Compare commits

4 Commits

Author SHA1 Message Date
tim
20af14c872 proxied swapToLimit 2025-10-06 17:38:47 -04:00
tim
63f6e66d08 PartyPoolBalancedPair as subclass 2025-10-06 16:09:34 -04:00
tim
0049d27c90 removed console logs 2025-10-03 13:50:41 -04:00
tim
b126c52c7c swapMintImpl moved into mintImpl 2025-10-03 13:42:28 -04:00
14 changed files with 778 additions and 852 deletions

View File

@@ -58,7 +58,7 @@ contract DeployMock is Script {
}
// call full newPool signature on factory which will take the deposits and mint initial LP
(PartyPool pool, ) = planner.newPool(
(IPartyPool pool, ) = planner.newPool(
name,
symbol,
tokens,

View File

@@ -1,17 +1,18 @@
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.30;
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import {PartyPool} from "./PartyPool.sol";
import {PartyPoolSwapMintImpl} from "./PartyPoolSwapMintImpl.sol";
import {PartyPoolMintImpl} from "./PartyPoolMintImpl.sol";
import {IERC20} from "../lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
import {PartyPlanner} from "./PartyPlanner.sol";
import {PartyPool} from "./PartyPool.sol";
import {PartyPoolBalancedPair} from "./PartyPoolBalancedPair.sol";
import {PartyPoolMintImpl} from "./PartyPoolMintImpl.sol";
import {PartyPoolSwapImpl} from "./PartyPoolSwapImpl.sol";
library Deploy {
function newPartyPlanner() internal returns (PartyPlanner) {
return new PartyPlanner(
new PartyPoolSwapMintImpl(),
new PartyPoolSwapImpl(),
new PartyPoolMintImpl(),
0, // protocolFeePpm = 0 for deploy helper
address(0) // protocolFeeAddress = address(0) for deploy helper
@@ -32,7 +33,8 @@ library Deploy {
uint256 protocolFeePpm = 0;
address protocolAddr = address(0);
return new PartyPool(
return _stable && tokens_.length == 2 ?
new PartyPoolBalancedPair(
name_,
symbol_,
tokens_,
@@ -42,8 +44,20 @@ library Deploy {
_flashFeePpm,
protocolFeePpm,
protocolAddr,
_stable,
new PartyPoolSwapMintImpl(),
new PartyPoolSwapImpl(),
new PartyPoolMintImpl()
) :
new PartyPool(
name_,
symbol_,
tokens_,
bases_,
_kappa,
_swapFeePpm,
_flashFeePpm,
protocolFeePpm,
protocolAddr,
new PartyPoolSwapImpl(),
new PartyPoolMintImpl()
);
}

View File

@@ -1,14 +1,16 @@
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.30;
import "./PartyPool.sol";
import "./IPartyPool.sol";
import "./PartyPoolMintImpl.sol";
import "./PartyPoolSwapImpl.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
/// @title IPartyPlanner
/// @notice Interface for factory contract for creating and tracking PartyPool instances
interface IPartyPlanner {
// Event emitted when a new pool is created
event PartyStarted(PartyPool indexed pool, string name, string symbol, IERC20[] tokens);
event PartyStarted(IPartyPool indexed pool, string name, string symbol, IERC20[] tokens);
/// @notice Creates a new PartyPool instance and initializes it with initial deposits (legacy signature).
/// @dev Deprecated in favour of the kappa-based overload below; kept for backwards compatibility.
@@ -44,7 +46,7 @@ interface IPartyPlanner {
uint256[] memory initialDeposits,
uint256 initialLpAmount,
uint256 deadline
) external returns (PartyPool pool, uint256 lpAmount);
) external returns (IPartyPool pool, uint256 lpAmount);
/// @notice Creates a new PartyPool instance and initializes it with initial deposits (kappa-based).
/// @param name_ LP token name
@@ -77,7 +79,7 @@ interface IPartyPlanner {
uint256[] memory initialDeposits,
uint256 initialLpAmount,
uint256 deadline
) external returns (PartyPool pool, uint256 lpAmount);
) external returns (IPartyPool pool, uint256 lpAmount);
/// @notice Checks if a pool is supported
/// @param pool The pool address to check
@@ -92,7 +94,7 @@ interface IPartyPlanner {
/// @param offset Starting index for pagination
/// @param limit Maximum number of items to return
/// @return pools Array of pool addresses for the requested page
function getAllPools(uint256 offset, uint256 limit) external view returns (PartyPool[] memory pools);
function getAllPools(uint256 offset, uint256 limit) external view returns (IPartyPool[] memory pools);
/// @notice Returns the total number of unique tokens
/// @return The total count of unique tokens
@@ -114,12 +116,12 @@ interface IPartyPlanner {
/// @param offset Starting index for pagination
/// @param limit Maximum number of items to return
/// @return pools Array of pool addresses containing the specified token
function getPoolsByToken(IERC20 token, uint256 offset, uint256 limit) external view returns (PartyPool[] memory pools);
function getPoolsByToken(IERC20 token, uint256 offset, uint256 limit) external view returns (IPartyPool[] memory pools);
/// @notice Address of the SwapMint implementation contract used by all pools created by this factory
/// @notice Address of the mint implementation contract used by all pools created by this factory
function mintImpl() external view returns (PartyPoolMintImpl);
/// @notice Address of the SwapMint implementation contract used by all pools created by this factory
function swapMintImpl() external view returns (PartyPoolSwapMintImpl);
/// @notice Address of the swap implementation contract used by all pools created by this factory
function swapMintImpl() external view returns (PartyPoolSwapImpl);
}

View File

@@ -1,7 +1,8 @@
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.30;
import "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol";
import {IERC20} from "../lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
import {IERC20Metadata} from "../lib/openzeppelin-contracts/contracts/token/ERC20/extensions/IERC20Metadata.sol";
/// @title PartyPool - LMSR-backed multi-asset pool with LP ERC20 token
/// @notice A multi-asset liquidity pool backed by the LMSRStabilized pricing model.

View File

@@ -1,8 +1,7 @@
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.30;
import "forge-std/console2.sol";
import "@abdk/ABDKMath64x64.sol";
import {ABDKMath64x64} from "../lib/abdk-libraries-solidity/ABDKMath64x64.sol";
/// @notice Stabilized LMSR library with incremental exp(z) caching for gas efficiency.
/// - Stores b (64.64), M (shift), Z = sum exp(z_i), z[i] = (q_i / b) - M
@@ -41,21 +40,11 @@ library LMSRStabilized {
}
int128 total = _computeSizeMetric(s.qInternal);
console2.log("total (internal 64.64)");
console2.logInt(total);
require(total > int128(0), "LMSR: total zero");
console2.log("LMSR.init: start");
console2.log("nAssets", s.nAssets);
console2.log("qInternal.length", s.qInternal.length);
// Set kappa directly (caller provides kappa)
s.kappa = kappa;
console2.log("kappa (64x64)");
console2.logInt(s.kappa);
require(s.kappa > int128(0), "LMSR: kappa>0");
console2.log("LMSR.init: done");
}
/* --------------------
@@ -167,49 +156,31 @@ library LMSRStabilized {
// push the marginal price p_i/p_j beyond the limit; if so, truncate `a`.
// Marginal price ratio evolves as r(t) = r0 * exp(t/b) (since e_i multiplies by exp(t/b))
if (limitPrice > int128(0)) {
console2.log("\n=== LimitPrice Logic Debug ===");
console2.log("Received limitPrice (64x64):");
console2.logInt(limitPrice);
console2.log("Current price ratio r0 (e_i/e_j, 64x64):");
console2.logInt(r0);
// r0 must be positive; if r0 == 0 then no risk of exceeding limit by increasing r.
require(r0 >= int128(0), "LMSR: r0<0");
if (r0 == int128(0)) {
console2.log("r0 == 0 (input asset has zero weight), no limit truncation needed");
// console2.log("r0 == 0 (input asset has zero weight), no limit truncation needed");
} else {
// If limitPrice <= current price, we revert (caller must choose a limit > current price to allow any fill)
if (limitPrice <= r0) {
console2.log("Limit price is <= current price: reverting");
revert("LMSR: limitPrice <= current price");
}
// Compute a_limit directly from ln(limit / r0): a_limit = b * ln(limit / r0)
int128 ratioLimitOverR0 = limitPrice.div(r0);
console2.log("limitPrice/r0 (64x64):");
console2.logInt(ratioLimitOverR0);
require(ratioLimitOverR0 > int128(0), "LMSR: ratio<=0");
int128 aLimitOverB = _ln(ratioLimitOverR0); // > 0
console2.log("ln(limitPrice/r0) (64x64):");
console2.logInt(aLimitOverB);
// aLimit = b * aLimitOverB
int128 aLimit64 = b.mul(aLimitOverB);
console2.log("aLimit in 64x64 format:");
console2.logInt(aLimit64);
// If computed aLimit is less than the requested a, use the truncated value.
if (aLimit64 < a) {
console2.log("TRUNCATING: a reduced from 64.64 value");
console2.logInt(a);
console2.log("to 64.64 value");
console2.logInt(aLimit64);
amountIn = aLimit64; // Store the truncated input amount
a = aLimit64; // Use truncated amount for calculations
} else {
console2.log("Not truncating: aLimit64 >= a");
// console2.log("Not truncating: aLimit64 >= a");
}
}
}
@@ -219,56 +190,24 @@ library LMSRStabilized {
// Protect exp from enormous inputs (consistent with recenter thresholds)
require(aOverB <= EXP_LIMIT, "LMSR: a/b too large (would overflow exp)");
console2.log("\n=== AmountOut Calculation Debug ===");
console2.log("Input amount (64.64):");
console2.logInt(a);
console2.log("a/b (64x64):");
console2.logInt(aOverB);
// Use the closed-form fee-free formula:
// y = b * ln(1 + r0 * (1 - exp(-a/b)))
console2.log("r0_for_calc (e_i/e_j):");
console2.logInt(r0);
int128 expNeg = _exp(aOverB.neg()); // exp(-a/b)
console2.log("exp(-a/b):");
console2.logInt(expNeg);
int128 oneMinusExpNeg = ONE.sub(expNeg);
console2.log("1 - exp(-a/b):");
console2.logInt(oneMinusExpNeg);
int128 inner = ONE.add(r0.mul(oneMinusExpNeg));
console2.log("inner = 1 + r0 * (1 - exp(-a/b)):");
console2.logInt(inner);
// If inner <= 0 then cap output to the current balance q_j (cannot withdraw more than q_j)
if (inner <= int128(0)) {
console2.log("WARNING: inner <= 0, capping output to balance q_j");
int128 qj64 = qInternal[j];
console2.log("Capped output (64.64):");
console2.logInt(qj64);
return (amountIn, qj64);
}
int128 lnInner = _ln(inner);
console2.log("ln(inner):");
console2.logInt(lnInner);
int128 b_lnInner = b.mul(lnInner);
console2.log("b*ln(inner):");
console2.logInt(b_lnInner);
amountOut = b_lnInner;
console2.log("amountOut = b*ln(inner):");
console2.logInt(amountOut);
console2.log("amountOut (final 64.64 amount):");
console2.logInt(amountOut);
// Safety check
if (amountOut <= 0) {
console2.log("WARNING: x64 <= 0, returning 0");
return (0, 0);
}
}
@@ -334,60 +273,34 @@ library LMSRStabilized {
// Compute r0 = exp((q_i - q_j) / b) directly using invB
int128 r0 = _exp(qInternal[i].sub(qInternal[j]).mul(invB));
console2.log("\n=== Max Input/Output Calculation ===");
console2.log("Limit price (64x64):");
console2.logInt(limitPrice);
console2.log("Current price ratio r0 (e_i/e_j, 64x64):");
console2.logInt(r0);
// Mirror swapAmountsForExactInput behavior: treat invalid r0 as an error condition.
// Revert if r0 is non-positive (no finite trade under a price limit).
require(r0 > int128(0), "LMSR: r0<=0");
// If current price already exceeds or equals limit, revert the same way swapAmountsForExactInput does.
if (r0 >= limitPrice) {
console2.log("Limit price is <= current price: reverting");
revert("LMSR: limitPrice <= current price");
}
// Calculate the price change factor: limitPrice/r0
int128 priceChangeFactor = limitPrice.div(r0);
console2.log("Price change factor (limitPrice/r0):");
console2.logInt(priceChangeFactor);
// ln(priceChangeFactor) gives us the maximum allowed delta in the exponent
int128 maxDeltaExponent = _ln(priceChangeFactor);
console2.log("Max delta exponent ln(priceChangeFactor):");
console2.logInt(maxDeltaExponent);
// Maximum input capable of reaching the price limit:
// x_max = b * ln(limitPrice / r0)
int128 amountInMax = b.mul(maxDeltaExponent);
console2.log("Max input to reach limit (64.64):");
console2.logInt(amountInMax);
// The maximum output y corresponding to that input:
// y = b * ln(1 + (e_i/e_j) * (1 - exp(-x_max/b)))
int128 expTerm = ONE.sub(_exp(maxDeltaExponent.neg()));
console2.log("1 - exp(-maxDeltaExponent):");
console2.logInt(expTerm);
int128 innerTerm = r0.mul(expTerm);
console2.log("e_i/e_j * expTerm:");
console2.logInt(innerTerm);
int128 lnTerm = _ln(ONE.add(innerTerm));
console2.log("ln(1 + innerTerm):");
console2.logInt(lnTerm);
int128 maxOutput = b.mul(lnTerm);
console2.log("Max output (b * lnTerm):");
console2.logInt(maxOutput);
// Current balance of asset j (in 64.64)
int128 qj64 = qInternal[j];
console2.log("Current j balance (64.64):");
console2.logInt(qj64);
// Initialize outputs to the computed maxima
amountIn = amountInMax;
@@ -395,7 +308,6 @@ library LMSRStabilized {
// If the calculated maximum output exceeds the balance, cap output and solve for input.
if (maxOutput > qj64) {
console2.log("Max output exceeds balance, capping to balance");
amountOut = qj64;
// Solve inverse relation for input given capped output:
@@ -405,19 +317,12 @@ library LMSRStabilized {
// a = -b * ln( (r0 + 1 - E) / r0 ) = b * ln( r0 / (r0 + 1 - E) )
int128 E = _exp(amountOut.mul(invB)); // exp(y/b)
int128 rhs = r0.add(ONE).sub(E); // r0 + 1 - E
console2.log("E = exp(y/b):");
console2.logInt(E);
console2.log("rhs = r0 + 1 - E:");
console2.logInt(rhs);
// If rhs <= 0 due to numerical issues, fall back to amountInMax
if (rhs <= int128(0)) {
console2.log("Numerical issue solving inverse; using amountInMax as fallback");
amountIn = amountInMax;
} else {
amountIn = b.mul(_ln(r0.div(rhs)));
console2.log("Computed input required for capped output (64.64):");
console2.logInt(amountIn);
}
}
@@ -796,19 +701,9 @@ library LMSRStabilized {
require(amountIn > int128(0), "LMSR: amountIn <= 0");
require(amountOut > int128(0), "LMSR: amountOut <= 0");
console2.log("\n=== Applying Swap ===");
console2.log("Input asset:", i);
console2.log("Output asset:", j);
console2.log("Amount in (64.64):");
console2.logInt(amountIn);
console2.log("Amount out (64.64):");
console2.logInt(amountOut);
// Update internal balances
s.qInternal[i] = s.qInternal[i].add(amountIn);
s.qInternal[j] = s.qInternal[j].sub(amountOut);
console2.log("=== Swap Applied (qInternal updated) ===\n");
}
@@ -819,27 +714,16 @@ library LMSRStabilized {
function updateForProportionalChange(State storage s, int128[] memory newQInternal) internal {
require(newQInternal.length == s.nAssets, "LMSR: length mismatch");
console2.log("LMSR.updateForProportionalChange: start");
// Compute new total for validation
int128 newTotal = _computeSizeMetric(newQInternal);
console2.log("new total");
console2.logInt(newTotal);
require(newTotal > int128(0), "LMSR: new total zero");
// With kappa formulation, b automatically scales with pool size
int128 newB = s.kappa.mul(newTotal);
console2.log("new effective b");
console2.logInt(newB);
// Update the cached qInternal with new values
for (uint i = 0; i < s.nAssets; ) {
s.qInternal[i] = newQInternal[i];
unchecked { i++; }
}
console2.log("LMSR.updateForProportionalChange: end");
}
/// @notice Price-share of asset i: exp(z_i) / Z (64.64)
@@ -1064,8 +948,6 @@ library LMSRStabilized {
/// @notice De-initialize the LMSR state when the entire pool is drained.
/// This resets the state so the pool can be re-initialized by init(...) on next mint.
function deinit(State storage s) internal {
console2.log("LMSR.deinit: resetting state");
// Reset core state
s.nAssets = 0;
s.kappa = int128(0);

