTo(beforeSwap);
}
for (uint256 i = 1; i < TEST_ITERATIONS - 1; i++) {
assertLe(trades[i].calculatedAmount, trades[i + 1].calculatedAmount);
assertLe(trades[i].gasUsed, trades[i + 1].gasUsed);
}
}
function testGetCapabilitiesEtherfi(bytes32 pair, address t0, address t1)
public
{
Capability[] memory res =
adapter.getCapabilities(pair, address(t0), address(t1));
assertEq(res.length, 3);
}
function testGetTokensEtherfi() public {
bytes32 pair = bytes32(0);
address[] memory tokens = adapter.getTokens(pair);
assertEq(tokens.length, 3);
}
function testGetLimitsEtherfi() public {
bytes32 pair = bytes32(0);
uint256[] memory limits =
adapter.getLimits(pair, address(eEth), address(weEth));
assertEq(limits.length, 2);
}
}

View File

@@ -12,8 +12,8 @@ contract IntegralSwapAdapterTest is Test, ISwapAdapterTypes {
IntegralSwapAdapter adapter;
ITwapRelayer relayer;
IERC20 constant WETH = IERC20(0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2);
IERC20 constant USDC = IERC20(0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48);
address constant WETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
address constant USDC = 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48;
address constant USDC_WETH_PAIR = 0x2fe16Dd18bba26e457B7dD2080d5674312b026a2;
address constant relayerAddress = 0xd17b3c9784510E33cD5B87b490E79253BcD81e2E;
@@ -26,7 +26,7 @@ contract IntegralSwapAdapterTest is Test, ISwapAdapterTypes {
relayer = ITwapRelayer(relayerAddress);
vm.label(address(WETH), "WETH");
vm.label(address(USDC), "USDC");
vm.label(USDC, "USDC");
vm.label(address(USDC_WETH_PAIR), "USDC_WETH_PAIR");
}
@@ -66,8 +66,8 @@ contract IntegralSwapAdapterTest is Test, ISwapAdapterTypes {
limitsMin = getMinLimits(USDC, WETH);
vm.assume(specifiedAmount > limitsMin[1] * 115 / 100);
deal(address(USDC), address(this), type(uint256).max);
USDC.approve(address(adapter), type(uint256).max);
deal(USDC, address(this), type(uint256).max);
IERC20(USDC).approve(address(adapter), type(uint256).max);
} else {
limits = adapter.getLimits(pair, USDC, WETH);
vm.assume(specifiedAmount < limits[0]);
@@ -75,12 +75,12 @@ contract IntegralSwapAdapterTest is Test, ISwapAdapterTypes {
limitsMin = getMinLimits(USDC, WETH);
vm.assume(specifiedAmount > limitsMin[0] * 115 / 100);
deal(address(USDC), address(this), type(uint256).max);
USDC.approve(address(adapter), specifiedAmount);
deal(USDC, address(this), type(uint256).max);
IERC20(USDC).approve(address(adapter), specifiedAmount);
}
uint256 usdc_balance_before = USDC.balanceOf(address(this));
uint256 weth_balance_before = WETH.balanceOf(address(this));
uint256 usdc_balance_before = IERC20(USDC).balanceOf(address(this));
uint256 weth_balance_before = IERC20(WETH).balanceOf(address(this));
Trade memory trade =
adapter.swap(pair, USDC, WETH, side, specifiedAmount);
@@ -89,22 +89,22 @@ contract IntegralSwapAdapterTest is Test, ISwapAdapterTypes {
if (side == OrderSide.Buy) {
assertEq(
specifiedAmount,
WETH.balanceOf(address(this)) - weth_balance_before
IERC20(WETH).balanceOf(address(this)) - weth_balance_before
);
assertEq(
trade.calculatedAmount,
usdc_balance_before - USDC.balanceOf(address(this))
usdc_balance_before - IERC20(USDC).balanceOf(address(this))
);
} else {
assertEq(
specifiedAmount,
usdc_balance_before - USDC.balanceOf(address(this))
usdc_balance_before - IERC20(USDC).balanceOf(address(this))
);
assertEq(
trade.calculatedAmount,
WETH.balanceOf(address(this)) - weth_balance_before
IERC20(WETH).balanceOf(address(this)) - weth_balance_before
);
}
}
@@ -135,8 +135,8 @@ contract IntegralSwapAdapterTest is Test, ISwapAdapterTypes {
for (uint256 i = 1; i < TEST_ITERATIONS; i++) {
beforeSwap = vm.snapshot();
deal(address(USDC), address(this), amounts[i]);
USDC.approve(address(adapter), amounts[i]);
deal(USDC, address(this), amounts[i]);
IERC20(USDC).approve(address(adapter), amounts[i]);
trades[i] = adapter.swap(pair, USDC, WETH, side, amounts[i]);
vm.revertTo(beforeSwap);
@@ -152,15 +152,14 @@ contract IntegralSwapAdapterTest is Test, ISwapAdapterTypes {
function testGetCapabilitiesIntegral(bytes32 pair, address t0, address t1)
public
{
Capability[] memory res =
adapter.getCapabilities(pair, IERC20(t0), IERC20(t1));
Capability[] memory res = adapter.getCapabilities(pair, t0, t1);
assertEq(res.length, 4);
}
function testGetTokensIntegral() public {
bytes32 pair = bytes32(bytes20(USDC_WETH_PAIR));
IERC20[] memory tokens = adapter.getTokens(pair);
address[] memory tokens = adapter.getTokens(pair);
assertEq(tokens.length, 2);
}
@@ -172,7 +171,7 @@ contract IntegralSwapAdapterTest is Test, ISwapAdapterTypes {
assertEq(limits.length, 2);
}
function getMinLimits(IERC20 sellToken, IERC20 buyToken)
function getMinLimits(address sellToken, address buyToken)
public
view
returns (uint256[] memory limits)

View File

@@ -11,8 +11,8 @@ contract UniswapV2PairFunctionTest is Test, ISwapAdapterTypes {
using FractionMath for Fraction;
UniswapV2SwapAdapter adapter;
IERC20 constant WETH = IERC20(0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2);
IERC20 constant USDC = IERC20(0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48);
address constant WETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
address constant USDC = 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48;
address constant USDC_WETH_PAIR = 0xB4e16d0168e52d35CaCD2c6185b44281Ec28C9Dc;
uint256 constant TEST_ITERATIONS = 100;
@@ -24,9 +24,9 @@ contract UniswapV2PairFunctionTest is Test, ISwapAdapterTypes {
new UniswapV2SwapAdapter(0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f);
vm.label(address(adapter), "UniswapV2SwapAdapter");
vm.label(address(WETH), "WETH");
vm.label(address(USDC), "USDC");
vm.label(address(USDC_WETH_PAIR), "USDC_WETH_PAIR");
vm.label(WETH, "WETH");
vm.label(USDC, "USDC");
vm.label(USDC_WETH_PAIR, "USDC_WETH_PAIR");
}
function testPriceFuzz(uint256 amount0, uint256 amount1) public {
@@ -75,17 +75,17 @@ contract UniswapV2PairFunctionTest is Test, ISwapAdapterTypes {
// TODO calculate the amountIn by using price function as in
// BalancerV2 testPriceDecreasing
deal(address(USDC), address(this), type(uint256).max);
USDC.approve(address(adapter), type(uint256).max);
deal(USDC, address(this), type(uint256).max);
IERC20(USDC).approve(address(adapter), type(uint256).max);
} else {
vm.assume(specifiedAmount < limits[0]);
deal(address(USDC), address(this), specifiedAmount);
USDC.approve(address(adapter), specifiedAmount);
deal(USDC, address(this), specifiedAmount);
IERC20(USDC).approve(address(adapter), specifiedAmount);
}
uint256 usdc_balance = USDC.balanceOf(address(this));
uint256 weth_balance = WETH.balanceOf(address(this));
uint256 usdc_balance = IERC20(USDC).balanceOf(address(this));
uint256 weth_balance = IERC20(WETH).balanceOf(address(this));
Trade memory trade =
adapter.swap(pair, USDC, WETH, side, specifiedAmount);
@@ -94,20 +94,20 @@ contract UniswapV2PairFunctionTest is Test, ISwapAdapterTypes {
if (side == OrderSide.Buy) {
assertEq(
specifiedAmount,
WETH.balanceOf(address(this)) - weth_balance
IERC20(WETH).balanceOf(address(this)) - weth_balance
);
assertEq(
trade.calculatedAmount,
usdc_balance - USDC.balanceOf(address(this))
usdc_balance - IERC20(USDC).balanceOf(address(this))
);
} else {
assertEq(
specifiedAmount,
usdc_balance - USDC.balanceOf(address(this))
usdc_balance - IERC20(USDC).balanceOf(address(this))
);
assertEq(
trade.calculatedAmount,
WETH.balanceOf(address(this)) - weth_balance
IERC20(WETH).balanceOf(address(this)) - weth_balance
);
}
}
@@ -130,8 +130,8 @@ contract UniswapV2PairFunctionTest is Test, ISwapAdapterTypes {
for (uint256 i = 0; i < TEST_ITERATIONS; i++) {
beforeSwap = vm.snapshot();
deal(address(USDC), address(this), amounts[i]);
USDC.approve(address(adapter), amounts[i]);
deal(USDC, address(this), amounts[i]);
IERC20(USDC).approve(address(adapter), amounts[i]);
trades[i] = adapter.swap(pair, USDC, WETH, side, amounts[i]);
vm.revertTo(beforeSwap);
@@ -149,8 +149,7 @@ contract UniswapV2PairFunctionTest is Test, ISwapAdapterTypes {
}
function testGetCapabilities(bytes32 pair, address t0, address t1) public {
Capability[] memory res =
adapter.getCapabilities(pair, IERC20(t0), IERC20(t1));
Capability[] memory res = adapter.getCapabilities(pair, t0, t1);
assertEq(res.length, 3);
}