View File

@@ -1,9 +1,8 @@
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.30;
import "forge-std/console2.sol";
import "@abdk/ABDKMath64x64.sol";
import "./LMSRStabilized.sol";
import {ABDKMath64x64} from "../lib/abdk-libraries-solidity/ABDKMath64x64.sol";
import {LMSRStabilized} from "./LMSRStabilized.sol";
/// @notice Specialized functions for the 2-asset stablecoin case
library LMSRStabilizedBalancedPair {
@@ -40,7 +39,6 @@ library LMSRStabilizedBalancedPair {
// If not exactly a two-asset pool, fall back to the general routine.
if (s.nAssets != 2) {
console2.log('balanced2: fallback nAssets!=n2');
return LMSRStabilized.swapAmountsForExactInput(s, i, j, a, limitPrice);
}
@@ -48,7 +46,6 @@ library LMSRStabilizedBalancedPair {
int128 b = LMSRStabilized._computeB(s);
// Guard: if b not positive, fallback to exact implementation (will revert there if necessary)
if (!(b > int128(0))) {
console2.log("balanced2: fallback b<=0");
return LMSRStabilized.swapAmountsForExactInput(s, i, j, a, limitPrice);
}
int128 invB = ABDKMath64x64.div(ONE, b);
@@ -58,8 +55,6 @@ library LMSRStabilizedBalancedPair {
// If a positive limitPrice is given, attempt a 2-asset near-parity polynomial solution
if (limitPrice > int128(0)) {
console2.log("balanced2: handling limitPrice via small-delta approx");
// Approximate r0 = exp(delta) using Taylor: 1 + δ + δ^2/2 + δ^3/6
int128 delta_sq = delta.mul(delta);
int128 delta_cu = delta_sq.mul(delta);
@@ -68,19 +63,13 @@ library LMSRStabilizedBalancedPair {
.add(delta_sq.div(ABDKMath64x64.fromUInt(2)))
.add(delta_cu.div(ABDKMath64x64.fromUInt(6)));
console2.log("r0_approx:");
console2.logInt(r0_approx);
// If limitPrice <= r0 (current price) we must revert (same semantic as original)
if (limitPrice <= r0_approx) {
console2.log("balanced2: limitPrice <= r0_approx -> revert");
revert("LMSR: limitPrice <= current price");
}
// Ratio = limitPrice / r0_approx
int128 ratio = limitPrice.div(r0_approx);
console2.log("limitPrice/r0_approx:");
console2.logInt(ratio);
// x = ratio - 1; use Taylor for ln(1+x) when |x| is small
int128 x = ratio.sub(ONE);
@@ -90,7 +79,6 @@ library LMSRStabilizedBalancedPair {
int128 X_MAX = ABDKMath64x64.divu(1, 10); // 0.1
if (absX > X_MAX) {
// Too large to safely approximate; fall back to exact computation
console2.log("balanced2: fallback limitPrice ratio too far from 1");
return LMSRStabilized.swapAmountsForExactInput(s, i, j, a, limitPrice);
}
@@ -101,63 +89,34 @@ library LMSRStabilizedBalancedPair {
.sub(x_sq.div(ABDKMath64x64.fromUInt(2)))
.add(x_cu.div(ABDKMath64x64.fromUInt(3)));
console2.log("lnRatioApprox (64x64):");
console2.logInt(lnRatioApprox);
// aLimitOverB = ln(limitPrice / r0) approximated
int128 aLimitOverB = lnRatioApprox;
// Must be > 0; otherwise fall back
if (!(aLimitOverB > int128(0))) {
console2.log("balanced2: fallback non-positive aLimitOverB");
return LMSRStabilized.swapAmountsForExactInput(s, i, j, a, limitPrice);
}
// aLimit = b * aLimitOverB (in Q64.64)
int128 aLimit64 = b.mul(aLimitOverB);
console2.log("aLimit64 (64x64):");
console2.logInt(aLimit64);
// If computed aLimit is less than requested a, use the truncated value.
if (aLimit64 < a) {
console2.log("balanced2: truncating input a to aLimit64 due to limitPrice");
console2.log("original a:");
console2.logInt(a);
console2.log("truncated aLimit64:");
console2.logInt(aLimit64);
a = aLimit64;
} else {
console2.log("balanced2: limitPrice does not truncate input");
// console2.log("balanced2: limitPrice does not truncate input");
}
// Note: after potential truncation we continue with the polynomial approximation below
}
// Debug: entry trace
console2.log("balanced2: enter");
console2.log("i", i);
console2.log("j", j);
console2.log("nAssets", s.nAssets);
console2.log("a (64x64):");
console2.logInt(a);
console2.log("b (64x64):");
console2.logInt(b);
console2.log("invB (64x64):");
console2.logInt(invB);
// Small-signal delta already computed above; reuse it
int128 absDelta = delta >= int128(0) ? delta : delta.neg();
console2.log("delta (q_i - q_j)/b:");
console2.logInt(delta);
console2.log("absDelta:");
console2.logInt(absDelta);
// Allow balanced pools only: require |delta| <= 1% (approx ln(1.01) ~ 0.00995; we use conservative 0.01)
int128 DELTA_MAX = ABDKMath64x64.divu(1, 100); // 0.01
if (absDelta > DELTA_MAX) {
// Not balanced within 1% -> use exact routine
console2.log("balanced2: fallback delta too large");
return LMSRStabilized.swapAmountsForExactInput(s, i, j, a, limitPrice);
}
@@ -165,18 +124,13 @@ library LMSRStabilizedBalancedPair {
int128 u = a.mul(invB);
if (u <= int128(0)) {
// Non-positive input -> behave like exact implementation (will revert if invalid)
console2.log("balanced2: fallback u<=0");
return LMSRStabilized.swapAmountsForExactInput(s, i, j, a, limitPrice);
}
console2.log("u = a/b (64x64):");
console2.logInt(u);
// Restrict to a conservative polynomial radius for accuracy; fallback otherwise.
// We choose u <= 0.5 (0.5 in Q64.64) as safe for cubic approximation in typical parameters.
int128 U_MAX = ABDKMath64x64.divu(1, 2); // 0.5
if (u > U_MAX) {
console2.log("balanced2: fallback u too large");
return LMSRStabilized.swapAmountsForExactInput(s, i, j, a, limitPrice);
}
@@ -200,39 +154,26 @@ library LMSRStabilizedBalancedPair {
if (u <= U_TIER1) {
// Cheap quadratic ln(1+X) ≈ X - X^2/2
lnApprox = X.sub(X2.div(ABDKMath64x64.fromUInt(2)));
console2.log("balanced2: using tier1 quadratic approx");
} else if (u <= U_MAX_LOCAL) {
// Secondary cubic correction: ln(1+X) ≈ X - X^2/2 + X^3/3
int128 X3 = X2.mul(X);
lnApprox = X.sub(X2.div(ABDKMath64x64.fromUInt(2))).add(X3.div(ABDKMath64x64.fromUInt(3)));
console2.log("balanced2: using tier2 cubic approx");
} else {
// u beyond allowed range - fallback
console2.log("balanced2: fallback u too large for approximation");
return LMSRStabilized.swapAmountsForExactInput(s, i, j, a, limitPrice);
}
console2.log("lnApprox (64x64):");
console2.logInt(lnApprox);
int128 approxOut = b.mul(lnApprox);
console2.log("approxOut (64x64):");
console2.logInt(approxOut);
// Safety sanity: approximation must be > 0
if (approxOut <= int128(0)) {
console2.log("balanced2: fallback approxOut <= 0");
return LMSRStabilized.swapAmountsForExactInput(s, i, j, a, limitPrice);
}
// Cap to available j balance: if approximated output exceeds q_j, it's likely approximation break;
// fall back to the exact solver to handle capping/edge cases.
int128 qj64 = s.qInternal[j];
console2.log("qj64 (64x64):");
console2.logInt(qj64);
if (approxOut >= qj64) {
console2.log("balanced2: fallback approxOut >= qj");
return LMSRStabilized.swapAmountsForExactInput(s, i, j, a, limitPrice);
}
@@ -240,15 +181,8 @@ library LMSRStabilizedBalancedPair {
amountIn = a;
amountOut = approxOut;
console2.log("balanced2: returning approx results");
console2.log("amountIn (64x64):");
console2.logInt(amountIn);
console2.log("amountOut (64x64):");
console2.logInt(amountOut);
// Final guard: ensure output is sensible and not NaN-like (rely on positivity checks above)
if (amountOut < int128(0)) {
console2.log("balanced2: fallback final guard amountOut<0");
return LMSRStabilized.swapAmountsForExactInput(s, i, j, a, limitPrice);
}

View File

@@ -1,13 +1,15 @@
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.30;
import "./IPartyPlanner.sol";
import "./PartyPool.sol";
import "./LMSRStabilized.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import {PartyPoolSwapMintImpl} from "./PartyPoolSwapMintImpl.sol";
import {IERC20} from "../lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "../lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";
import {IPartyPlanner} from "./IPartyPlanner.sol";
import {LMSRStabilized} from "./LMSRStabilized.sol";
import {IPartyPool} from "./IPartyPool.sol";
import {PartyPool} from "./PartyPool.sol";
import {PartyPoolMintImpl} from "./PartyPoolMintImpl.sol";
import {PartyPoolSwapImpl} from "./PartyPoolSwapImpl.sol";
import {PartyPoolBalancedPair} from "./PartyPoolBalancedPair.sol";
/// @title PartyPlanner
/// @notice Factory contract for creating and tracking PartyPool instances
@@ -20,8 +22,8 @@ contract PartyPlanner is IPartyPlanner {
function mintImpl() external view returns (PartyPoolMintImpl) { return MINT_IMPL; }
/// @notice Address of the SwapMint implementation contract used by all pools created by this factory
PartyPoolSwapMintImpl private immutable SWAP_MINT_IMPL;
function swapMintImpl() external view returns (PartyPoolSwapMintImpl) { return SWAP_MINT_IMPL; }
PartyPoolSwapImpl private immutable SWAP_MINT_IMPL;
function swapMintImpl() external view returns (PartyPoolSwapImpl) { return SWAP_MINT_IMPL; }
/// @notice Protocol fee share (ppm) applied to fees collected by pools created by this planner
uint256 private immutable PROTOCOL_FEE_PPM;
@@ -32,18 +34,18 @@ contract PartyPlanner is IPartyPlanner {
function protocolFeeAddress() external view returns (address) { return PROTOCOL_FEE_ADDRESS; }
// On-chain pool indexing
PartyPool[] private _allPools;
IPartyPool[] private _allPools;
IERC20[] private _allTokens;
mapping(PartyPool => bool) private _poolSupported;
mapping(IPartyPool => bool) private _poolSupported;
mapping(IERC20 => bool) private _tokenSupported;
mapping(IERC20 => PartyPool[]) private _poolsByToken;
mapping(IERC20 => IPartyPool[]) private _poolsByToken;
/// @param _swapMintImpl address of the SwapMint implementation contract to be used by all pools
/// @param _mintImpl address of the Mint implementation contract to be used by all pools
/// @param _protocolFeePpm protocol fee share (ppm) to be used for pools created by this planner
/// @param _protocolFeeAddress recipient address for protocol fees for pools created by this planner (may be address(0))
constructor(
PartyPoolSwapMintImpl _swapMintImpl,
PartyPoolSwapImpl _swapMintImpl,
PartyPoolMintImpl _mintImpl,
uint256 _protocolFeePpm,
address _protocolFeeAddress
@@ -75,7 +77,7 @@ contract PartyPlanner is IPartyPlanner {
uint256[] memory initialDeposits,
uint256 initialLpAmount,
uint256 deadline
) public returns (PartyPool pool, uint256 lpAmount) {
) public returns (IPartyPool pool, uint256 lpAmount) {
// Validate inputs
require(deadline == 0 || block.timestamp <= deadline, "Planner: deadline exceeded");
require(_tokens.length == initialDeposits.length, "Planner: tokens and deposits length mismatch");
@@ -86,7 +88,8 @@ contract PartyPlanner is IPartyPlanner {
require(_kappa > int128(0), "Planner: kappa must be > 0");
// Create a new PartyPool instance (kappa-based constructor)
pool = new PartyPool(
pool = _stable && _tokens.length == 2 ?
new PartyPoolBalancedPair(
name_,
symbol_,
_tokens,
@@ -96,8 +99,20 @@ contract PartyPlanner is IPartyPlanner {
_flashFeePpm,
PROTOCOL_FEE_PPM,
PROTOCOL_FEE_ADDRESS,
_stable,
PartyPoolSwapMintImpl(SWAP_MINT_IMPL),
PartyPoolSwapImpl(SWAP_MINT_IMPL),
MINT_IMPL
) :
new PartyPool(
name_,
symbol_,
_tokens,
_bases,
_kappa,
_swapFeePpm,
_flashFeePpm,
PROTOCOL_FEE_PPM,
PROTOCOL_FEE_ADDRESS,
PartyPoolSwapImpl(SWAP_MINT_IMPL),
MINT_IMPL
);
@@ -151,7 +166,7 @@ contract PartyPlanner is IPartyPlanner {
uint256[] memory initialDeposits,
uint256 initialLpAmount,
uint256 deadline
) external returns (PartyPool pool, uint256 lpAmount) {
) external returns (IPartyPool pool, uint256 lpAmount) {
// Validate fixed-point fractions: must be less than 1.0 in 64.64 fixed-point
require(_tradeFrac < ONE, "Planner: tradeFrac must be < 1 (64.64)");
require(_targetSlippage < ONE, "Planner: targetSlippage must be < 1 (64.64)");
@@ -179,7 +194,7 @@ contract PartyPlanner is IPartyPlanner {
/// @inheritdoc IPartyPlanner
function getPoolSupported(address pool) external view returns (bool) {
return _poolSupported[PartyPool(pool)];
return _poolSupported[IPartyPool(pool)];
}
/// @inheritdoc IPartyPlanner
@@ -188,19 +203,19 @@ contract PartyPlanner is IPartyPlanner {
}
/// @inheritdoc IPartyPlanner
function getAllPools(uint256 offset, uint256 limit) external view returns (PartyPool[] memory pools) {
function getAllPools(uint256 offset, uint256 limit) external view returns (IPartyPool[] memory pools) {
uint256 totalPools = _allPools.length;
// If offset is beyond array bounds, return empty array
if (offset >= totalPools) {
return new PartyPool[](0);
return new IPartyPool[](0);
}
// Calculate actual number of pools to return (respecting bounds)
uint256 itemsToReturn = (offset + limit > totalPools) ? (totalPools - offset) : limit;
// Create result array of appropriate size
pools = new PartyPool[](itemsToReturn);
pools = new IPartyPool[](itemsToReturn);
// Fill the result array
for (uint256 i = 0; i < itemsToReturn; i++) {
@@ -244,20 +259,20 @@ contract PartyPlanner is IPartyPlanner {
}
/// @inheritdoc IPartyPlanner
function getPoolsByToken(IERC20 token, uint256 offset, uint256 limit) external view returns (PartyPool[] memory pools) {
PartyPool[] storage tokenPools = _poolsByToken[token];
function getPoolsByToken(IERC20 token, uint256 offset, uint256 limit) external view returns (IPartyPool[] memory pools) {
IPartyPool[] storage tokenPools = _poolsByToken[token];
uint256 totalPools = tokenPools.length;
// If offset is beyond array bounds, return empty array
if (offset >= totalPools) {
return new PartyPool[](0);
return new IPartyPool[](0);
}
// Calculate actual number of pools to return (respecting bounds)
uint256 itemsToReturn = (offset + limit > totalPools) ? (totalPools - offset) : limit;
// Create result array of appropriate size
pools = new PartyPool[](itemsToReturn);
pools = new IPartyPool[](itemsToReturn);
// Fill the result array
for (uint256 i = 0; i < itemsToReturn; i++) {

View File

@@ -6,14 +6,15 @@ import {IERC20} from "../lib/openzeppelin-contracts/contracts/token/ERC20/IERC20
import {SafeERC20} from "../lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";
import {Address} from "../lib/openzeppelin-contracts/contracts/utils/Address.sol";
import {ReentrancyGuard} from "../lib/openzeppelin-contracts/contracts/utils/ReentrancyGuard.sol";
import {ERC20External} from "./ERC20External.sol";
import {IPartyFlashCallback} from "./IPartyFlashCallback.sol";
import {IPartyPool} from "./IPartyPool.sol";
import {LMSRStabilized} from "./LMSRStabilized.sol";
import {LMSRStabilizedBalancedPair} from "./LMSRStabilizedBalancedPair.sol";
import {PartyPoolBase} from "./PartyPoolBase.sol";
import {PartyPoolMintImpl} from "./PartyPoolMintImpl.sol";
import {PartyPoolSwapMintImpl} from "./PartyPoolSwapMintImpl.sol";
import {ERC20External} from "./ERC20External.sol";
import {PartyPoolSwapImpl} from "./PartyPoolSwapImpl.sol";
import {Proxy} from "../lib/openzeppelin-contracts/contracts/proxy/Proxy.sol";
/// @title PartyPool - LMSR-backed multi-asset pool with LP ERC20 token
/// @notice A multi-asset liquidity pool backed by the LMSRStabilized pricing model.
@@ -58,16 +59,13 @@ contract PartyPool is PartyPoolBase, ERC20External, IPartyPool {
// @inheritdoc IPartyPool
function allProtocolFeesOwed() external view returns (uint256[] memory) { return protocolFeesOwed; }
/// @notice If true and there are exactly two assets, an optimized 2-asset stable-pair path is used for some computations.
bool immutable private IS_STABLE_PAIR; // if true, the optimized LMSRStabilizedBalancedPair optimization path is enabled
/// @notice Address of the Mint implementation contract for delegatecall
PartyPoolMintImpl private immutable MINT_IMPL;
function mintImpl() external view returns (PartyPoolMintImpl) { return MINT_IMPL; }
/// @notice Address of the SwapMint implementation contract for delegatecall
PartyPoolSwapMintImpl private immutable SWAP_MINT_IMPL;
function swapMintImpl() external view returns (PartyPoolSwapMintImpl) { return SWAP_MINT_IMPL; }
PartyPoolSwapImpl private immutable SWAP_IMPL;
function swapMintImpl() external view returns (PartyPoolSwapImpl) { return SWAP_IMPL; }
/// @inheritdoc IPartyPool
@@ -89,7 +87,6 @@ contract PartyPool is PartyPoolBase, ERC20External, IPartyPool {
/// @param kappa_ liquidity parameter κ (Q64.64) used to derive b = κ * S(q)
/// @param swapFeePpm_ fee in parts-per-million, taken from swap input amounts before LMSR calculations
/// @param flashFeePpm_ fee in parts-per-million, taken for flash loans
/// @param stable_ if true and assets.length==2, then the optimization for 2-asset stablecoin pools is activated.
/// @param swapMintImpl_ address of the SwapMint implementation contract
/// @param mintImpl_ address of the Mint implementation contract
constructor(
@@ -102,8 +99,7 @@ contract PartyPool is PartyPoolBase, ERC20External, IPartyPool {
uint256 flashFeePpm_,
uint256 protocolFeePpm_, // NEW: protocol share of fees (ppm)
address protocolFeeAddress_, // NEW: recipient for collected protocol tokens
bool stable_,
PartyPoolSwapMintImpl swapMintImpl_,
PartyPoolSwapImpl swapMintImpl_,
PartyPoolMintImpl mintImpl_
) ERC20External(name_, symbol_) {
require(tokens_.length > 1, "Pool: need >1 asset");
@@ -118,8 +114,7 @@ contract PartyPool is PartyPoolBase, ERC20External, IPartyPool {
require(protocolFeePpm_ < 1_000_000, "Pool: protocol fee >= ppm");
PROTOCOL_FEE_PPM = protocolFeePpm_;
PROTOCOL_FEE_ADDRESS = protocolFeeAddress_;
IS_STABLE_PAIR = stable_ && tokens_.length == 2;
SWAP_MINT_IMPL = swapMintImpl_;
SWAP_IMPL = swapMintImpl_;
MINT_IMPL = mintImpl_;
uint256 n = tokens_.length;
@@ -139,6 +134,47 @@ contract PartyPool is PartyPoolBase, ERC20External, IPartyPool {
}
//
// Current marginal prices
//
/// @notice Marginal price of `base` in terms of `quote` (p_quote / p_base) as Q64.64
/// @dev Returns the LMSR marginal price directly (raw 64.64) for use by off-chain quoting logic.
function price(uint256 baseTokenIndex, uint256 quoteTokenIndex) external view returns (int128) {
uint256 n = tokens.length;
require(baseTokenIndex < n && quoteTokenIndex < n, "price: idx");
require(lmsr.nAssets > 0, "price: uninit");
return lmsr.price(baseTokenIndex, quoteTokenIndex);
}
/// @notice Price of one LP token denominated in `quote` asset as Q64.64
/// @dev Computes LMSR poolPrice (quote per unit qTotal) and scales it by totalSupply() / qTotal
/// to return price per LP token unit in quote asset (raw 64.64).
function poolPrice(uint256 quoteTokenIndex) external view returns (int128) {
uint256 n = tokens.length;
require(quoteTokenIndex < n, "poolPrice: idx");
require(lmsr.nAssets > 0, "poolPrice: uninit");
// price per unit of qTotal (Q64.64) from LMSR
int128 pricePerQ = lmsr.poolPrice(quoteTokenIndex);
// total internal q (qTotal) as Q64.64
int128 qTotal = _computeSizeMetric(lmsr.qInternal);
require(qTotal > int128(0), "poolPrice: qTotal zero");
// totalSupply as Q64.64
uint256 supply = totalSupply();
require(supply > 0, "poolPrice: zero supply");
int128 supplyQ64 = ABDKMath64x64.fromUInt(supply);
// factor = totalSupply / qTotal (Q64.64)
int128 factor = supplyQ64.div(qTotal);
// price per LP token = pricePerQ * factor (Q64.64)
return pricePerQ.mul(factor);
}
/* ----------------------
Initialization / Mint / Burn (LP token managed)
---------------------- */
@@ -220,54 +256,6 @@ contract PartyPool is PartyPoolBase, ERC20External, IPartyPool {
}
/// @inheritdoc IPartyPool
function swapToLimitAmounts(
uint256 inputTokenIndex,
uint256 outputTokenIndex,
int128 limitPrice
) external view returns (uint256 amountIn, uint256 amountOut, uint256 fee) {
(uint256 grossIn, uint256 outUint,,,, uint256 feeUint) = _quoteSwapToLimit(inputTokenIndex, outputTokenIndex, limitPrice);
return (grossIn, outUint, feeUint);
}
/// @notice Transfer all protocol fees to the configured protocolFeeAddress and zero the ledger.
/// @dev Anyone can call; must have protocolFeeAddress != address(0) to be operational.
function collectProtocolFees() external nonReentrant {
address dest = PROTOCOL_FEE_ADDRESS;
require(dest != address(0), "collect: zero addr");
uint256 n = tokens.length;
for (uint256 i = 0; i < n; i++) {
uint256 owed = protocolFeesOwed[i];
if (owed == 0) continue;
uint256 bal = IERC20(tokens[i]).balanceOf(address(this));
require(bal >= owed, "collect: fee > bal");
protocolFeesOwed[i] = 0;
// transfer owed tokens to protocol destination
tokens[i].safeTransfer(dest, owed);
// update cached to effective onchain minus owed
cachedUintBalances[i] = bal - owed;
}
}
/// @dev Helper to record cached balances as effectiveBalance = onchain - owed. Reverts if owed > onchain.
function _recordCachedBalance(uint256 idx, uint256 onchainBal) internal {
uint256 owed = protocolFeesOwed[idx];
require(onchainBal >= owed, "balance < protocol owed");
cachedUintBalances[idx] = onchainBal - owed;
}
/// @notice Swap input token i -> token j. Payer must approve token i.
/// @dev This function transfers the exact gross input (including fee) from payer and sends the computed output to receiver.
/// Non-standard tokens (fee-on-transfer, rebasers) are rejected via balance checks.
/// @param payer address of the account that pays for the swap
/// @param receiver address that will receive the output tokens
/// @param inputTokenIndex index of input asset
/// @param outputTokenIndex index of output asset
/// @param maxAmountIn maximum amount of token i (uint256) to transfer in (inclusive of fees)
/// @param limitPrice maximum acceptable marginal price (64.64 fixed point). Pass 0 to ignore.
/// @param deadline timestamp after which the transaction will revert. Pass 0 to ignore.
/// @return amountIn actual input used (uint256), amountOut actual output sent (uint256), fee fee taken from the input (uint256)
function swap(
address payer,
address receiver,
@@ -320,62 +308,6 @@ contract PartyPool is PartyPoolBase, ERC20External, IPartyPool {
return (totalTransferAmount, amountOutUint, feeUint);
}
/// @notice Swap up to the price limit; computes max input to reach limit then performs swap.
/// @dev If balances prevent fully reaching the limit, the function caps and returns actuals.
/// The payer must transfer the exact gross input computed by the view.
/// @param deadline timestamp after which the transaction will revert. Pass 0 to ignore.
function swapToLimit(
address payer,
address receiver,
uint256 inputTokenIndex,
uint256 outputTokenIndex,
int128 limitPrice,
uint256 deadline
) external returns (uint256 amountInUsed, uint256 amountOut, uint256 fee) {
uint256 n = tokens.length;
require(inputTokenIndex < n && outputTokenIndex < n, "swapToLimit: idx");
require(limitPrice > int128(0), "swapToLimit: limit <= 0");
require(deadline == 0 || block.timestamp <= deadline, "swapToLimit: deadline exceeded");
// Read previous balances for affected assets
uint256 prevBalI = IERC20(tokens[inputTokenIndex]).balanceOf(address(this));
uint256 prevBalJ = IERC20(tokens[outputTokenIndex]).balanceOf(address(this));
// Compute amounts using the same path as views
(uint256 totalTransferAmount, uint256 amountOutUint, int128 amountInInternalMax, int128 amountOutInternal, uint256 amountInUsedUint, uint256 feeUint) =
_quoteSwapToLimit(inputTokenIndex, outputTokenIndex, limitPrice);
// Transfer the exact amount needed from payer and require exact receipt (revert on fee-on-transfer)
tokens[inputTokenIndex].safeTransferFrom(payer, address(this), totalTransferAmount);
uint256 balIAfter = IERC20(tokens[inputTokenIndex]).balanceOf(address(this));
require(balIAfter == prevBalI + totalTransferAmount, "swapToLimit: non-standard tokenIn");
// Transfer output to receiver and verify exact decrease
tokens[outputTokenIndex].safeTransfer(receiver, amountOutUint);
uint256 balJAfter = IERC20(tokens[outputTokenIndex]).balanceOf(address(this));
require(balJAfter == prevBalJ - amountOutUint, "swapToLimit: non-standard tokenOut");
// Accrue protocol share (floor) from the fee on input token
if (PROTOCOL_FEE_PPM > 0 && feeUint > 0 && PROTOCOL_FEE_ADDRESS != address(0)) {
uint256 protoShare = (feeUint * PROTOCOL_FEE_PPM) / 1_000_000; // floor
if (protoShare > 0) {
protocolFeesOwed[inputTokenIndex] += protoShare;
}
}
// Update caches to effective balances
_recordCachedBalance(inputTokenIndex, balIAfter);
_recordCachedBalance(outputTokenIndex, balJAfter);
// Apply swap to LMSR state with the internal amounts
lmsr.applySwap(inputTokenIndex, outputTokenIndex, amountInInternalMax, amountOutInternal);
// Maintain original event semantics (logs input without fee)
emit Swap(payer, receiver, tokens[inputTokenIndex], tokens[outputTokenIndex], amountInUsedUint, amountOutUint);
return (amountInUsedUint, amountOutUint, feeUint);
}
/// @notice Internal quote for exact-input swap that mirrors swap() rounding and fee application
/// @dev Returns amounts consistent with swap() semantics: grossIn includes fees (ceil), amountOut is floored.
/// @return grossIn amount to transfer in (inclusive of fee), amountOutUint output amount (uint),
@@ -412,9 +344,7 @@ contract PartyPool is PartyPoolBase, ERC20External, IPartyPool {
// Compute internal amounts using LMSR (exact-input with price limit)
// if _stablePair is true, use the optimized path
(amountInInternalUsed, amountOutInternal) =
IS_STABLE_PAIR ? LMSRStabilizedBalancedPair.swapAmountsForExactInput(lmsr, inputTokenIndex, outputTokenIndex, deltaInternalI, limitPrice)
: lmsr.swapAmountsForExactInput(inputTokenIndex, outputTokenIndex, deltaInternalI, limitPrice);
(amountInInternalUsed, amountOutInternal) = _swapAmountsForExactInput(inputTokenIndex, outputTokenIndex, deltaInternalI, limitPrice);
// Convert actual used input internal -> uint (ceil)
amountInUintNoFee = _internalToUintCeil(amountInInternalUsed, bases[inputTokenIndex]);
@@ -436,70 +366,50 @@ contract PartyPool is PartyPoolBase, ERC20External, IPartyPool {
require(amountOutUint > 0, "swap: output zero");
}
/// @notice Internal quote for swap-to-limit that mirrors swapToLimit() rounding and fee application
/// @dev Computes the input required to reach limitPrice and the resulting output; all rounding matches swapToLimit.
/// @return grossIn amount to transfer in (inclusive of fee), amountOutUint output amount (uint),
/// amountInInternal and amountOutInternal (64.64), amountInUintNoFee input amount excluding fee (uint),
/// feeUint fee taken from the gross input (uint)
function _quoteSwapToLimit(
/// @inheritdoc IPartyPool
function swapToLimitAmounts(
uint256 inputTokenIndex,
uint256 outputTokenIndex,
int128 limitPrice
)
internal
view
returns (
uint256 grossIn,
uint256 amountOutUint,
int128 amountInInternal,
int128 amountOutInternal,
uint256 amountInUintNoFee,
uint256 feeUint
)
{
uint256 n = tokens.length;
require(inputTokenIndex < n && outputTokenIndex < n, "swapToLimit: idx");
) external view returns (uint256 amountIn, uint256 amountOut, uint256 fee) {
require(inputTokenIndex < tokens.length && outputTokenIndex < tokens.length, "swapToLimit: idx");
require(limitPrice > int128(0), "swapToLimit: limit <= 0");
require(lmsr.nAssets > 0, "swapToLimit: pool uninitialized");
// Compute internal maxima at the price limit
(amountInInternal, amountOutInternal) = lmsr.swapAmountsForPriceLimit(inputTokenIndex, outputTokenIndex, limitPrice);
// Convert input to uint (ceil) and output to uint (floor)
amountInUintNoFee = _internalToUintCeil(amountInInternal, bases[inputTokenIndex]);
require(amountInUintNoFee > 0, "swapToLimit: input zero");
feeUint = 0;
grossIn = amountInUintNoFee;
if (SWAP_FEE_PPM > 0) {
feeUint = _ceilFee(amountInUintNoFee, SWAP_FEE_PPM);
grossIn += feeUint;
return SWAP_IMPL.swapToLimitAmounts(
inputTokenIndex, outputTokenIndex, limitPrice,
bases, KAPPA, lmsr.qInternal, SWAP_FEE_PPM);
}
amountOutUint = _internalToUintFloor(amountOutInternal, bases[outputTokenIndex]);
require(amountOutUint > 0, "swapToLimit: output zero");
}
/// @notice Compute fee and net amounts for a gross input (fee rounded up to favor the pool).
/// @return feeUint fee taken (uint) and netUint remaining for protocol use (uint)
function _computeFee(uint256 gross) internal view returns (uint256 feeUint, uint256 netUint) {
if (SWAP_FEE_PPM == 0) {
return (0, gross);
}
feeUint = _ceilFee(gross, SWAP_FEE_PPM);
netUint = gross - feeUint;
}
/// @notice Convenience: return gross = net + fee(net) using ceiling for fee.
function _addFee(uint256 netUint) internal view returns (uint256 gross) {
if (SWAP_FEE_PPM == 0) return netUint;
uint256 fee = _ceilFee(netUint, SWAP_FEE_PPM);
return netUint + fee;
/// @inheritdoc IPartyPool
function swapToLimit(
address payer,
address receiver,
uint256 inputTokenIndex,
uint256 outputTokenIndex,
int128 limitPrice,
uint256 deadline
) external nonReentrant returns (uint256 amountInUsed, uint256 amountOut, uint256 fee) {
bytes memory data = abi.encodeWithSignature(
'swapToLimit(address,address,uint256,uint256,int128,uint256,uint256,uint256)',
payer,
receiver,
inputTokenIndex,
outputTokenIndex,
limitPrice,
deadline,
SWAP_FEE_PPM,
PROTOCOL_FEE_PPM
);
bytes memory result = Address.functionDelegateCall(address(SWAP_IMPL), data);
return abi.decode(result, (uint256,uint256,uint256));
}
function swapMintAmounts(uint256 inputTokenIndex, uint256 maxAmountIn) external view
returns (uint256 amountInUsed, uint256 fee, uint256 lpMinted) {
return SWAP_MINT_IMPL.swapMintAmounts(
return MINT_IMPL.swapMintAmounts(
inputTokenIndex,
maxAmountIn,
SWAP_FEE_PPM,
@@ -511,7 +421,7 @@ contract PartyPool is PartyPoolBase, ERC20External, IPartyPool {
function burnSwapAmounts(uint256 lpAmount, uint256 inputTokenIndex) external view
returns (uint256 amountOut) {
return SWAP_MINT_IMPL.burnSwapAmounts(
return MINT_IMPL.burnSwapAmounts(
lpAmount,
inputTokenIndex,
SWAP_FEE_PPM,
@@ -537,32 +447,18 @@ contract PartyPool is PartyPoolBase, ERC20External, IPartyPool {
uint256 deadline
) external returns (uint256 lpMinted) {
bytes memory data = abi.encodeWithSignature(
"swapMint(address,address,uint256,uint256,uint256,uint256)",
"swapMint(address,address,uint256,uint256,uint256,uint256,uint256)",
payer,
receiver,
inputTokenIndex,
maxAmountIn,
deadline,
SWAP_FEE_PPM
SWAP_FEE_PPM,
PROTOCOL_FEE_PPM
);
bytes memory result = Address.functionDelegateCall(address(SWAP_MINT_IMPL), data);
// New ABI: implementation returns (uint256 lpMinted, uint256 feeUintActual)
(uint256 lpOut, uint256 feeUintActual) = abi.decode(result, (uint256, uint256));
// Accrue protocol share (floor) from the fee on the input token
if (PROTOCOL_FEE_PPM > 0 && feeUintActual > 0 && PROTOCOL_FEE_ADDRESS != address(0)) {
uint256 protoShare = (feeUintActual * PROTOCOL_FEE_PPM) / 1_000_000;
if (protoShare > 0) {
protocolFeesOwed[inputTokenIndex] += protoShare;
}
}
// Update cached balance for the input token to effective onchain - owed
uint256 bal = IERC20(tokens[inputTokenIndex]).balanceOf(address(this));
_recordCachedBalance(inputTokenIndex, bal);
return lpOut;
bytes memory result = Address.functionDelegateCall(address(MINT_IMPL), data);
return abi.decode(result, (uint256));
}
/// @notice Burn LP tokens then swap the redeemed proportional basket into a single asset `inputTokenIndex` and send to receiver.
@@ -581,32 +477,18 @@ contract PartyPool is PartyPoolBase, ERC20External, IPartyPool {
uint256 deadline
) external returns (uint256 amountOutUint) {
bytes memory data = abi.encodeWithSignature(
"burnSwap(address,address,uint256,uint256,uint256,uint256)",
"burnSwap(address,address,uint256,uint256,uint256,uint256,uint256)",
payer,
receiver,
lpAmount,
inputTokenIndex,
deadline,
SWAP_FEE_PPM
SWAP_FEE_PPM,
PROTOCOL_FEE_PPM
);
bytes memory result = Address.functionDelegateCall(address(SWAP_MINT_IMPL), data);
// New ABI: implementation returns (uint256 amountOutUint, uint256 feeTokenUint)
(uint256 outAmt, uint256 feeTokenUint) = abi.decode(result, (uint256, uint256));
// Accrue protocol share (floor) from the token-side fee computed by implementation
if (PROTOCOL_FEE_PPM > 0 && feeTokenUint > 0 && PROTOCOL_FEE_ADDRESS != address(0)) {
uint256 protoShare = (feeTokenUint * PROTOCOL_FEE_PPM) / 1_000_000;
if (protoShare > 0) {
protocolFeesOwed[inputTokenIndex] += protoShare;
}
}
// Update cached balance for the target token to effective onchain - owed
uint256 bal = IERC20(tokens[inputTokenIndex]).balanceOf(address(this));
_recordCachedBalance(inputTokenIndex, bal);
return outAmt;
bytes memory result = Address.functionDelegateCall(address(MINT_IMPL), data);
return abi.decode(result, (uint256));
}
@@ -702,42 +584,41 @@ contract PartyPool is PartyPoolBase, ERC20External, IPartyPool {
}
/* Conversion helpers moved to PartyPoolBase (abstract) to centralize internal helpers and storage. */
/// @notice Transfer all protocol fees to the configured protocolFeeAddress and zero the ledger.
/// @dev Anyone can call; must have protocolFeeAddress != address(0) to be operational.
function collectProtocolFees() external nonReentrant {
address dest = PROTOCOL_FEE_ADDRESS;
require(dest != address(0), "collect: zero addr");
/// @notice Marginal price of `base` in terms of `quote` (p_quote / p_base) as Q64.64
/// @dev Returns the LMSR marginal price directly (raw 64.64) for use by off-chain quoting logic.
function price(uint256 baseTokenIndex, uint256 quoteTokenIndex) external view returns (int128) {
uint256 n = tokens.length;
require(baseTokenIndex < n && quoteTokenIndex < n, "price: idx");
require(lmsr.nAssets > 0, "price: uninit");
return lmsr.price(baseTokenIndex, quoteTokenIndex);
for (uint256 i = 0; i < n; i++) {
uint256 owed = protocolFeesOwed[i];
if (owed == 0) continue;
uint256 bal = IERC20(tokens[i]).balanceOf(address(this));
require(bal >= owed, "collect: fee > bal");
protocolFeesOwed[i] = 0;
// transfer owed tokens to protocol destination
tokens[i].safeTransfer(dest, owed);
// update cached to effective onchain minus owed
cachedUintBalances[i] = bal - owed;
}
}
/// @notice Price of one LP token denominated in `quote` asset as Q64.64
/// @dev Computes LMSR poolPrice (quote per unit qTotal) and scales it by totalSupply() / qTotal
/// to return price per LP token unit in quote asset (raw 64.64).
function poolPrice(uint256 quoteTokenIndex) external view returns (int128) {
uint256 n = tokens.length;
require(quoteTokenIndex < n, "poolPrice: idx");
require(lmsr.nAssets > 0, "poolPrice: uninit");
// price per unit of qTotal (Q64.64) from LMSR
int128 pricePerQ = lmsr.poolPrice(quoteTokenIndex);
function _swapAmountsForExactInput(uint256 i, uint256 j, int128 a, int128 limitPrice) internal virtual view
returns (int128 amountIn, int128 amountOut) {
return lmsr.swapAmountsForExactInput(i, j, a, limitPrice);
}
// total internal q (qTotal) as Q64.64
int128 qTotal = _computeSizeMetric(lmsr.qInternal);
require(qTotal > int128(0), "poolPrice: qTotal zero");
/// @notice Compute fee and net amounts for a gross input (fee rounded up to favor the pool).
/// @return feeUint fee taken (uint) and netUint remaining for protocol use (uint)
function _computeFee(uint256 gross) internal view returns (uint256 feeUint, uint256 netUint) {
return _computeFee(gross, SWAP_FEE_PPM);
}
// totalSupply as Q64.64
uint256 supply = totalSupply();
require(supply > 0, "poolPrice: zero supply");
int128 supplyQ64 = ABDKMath64x64.fromUInt(supply);
// factor = totalSupply / qTotal (Q64.64)
int128 factor = supplyQ64.div(qTotal);
// price per LP token = pricePerQ * factor (Q64.64)
return pricePerQ.mul(factor);
/// @notice Convenience: return gross = net + fee(net) using ceiling for fee.
function _addFee(uint256 netUint) internal view returns (uint256 gross) {
return _addFee(netUint, SWAP_FEE_PPM);
}
}

View File

@@ -0,0 +1,30 @@
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.30;
import {IERC20} from "../lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
import {LMSRStabilizedBalancedPair} from "./LMSRStabilizedBalancedPair.sol";
import {PartyPool} from "./PartyPool.sol";
import {PartyPoolMintImpl} from "./PartyPoolMintImpl.sol";
import {PartyPoolSwapImpl} from "./PartyPoolSwapImpl.sol";
contract PartyPoolBalancedPair is PartyPool {
constructor(
string memory name_,
string memory symbol_,
IERC20[] memory tokens_,
uint256[] memory bases_,
int128 kappa_,
uint256 swapFeePpm_,
uint256 flashFeePpm_,
uint256 protocolFeePpm_, // NEW: protocol share of fees (ppm)
address protocolFeeAddress_, // NEW: recipient for collected protocol tokens
PartyPoolSwapImpl swapMintImpl_,
PartyPoolMintImpl mintImpl_
) PartyPool(name_, symbol_, tokens_, bases_, kappa_, swapFeePpm_, flashFeePpm_, protocolFeePpm_, protocolFeeAddress_, swapMintImpl_, mintImpl_)
{}
function _swapAmountsForExactInput(uint256 i, uint256 j, int128 a, int128 limitPrice) internal virtual override view
returns (int128 amountIn, int128 amountOut) {
return LMSRStabilizedBalancedPair.swapAmountsForExactInput(lmsr, i, j, a, limitPrice);
}
}

View File

@@ -116,4 +116,12 @@ abstract contract PartyPoolBase is ERC20Internal, ReentrancyGuard {
}
return total;
}
/// @dev Helper to record cached balances as effectiveBalance = onchain - owed. Reverts if owed > onchain.
function _recordCachedBalance(uint256 idx, uint256 onchainBal) internal {
uint256 owed = protocolFeesOwed[idx];
require(onchainBal >= owed, "balance < protocol owed");
cachedUintBalances[idx] = onchainBal - owed;
}
}

View File

@@ -1,12 +1,13 @@
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.30;
import "@abdk/ABDKMath64x64.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "./PartyPoolBase.sol";
import "./LMSRStabilized.sol";
import {PartyPool} from "./PartyPool.sol";
import {ABDKMath64x64} from "../lib/abdk-libraries-solidity/ABDKMath64x64.sol";
import {IERC20} from "../lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "../lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";
import {ERC20Internal} from "./ERC20Internal.sol";
import {IPartyPool} from "./IPartyPool.sol";
import {LMSRStabilized} from "./LMSRStabilized.sol";
import {PartyPoolBase} from "./PartyPoolBase.sol";
/// @title PartyPoolMintImpl - Implementation contract for mint and burn functions
/// @notice This contract contains the mint and burn implementation that will be called via delegatecall
@@ -20,6 +21,10 @@ contract PartyPoolMintImpl is PartyPoolBase {
event Mint(address indexed payer, address indexed receiver, uint256[] depositAmounts, uint256 lpMinted);
event Burn(address indexed payer, address indexed receiver, uint256[] withdrawAmounts, uint256 lpBurned);
//
// Initialization Mint
//
function initialMint(address receiver, uint256 lpTokens, int128 KAPPA) external
returns (uint256 lpMinted) {
uint256 n = tokens.length;
@@ -55,6 +60,11 @@ contract PartyPoolMintImpl is PartyPoolBase {
emit Mint(address(0), receiver, depositAmounts, lpMinted);
}
//
// Regular Mint and Burn
//
function mint(address payer, address receiver, uint256 lpTokenAmount, uint256 deadline) external returns (uint256 lpMinted) {
require(deadline == 0 || block.timestamp <= deadline, "mint: deadline exceeded");
uint256 n = tokens.length;
@@ -192,7 +202,8 @@ contract PartyPoolMintImpl is PartyPoolBase {
emit Burn(payer, receiver, withdrawAmounts, lpAmount);
}
function mintAmounts(uint256 lpTokenAmount, uint256 numAssets, uint256 totalSupply, uint256[] memory cachedUintBalances) public pure
function mintAmounts(uint256 lpTokenAmount,
uint256 numAssets, uint256 totalSupply, uint256[] memory cachedUintBalances) public pure
returns (uint256[] memory depositAmounts) {
depositAmounts = new uint256[](numAssets);
@@ -232,4 +243,357 @@ contract PartyPoolMintImpl is PartyPoolBase {
return withdrawAmounts;
}
//
// Swap-Mint and Burn-Swap
//
/// @notice Single-token mint: deposit a single token, charge swap-LMSR cost, and mint LP.
/// @dev swapMint executes as an exact-in planned swap followed by proportional scaling of qInternal.
/// The function emits SwapMint (gross, net, fee) and also emits Mint for LP issuance.
/// @param payer who transfers the input token
/// @param receiver who receives the minted LP tokens
/// @param inputTokenIndex index of the input token
/// @param maxAmountIn maximum uint token input (inclusive of fee)
/// @param deadline optional deadline
/// @param swapFeePpm fee in parts-per-million for this pool
/// @return lpMinted actual LP minted (uint)
function swapMint(
address payer,
address receiver,
uint256 inputTokenIndex,
uint256 maxAmountIn,
uint256 deadline,
uint256 swapFeePpm,
uint256 protocolFeePpm
) external returns (uint256 lpMinted) {
uint256 n = tokens.length;
require(inputTokenIndex < n, "swapMint: idx");
require(maxAmountIn > 0, "swapMint: input zero");
require(deadline == 0 || block.timestamp <= deadline, "swapMint: deadline");
require(lmsr.nAssets > 0, "swapMint: uninit pool");
// compute fee on gross maxAmountIn to get an initial net estimate (we'll recompute based on actual used)
(, uint256 netUintGuess) = _computeFee(maxAmountIn, swapFeePpm);
// Convert the net guess to internal (floor)
int128 netInternalGuess = _uintToInternalFloor(netUintGuess, bases[inputTokenIndex]);
require(netInternalGuess > int128(0), "swapMint: input too small after fee");
// Use LMSR view to determine actual internal consumed and size-increase (ΔS) for mint
(int128 amountInInternalUsed, int128 sizeIncreaseInternal) = lmsr.swapAmountsForMint(inputTokenIndex, netInternalGuess);
// amountInInternalUsed may be <= netInternalGuess. Convert to uint (ceil) to determine actual transfer
uint256 amountInUint = _internalToUintCeil(amountInInternalUsed, bases[inputTokenIndex]);
require(amountInUint > 0, "swapMint: input zero after internal conversion");
// Compute fee on the actual used input and total transfer amount (ceiling)
uint256 feeUintActual = _ceilFee(amountInUint, swapFeePpm);
uint256 totalTransfer = amountInUint + feeUintActual;
require(totalTransfer > 0 && totalTransfer <= maxAmountIn, "swapMint: transfer exceeds max");
// Record pre-balance and transfer tokens from payer, require exact receipt (revert on fee-on-transfer)
uint256 prevBalI = IERC20(tokens[inputTokenIndex]).balanceOf(address(this));
tokens[inputTokenIndex].safeTransferFrom(payer, address(this), totalTransfer);
uint256 balIAfter = IERC20(tokens[inputTokenIndex]).balanceOf(address(this));
require(balIAfter == prevBalI + totalTransfer, "swapMint: non-standard tokenIn");
// Accrue protocol share (floor) from the fee on the input token
if (protocolFeePpm > 0 && feeUintActual > 0) {
uint256 protoShare = (feeUintActual * protocolFeePpm) / 1_000_000;
if (protoShare > 0) {
protocolFeesOwed[inputTokenIndex] += protoShare;
}
}
// Update cached balance for the input token to effective onchain - owed
_recordCachedBalance(inputTokenIndex, balIAfter);
// Compute old and new scaled size metrics to determine LP minted
int128 oldTotal = _computeSizeMetric(lmsr.qInternal);
require(oldTotal > int128(0), "swapMint: zero total");
uint256 oldScaled = ABDKMath64x64.mulu(oldTotal, LP_SCALE);
int128 newTotal = oldTotal.add(sizeIncreaseInternal);
uint256 newScaled = ABDKMath64x64.mulu(newTotal, LP_SCALE);
uint256 actualLpToMint;
// Use natural ERC20 function since base contract inherits from ERC20
uint256 currentSupply = _totalSupply;
if (currentSupply == 0) {
// If somehow supply zero (shouldn't happen as lmsr.nAssets>0), mint newScaled
actualLpToMint = newScaled;
} else {
require(oldScaled > 0, "swapMint: oldScaled zero");
uint256 delta = (newScaled > oldScaled) ? (newScaled - oldScaled) : 0;
if (delta > 0) {
// floor truncation rounds in favor of pool
actualLpToMint = (currentSupply * delta) / oldScaled;
} else {
actualLpToMint = 0;
}
}
require(actualLpToMint > 0, "swapMint: zero LP minted");
// Update LMSR internal state: scale qInternal proportionally by newTotal/oldTotal
int128[] memory newQInternal = new int128[](n);
for (uint256 idx = 0; idx < n; idx++) {
// newQInternal[idx] = qInternal[idx] * (newTotal / oldTotal)
newQInternal[idx] = lmsr.qInternal[idx].mul(newTotal).div(oldTotal);
}
// Update cached internal and kappa via updateForProportionalChange
lmsr.updateForProportionalChange(newQInternal);
// Use natural ERC20 function since base contract inherits from ERC20
_mint(receiver, actualLpToMint);
// Emit SwapMint event with gross transfer, net input and fee (planned exact-in)
emit IPartyPool.SwapMint(payer, receiver, inputTokenIndex, totalTransfer, amountInUint, feeUintActual);
// Emit standard Mint event which records deposit amounts and LP minted
emit IPartyPool.Mint(payer, receiver, new uint256[](n), actualLpToMint);
// Note: depositAmounts array omitted (empty) since swapMint uses single-token input
return actualLpToMint;
}
/// @notice Calculate the amounts for a swap mint operation
/// @dev This is a pure view function that computes swap mint amounts from provided state
/// @param inputTokenIndex index of the input token
/// @param maxAmountIn maximum amount of token to deposit (inclusive of fee)
/// @param swapFeePpm fee in parts-per-million
/// @param lmsrState current LMSR state
/// @param bases_ scaling bases for each token
/// @param totalSupply_ current total LP token supply
/// @return amountInUsed actual input amount used (excluding fee)
/// @return fee fee amount charged
/// @return lpMinted LP tokens that would be minted
function swapMintAmounts(
uint256 inputTokenIndex,
uint256 maxAmountIn,
uint256 swapFeePpm,
LMSRStabilized.State memory lmsrState,
uint256[] memory bases_,
uint256 totalSupply_
) public pure returns (uint256 amountInUsed, uint256 fee, uint256 lpMinted) {
require(inputTokenIndex < bases_.length, "swapMintAmounts: idx");
require(maxAmountIn > 0, "swapMintAmounts: input zero");
require(lmsrState.nAssets > 0, "swapMintAmounts: uninit pool");
// Compute fee on gross maxAmountIn to get an initial net estimate
uint256 feeGuess = 0;
uint256 netUintGuess = maxAmountIn;
if (swapFeePpm > 0) {
feeGuess = (maxAmountIn * swapFeePpm + 999999) / 1000000; // ceil fee
netUintGuess = maxAmountIn - feeGuess;
}
// Convert the net guess to internal (floor)
int128 netInternalGuess = _uintToInternalFloorPure(netUintGuess, bases_[inputTokenIndex]);
require(netInternalGuess > int128(0), "swapMintAmounts: input too small after fee");
// Use LMSR view to determine actual internal consumed and size-increase (ΔS) for mint
(int128 amountInInternalUsed, int128 sizeIncreaseInternal) =
LMSRStabilized.swapAmountsForMint(lmsrState.nAssets, lmsrState.kappa, lmsrState.qInternal,
inputTokenIndex, netInternalGuess);
// amountInInternalUsed may be <= netInternalGuess. Convert to uint (ceil) to determine actual transfer
amountInUsed = _internalToUintCeilPure(amountInInternalUsed, bases_[inputTokenIndex]);
require(amountInUsed > 0, "swapMintAmounts: input zero after internal conversion");
// Compute fee on the actual used input (ceiling)
fee = 0;
if (swapFeePpm > 0) {
fee = (amountInUsed * swapFeePpm + 999999) / 1000000; // ceil fee
}
uint256 totalTransfer = amountInUsed + fee;
require(totalTransfer > 0 && totalTransfer <= maxAmountIn, "swapMintAmounts: transfer exceeds max");
// Compute old and new scaled size metrics to determine LP minted
int128 oldTotal = _computeSizeMetricPure(lmsrState.qInternal);
require(oldTotal > int128(0), "swapMintAmounts: zero total");
uint256 oldScaled = ABDKMath64x64.mulu(oldTotal, LP_SCALE);
int128 newTotal = oldTotal.add(sizeIncreaseInternal);
uint256 newScaled = ABDKMath64x64.mulu(newTotal, LP_SCALE);
if (totalSupply_ == 0) {
// If somehow supply zero (shouldn't happen as lmsr.nAssets>0), mint newScaled
lpMinted = newScaled;
} else {
require(oldScaled > 0, "swapMintAmounts: oldScaled zero");
uint256 delta = (newScaled > oldScaled) ? (newScaled - oldScaled) : 0;
if (delta > 0) {
// floor truncation rounds in favor of pool
lpMinted = (totalSupply_ * delta) / oldScaled;
} else {
lpMinted = 0;
}
}
require(lpMinted > 0, "swapMintAmounts: zero LP minted");
}
/// @notice Calculate the amounts for a burn swap operation
/// @dev This is a pure view function that computes burn swap amounts from provided state
/// @param lpAmount amount of LP tokens to burn
/// @param inputTokenIndex index of target asset to receive
/// @param swapFeePpm fee in parts-per-million
/// @param lmsrState current LMSR state
/// @param bases_ scaling bases for each token
/// @param totalSupply_ current total LP token supply
/// @return amountOut amount of target asset that would be received
function burnSwapAmounts(
uint256 lpAmount,
uint256 inputTokenIndex,
uint256 swapFeePpm,
LMSRStabilized.State memory lmsrState,
uint256[] memory bases_,
uint256 totalSupply_
) public pure returns (uint256 amountOut) {
require(inputTokenIndex < bases_.length, "burnSwapAmounts: idx");
require(lpAmount > 0, "burnSwapAmounts: zero lp");
require(totalSupply_ > 0, "burnSwapAmounts: empty supply");
// alpha = lpAmount / supply as Q64.64
int128 alpha = ABDKMath64x64.divu(lpAmount, totalSupply_) // fraction of total supply to burn
.mul(ABDKMath64x64.divu(1000000-swapFeePpm, 1000000)); // adjusted for fee
// Use LMSR view to compute single-asset payout and burned size-metric
(int128 payoutInternal, ) = LMSRStabilized.swapAmountsForBurn(lmsrState.nAssets, lmsrState.kappa, lmsrState.qInternal,
inputTokenIndex, alpha);
// Convert payoutInternal -> uint (floor) to favor pool
amountOut = _internalToUintFloorPure(payoutInternal, bases_[inputTokenIndex]);
require(amountOut > 0, "burnSwapAmounts: output zero");
}
/// @notice Burn LP tokens then swap the redeemed proportional basket into a single asset `inputTokenIndex` and send to receiver.
/// @dev The function burns LP tokens (authorization via allowance if needed), sends the single-asset payout and updates LMSR state.
/// @param payer who burns LP tokens
/// @param receiver who receives the single asset
/// @param lpAmount amount of LP tokens to burn
/// @param inputTokenIndex index of target asset to receive
/// @param deadline optional deadline
/// @param swapFeePpm fee in parts-per-million for this pool (may be used for future fee logic)
/// @return amountOutUint uint amount of asset i sent to receiver
function burnSwap(
address payer,
address receiver,
uint256 lpAmount,
uint256 inputTokenIndex,
uint256 deadline,
uint256 swapFeePpm,
uint256 protocolFeePpm
) external returns (uint256 amountOutUint) {
uint256 n = tokens.length;
require(inputTokenIndex < n, "burnSwap: idx");
require(lpAmount > 0, "burnSwap: zero lp");
require(deadline == 0 || block.timestamp <= deadline, "burnSwap: deadline");
uint256 supply = _totalSupply;
require(supply > 0, "burnSwap: empty supply");
require(_balances[payer] >= lpAmount, "burnSwap: insufficient LP");
// alpha = lpAmount / supply as Q64.64 (adjusted for fee)
int128 alpha = ABDKMath64x64.divu(lpAmount, supply) // fraction of total supply to burn
.mul(ABDKMath64x64.divu(1000000-swapFeePpm, 1000000)); // adjusted for fee
// Use LMSR view to compute single-asset payout and burned size-metric
(int128 payoutInternal, ) = lmsr.swapAmountsForBurn(inputTokenIndex, alpha);
// Convert payoutInternal -> uint (floor) to favor pool
amountOutUint = _internalToUintFloor(payoutInternal, bases[inputTokenIndex]);
require(amountOutUint > 0, "burnSwap: output zero");
// Compute gross payout (no swap fee) so we can determine token-side fee = gross - net
int128 alphaGross = ABDKMath64x64.divu(lpAmount, supply); // gross fraction (no swap fee)
(int128 payoutGrossInternal, ) = lmsr.swapAmountsForBurn(inputTokenIndex, alphaGross);
uint256 payoutGrossUint = _internalToUintFloor(payoutGrossInternal, bases[inputTokenIndex]);
uint256 feeTokenUint = (payoutGrossUint > amountOutUint) ? (payoutGrossUint - amountOutUint) : 0;
// Accrue protocol share (floor) from the token-side fee
if (protocolFeePpm > 0 && feeTokenUint > 0) {
uint256 protoShare = (feeTokenUint * protocolFeePpm) / 1_000_000;
if (protoShare > 0) {
protocolFeesOwed[inputTokenIndex] += protoShare;
}
}
// Transfer the payout to receiver
tokens[inputTokenIndex].safeTransfer(receiver, amountOutUint);
// Burn LP tokens from payer (authorization via allowance)
if (msg.sender != payer) {
uint256 allowed = _allowances[payer][msg.sender];
require(allowed >= lpAmount, "burnSwap: allowance insufficient");
_approve(payer, msg.sender, allowed - lpAmount);
}
_burn(payer, lpAmount);
// Update cached balances by reading on-chain balances for all tokens
int128[] memory newQInternal = new int128[](n);
for (uint256 idx = 0; idx < n; idx++) {
uint256 bal = IERC20(tokens[idx]).balanceOf(address(this));
cachedUintBalances[idx] = bal;
_recordCachedBalance(inputTokenIndex, bal);
newQInternal[idx] = _uintToInternalFloor(bal, bases[idx]);
}
// Emit BurnSwap with public-facing info only (do not expose ΔS or LP burned)
emit IPartyPool.BurnSwap(payer, receiver, inputTokenIndex, amountOutUint);
// If entire pool drained, deinit; else update proportionally
bool allZero = true;
for (uint256 idx = 0; idx < n; idx++) {
if (newQInternal[idx] != int128(0)) { allZero = false; break; }
}
if (allZero) {
lmsr.deinit();
} else {
lmsr.updateForProportionalChange(newQInternal);
}
emit IPartyPool.Burn(payer, receiver, new uint256[](n), lpAmount);
return amountOutUint;
}
/// @notice Pure version of _uintToInternalFloor for use in view functions
function _uintToInternalFloorPure(uint256 amount, uint256 base) internal pure returns (int128) {
// amount / base as Q64.64, floored
return ABDKMath64x64.divu(amount, base);
}
/// @notice Pure version of _internalToUintCeil for use in view functions
function _internalToUintCeilPure(int128 amount, uint256 base) internal pure returns (uint256) {
// Convert Q64.64 to uint with ceiling: ceil(amount * base)
// Use mulu which floors, then add remainder check for ceiling
uint256 floored = ABDKMath64x64.mulu(amount, base);
// Check if there's a fractional part by computing amount * base - floored
int128 baseQ64 = ABDKMath64x64.fromUInt(base);
int128 flooredQ64 = ABDKMath64x64.fromUInt(floored);
int128 product = amount.mul(baseQ64);
if (product > flooredQ64) {
return floored + 1; // Ceiling
}
return floored;
}
/// @notice Pure version of _internalToUintFloor for use in view functions
function _internalToUintFloorPure(int128 amount, uint256 base) internal pure returns (uint256) {
// Convert Q64.64 to uint with floor: floor(amount * base)
return ABDKMath64x64.mulu(amount, base);
}
/// @notice Pure version of _computeSizeMetric for use in view functions
function _computeSizeMetricPure(int128[] memory qInternal) internal pure returns (int128) {
int128 sum = int128(0);
for (uint256 i = 0; i < qInternal.length; i++) {
sum = sum.add(qInternal[i]);
}
return sum;
}
}

142
src/PartyPoolSwapImpl.sol Normal file
View File

@@ -0,0 +1,142 @@
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.30;
import {ABDKMath64x64} from "../lib/abdk-libraries-solidity/ABDKMath64x64.sol";
import {IERC20} from "../lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "../lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";
import {LMSRStabilized} from "./LMSRStabilized.sol";
import {PartyPoolBase} from "./PartyPoolBase.sol";
import {IPartyPool} from "./IPartyPool.sol";
/// @title PartyPoolSwapMintImpl - Implementation contract for swapMint and burnSwap functions
/// @notice This contract contains the swapMint and burnSwap implementation that will be called via delegatecall
/// @dev This contract inherits from PartyPoolBase to access storage and internal functions
contract PartyPoolSwapImpl is PartyPoolBase {
using ABDKMath64x64 for int128;
using LMSRStabilized for LMSRStabilized.State;
using SafeERC20 for IERC20;
function swapToLimitAmounts(
uint256 inputTokenIndex,
uint256 outputTokenIndex,
int128 limitPrice,
uint256[] memory bases,
int128 kappa,
int128[] memory qInternal,
uint256 swapFeePpm
) external pure returns (uint256 amountIn, uint256 amountOut, uint256 fee) {
// Compute internal maxima at the price limit
(int128 amountInInternal, int128 amountOutInternal) = LMSRStabilized.swapAmountsForPriceLimit(
bases.length, kappa, qInternal,
inputTokenIndex, outputTokenIndex, limitPrice);
// Convert input to uint (ceil) and output to uint (floor)
uint256 amountInUintNoFee = _internalToUintCeil(amountInInternal, bases[inputTokenIndex]);
require(amountInUintNoFee > 0, "swapToLimit: input zero");
fee = 0;
amountIn = amountInUintNoFee;
if (swapFeePpm > 0) {
fee = _ceilFee(amountInUintNoFee, swapFeePpm);
amountIn += fee;
}
amountOut = _internalToUintFloor(amountOutInternal, bases[outputTokenIndex]);
require(amountOut > 0, "swapToLimit: output zero");
}
function swapToLimit(
address payer,
address receiver,
uint256 inputTokenIndex,
uint256 outputTokenIndex,
int128 limitPrice,
uint256 deadline,
uint256 swapFeePpm,
uint256 protocolFeePpm
) external returns (uint256 amountInUsed, uint256 amountOut, uint256 fee) {
uint256 n = tokens.length;
require(inputTokenIndex < n && outputTokenIndex < n, "swapToLimit: idx");
require(limitPrice > int128(0), "swapToLimit: limit <= 0");
require(deadline == 0 || block.timestamp <= deadline, "swapToLimit: deadline exceeded");
// Read previous balances for affected assets
uint256 prevBalI = IERC20(tokens[inputTokenIndex]).balanceOf(address(this));
uint256 prevBalJ = IERC20(tokens[outputTokenIndex]).balanceOf(address(this));
// Compute amounts using the same path as views
(uint256 totalTransferAmount, uint256 amountOutUint, int128 amountInInternalMax, int128 amountOutInternal, uint256 amountInUsedUint, uint256 feeUint) =
_quoteSwapToLimit(inputTokenIndex, outputTokenIndex, limitPrice, swapFeePpm);
// Transfer the exact amount needed from payer and require exact receipt (revert on fee-on-transfer)
tokens[inputTokenIndex].safeTransferFrom(payer, address(this), totalTransferAmount);
uint256 balIAfter = IERC20(tokens[inputTokenIndex]).balanceOf(address(this));
require(balIAfter == prevBalI + totalTransferAmount, "swapToLimit: non-standard tokenIn");
// Transfer output to receiver and verify exact decrease
tokens[outputTokenIndex].safeTransfer(receiver, amountOutUint);
uint256 balJAfter = IERC20(tokens[outputTokenIndex]).balanceOf(address(this));
require(balJAfter == prevBalJ - amountOutUint, "swapToLimit: non-standard tokenOut");
// Accrue protocol share (floor) from the fee on input token
if (protocolFeePpm > 0 && feeUint > 0 ) {
uint256 protoShare = (feeUint * protocolFeePpm) / 1_000_000; // floor
if (protoShare > 0) {
protocolFeesOwed[inputTokenIndex] += protoShare;
}
}
// Update caches to effective balances
_recordCachedBalance(inputTokenIndex, balIAfter);
_recordCachedBalance(outputTokenIndex, balJAfter);
// Apply swap to LMSR state with the internal amounts
lmsr.applySwap(inputTokenIndex, outputTokenIndex, amountInInternalMax, amountOutInternal);
// Maintain original event semantics (logs input without fee)
emit IPartyPool.Swap(payer, receiver, tokens[inputTokenIndex], tokens[outputTokenIndex], amountInUsedUint, amountOutUint);
return (amountInUsedUint, amountOutUint, feeUint);
}
/// @notice Internal quote for swap-to-limit that mirrors swapToLimit() rounding and fee application
/// @dev Computes the input required to reach limitPrice and the resulting output; all rounding matches swapToLimit.
/// @return grossIn amount to transfer in (inclusive of fee), amountOutUint output amount (uint),
/// amountInInternal and amountOutInternal (64.64), amountInUintNoFee input amount excluding fee (uint),
/// feeUint fee taken from the gross input (uint)
function _quoteSwapToLimit(
uint256 inputTokenIndex,
uint256 outputTokenIndex,
int128 limitPrice,
uint256 swapFeePpm
) internal view
returns (
uint256 grossIn,
uint256 amountOutUint,
int128 amountInInternal,
int128 amountOutInternal,
uint256 amountInUintNoFee,
uint256 feeUint
)
{
// Compute internal maxima at the price limit
(amountInInternal, amountOutInternal) = lmsr.swapAmountsForPriceLimit(inputTokenIndex, outputTokenIndex, limitPrice);
// Convert input to uint (ceil) and output to uint (floor)
amountInUintNoFee = _internalToUintCeil(amountInInternal, bases[inputTokenIndex]);
require(amountInUintNoFee > 0, "swapToLimit: input zero");
feeUint = 0;
grossIn = amountInUintNoFee;
if (swapFeePpm > 0) {
feeUint = _ceilFee(amountInUintNoFee, swapFeePpm);
grossIn += feeUint;
}
amountOutUint = _internalToUintFloor(amountOutInternal, bases[outputTokenIndex]);
require(amountOutUint > 0, "swapToLimit: output zero");
}
}

View File

@@ -1,355 +0,0 @@
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.30;
import "@abdk/ABDKMath64x64.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "./PartyPoolBase.sol";
import "./LMSRStabilized.sol";
/// @title PartyPoolSwapMintImpl - Implementation contract for swapMint and burnSwap functions
/// @notice This contract contains the swapMint and burnSwap implementation that will be called via delegatecall
/// @dev This contract inherits from PartyPoolBase to access storage and internal functions
contract PartyPoolSwapMintImpl is PartyPoolBase {
using ABDKMath64x64 for int128;
using LMSRStabilized for LMSRStabilized.State;
using SafeERC20 for IERC20;
// Events that mirror the main contract events
event SwapMint(address indexed payer, address indexed receiver, uint256 indexed inputTokenIndex, uint256 totalTransfer, uint256 amountInUint, uint256 feeUintActual);
event BurnSwap(address indexed payer, address indexed receiver, uint256 indexed inputTokenIndex, uint256 amountOutUint);
event Mint(address indexed payer, address indexed receiver, uint256[] depositAmounts, uint256 lpMinted);
event Burn(address indexed payer, address indexed receiver, uint256[] withdrawAmounts, uint256 lpBurned);
/// @notice Single-token mint: deposit a single token, charge swap-LMSR cost, and mint LP.
/// @dev swapMint executes as an exact-in planned swap followed by proportional scaling of qInternal.
/// The function emits SwapMint (gross, net, fee) and also emits Mint for LP issuance.
/// @param payer who transfers the input token
/// @param receiver who receives the minted LP tokens
/// @param inputTokenIndex index of the input token
/// @param maxAmountIn maximum uint token input (inclusive of fee)
/// @param deadline optional deadline
/// @param swapFeePpm fee in parts-per-million for this pool
/// @return lpMinted actual LP minted (uint)
function swapMint(
address payer,
address receiver,
uint256 inputTokenIndex,
uint256 maxAmountIn,
uint256 deadline,
uint256 swapFeePpm
) external returns (uint256 lpMinted, uint256 feeUintActual) {
uint256 n = tokens.length;
require(inputTokenIndex < n, "swapMint: idx");
require(maxAmountIn > 0, "swapMint: input zero");
require(deadline == 0 || block.timestamp <= deadline, "swapMint: deadline");
require(lmsr.nAssets > 0, "swapMint: uninit pool");
// compute fee on gross maxAmountIn to get an initial net estimate (we'll recompute based on actual used)
(, uint256 netUintGuess) = _computeFee(maxAmountIn, swapFeePpm);
// Convert the net guess to internal (floor)
int128 netInternalGuess = _uintToInternalFloor(netUintGuess, bases[inputTokenIndex]);
require(netInternalGuess > int128(0), "swapMint: input too small after fee");
// Use LMSR view to determine actual internal consumed and size-increase (ΔS) for mint
(int128 amountInInternalUsed, int128 sizeIncreaseInternal) = lmsr.swapAmountsForMint(inputTokenIndex, netInternalGuess);
// amountInInternalUsed may be <= netInternalGuess. Convert to uint (ceil) to determine actual transfer
uint256 amountInUint = _internalToUintCeil(amountInInternalUsed, bases[inputTokenIndex]);
require(amountInUint > 0, "swapMint: input zero after internal conversion");
// Compute fee on the actual used input and total transfer amount (ceiling)
feeUintActual = _ceilFee(amountInUint, swapFeePpm);
uint256 totalTransfer = amountInUint + feeUintActual;
require(totalTransfer > 0 && totalTransfer <= maxAmountIn, "swapMint: transfer exceeds max");
// Record pre-balance and transfer tokens from payer, require exact receipt (revert on fee-on-transfer)
uint256 prevBalI = IERC20(tokens[inputTokenIndex]).balanceOf(address(this));
tokens[inputTokenIndex].safeTransferFrom(payer, address(this), totalTransfer);
uint256 balIAfter = IERC20(tokens[inputTokenIndex]).balanceOf(address(this));
require(balIAfter == prevBalI + totalTransfer, "swapMint: non-standard tokenIn");
// Update cached uint balances for token inputTokenIndex (implementation writes onchain value; wrapper will set effective)
cachedUintBalances[inputTokenIndex] = balIAfter;
// Compute old and new scaled size metrics to determine LP minted
int128 oldTotal = _computeSizeMetric(lmsr.qInternal);
require(oldTotal > int128(0), "swapMint: zero total");
uint256 oldScaled = ABDKMath64x64.mulu(oldTotal, LP_SCALE);
int128 newTotal = oldTotal.add(sizeIncreaseInternal);
uint256 newScaled = ABDKMath64x64.mulu(newTotal, LP_SCALE);
uint256 actualLpToMint;
// Use natural ERC20 function since base contract inherits from ERC20
uint256 currentSupply = _totalSupply;
if (currentSupply == 0) {
// If somehow supply zero (shouldn't happen as lmsr.nAssets>0), mint newScaled
actualLpToMint = newScaled;
} else {
require(oldScaled > 0, "swapMint: oldScaled zero");
uint256 delta = (newScaled > oldScaled) ? (newScaled - oldScaled) : 0;
if (delta > 0) {
// floor truncation rounds in favor of pool
actualLpToMint = (currentSupply * delta) / oldScaled;
} else {
actualLpToMint = 0;
}
}
require(actualLpToMint > 0, "swapMint: zero LP minted");
// Update LMSR internal state: scale qInternal proportionally by newTotal/oldTotal
int128[] memory newQInternal = new int128[](n);
for (uint256 idx = 0; idx < n; idx++) {
// newQInternal[idx] = qInternal[idx] * (newTotal / oldTotal)
newQInternal[idx] = lmsr.qInternal[idx].mul(newTotal).div(oldTotal);
}
// Update cached internal and kappa via updateForProportionalChange
lmsr.updateForProportionalChange(newQInternal);
// Use natural ERC20 function since base contract inherits from ERC20
_mint(receiver, actualLpToMint);
// Emit SwapMint event with gross transfer, net input and fee (planned exact-in)
emit SwapMint(payer, receiver, inputTokenIndex, totalTransfer, amountInUint, feeUintActual);
// Emit standard Mint event which records deposit amounts and LP minted
emit Mint(payer, receiver, new uint256[](n), actualLpToMint);
// Note: depositAmounts array omitted (empty) since swapMint uses single-token input
lpMinted = actualLpToMint;
return (lpMinted, feeUintActual);
}
/// @notice Calculate the amounts for a swap mint operation
/// @dev This is a pure view function that computes swap mint amounts from provided state
/// @param inputTokenIndex index of the input token
/// @param maxAmountIn maximum amount of token to deposit (inclusive of fee)
/// @param swapFeePpm fee in parts-per-million
/// @param lmsrState current LMSR state
/// @param bases_ scaling bases for each token
/// @param totalSupply_ current total LP token supply
/// @return amountInUsed actual input amount used (excluding fee)
/// @return fee fee amount charged
/// @return lpMinted LP tokens that would be minted
function swapMintAmounts(
uint256 inputTokenIndex,
uint256 maxAmountIn,
uint256 swapFeePpm,
LMSRStabilized.State memory lmsrState,
uint256[] memory bases_,
uint256 totalSupply_
) public pure returns (uint256 amountInUsed, uint256 fee, uint256 lpMinted) {
require(inputTokenIndex < bases_.length, "swapMintAmounts: idx");
require(maxAmountIn > 0, "swapMintAmounts: input zero");
require(lmsrState.nAssets > 0, "swapMintAmounts: uninit pool");
// Compute fee on gross maxAmountIn to get an initial net estimate
uint256 feeGuess = 0;
uint256 netUintGuess = maxAmountIn;
if (swapFeePpm > 0) {
feeGuess = (maxAmountIn * swapFeePpm + 999999) / 1000000; // ceil fee
netUintGuess = maxAmountIn - feeGuess;
}
// Convert the net guess to internal (floor)
int128 netInternalGuess = _uintToInternalFloorPure(netUintGuess, bases_[inputTokenIndex]);
require(netInternalGuess > int128(0), "swapMintAmounts: input too small after fee");
// Use LMSR view to determine actual internal consumed and size-increase (ΔS) for mint
(int128 amountInInternalUsed, int128 sizeIncreaseInternal) =
LMSRStabilized.swapAmountsForMint(lmsrState.nAssets, lmsrState.kappa, lmsrState.qInternal,
inputTokenIndex, netInternalGuess);
// amountInInternalUsed may be <= netInternalGuess. Convert to uint (ceil) to determine actual transfer
amountInUsed = _internalToUintCeilPure(amountInInternalUsed, bases_[inputTokenIndex]);
require(amountInUsed > 0, "swapMintAmounts: input zero after internal conversion");
// Compute fee on the actual used input (ceiling)
fee = 0;
if (swapFeePpm > 0) {
fee = (amountInUsed * swapFeePpm + 999999) / 1000000; // ceil fee
}
uint256 totalTransfer = amountInUsed + fee;
require(totalTransfer > 0 && totalTransfer <= maxAmountIn, "swapMintAmounts: transfer exceeds max");
// Compute old and new scaled size metrics to determine LP minted
int128 oldTotal = _computeSizeMetricPure(lmsrState.qInternal);
require(oldTotal > int128(0), "swapMintAmounts: zero total");
uint256 oldScaled = ABDKMath64x64.mulu(oldTotal, LP_SCALE);
int128 newTotal = oldTotal.add(sizeIncreaseInternal);
uint256 newScaled = ABDKMath64x64.mulu(newTotal, LP_SCALE);
if (totalSupply_ == 0) {
// If somehow supply zero (shouldn't happen as lmsr.nAssets>0), mint newScaled
lpMinted = newScaled;
} else {
require(oldScaled > 0, "swapMintAmounts: oldScaled zero");
uint256 delta = (newScaled > oldScaled) ? (newScaled - oldScaled) : 0;
if (delta > 0) {
// floor truncation rounds in favor of pool
lpMinted = (totalSupply_ * delta) / oldScaled;
} else {
lpMinted = 0;
}
}
require(lpMinted > 0, "swapMintAmounts: zero LP minted");
}
/// @notice Calculate the amounts for a burn swap operation
/// @dev This is a pure view function that computes burn swap amounts from provided state
/// @param lpAmount amount of LP tokens to burn
/// @param inputTokenIndex index of target asset to receive
/// @param swapFeePpm fee in parts-per-million
/// @param lmsrState current LMSR state
/// @param bases_ scaling bases for each token
/// @param totalSupply_ current total LP token supply
/// @return amountOut amount of target asset that would be received
function burnSwapAmounts(
uint256 lpAmount,
uint256 inputTokenIndex,
uint256 swapFeePpm,
LMSRStabilized.State memory lmsrState,
uint256[] memory bases_,
uint256 totalSupply_
) public pure returns (uint256 amountOut) {
require(inputTokenIndex < bases_.length, "burnSwapAmounts: idx");
require(lpAmount > 0, "burnSwapAmounts: zero lp");
require(totalSupply_ > 0, "burnSwapAmounts: empty supply");
// alpha = lpAmount / supply as Q64.64
int128 alpha = ABDKMath64x64.divu(lpAmount, totalSupply_) // fraction of total supply to burn
.mul(ABDKMath64x64.divu(1000000-swapFeePpm, 1000000)); // adjusted for fee
// Use LMSR view to compute single-asset payout and burned size-metric
(int128 payoutInternal, ) = LMSRStabilized.swapAmountsForBurn(lmsrState.nAssets, lmsrState.kappa, lmsrState.qInternal,
inputTokenIndex, alpha);
// Convert payoutInternal -> uint (floor) to favor pool
amountOut = _internalToUintFloorPure(payoutInternal, bases_[inputTokenIndex]);
require(amountOut > 0, "burnSwapAmounts: output zero");
}
/// @notice Burn LP tokens then swap the redeemed proportional basket into a single asset `inputTokenIndex` and send to receiver.
/// @dev The function burns LP tokens (authorization via allowance if needed), sends the single-asset payout and updates LMSR state.
/// @param payer who burns LP tokens
/// @param receiver who receives the single asset
/// @param lpAmount amount of LP tokens to burn
/// @param inputTokenIndex index of target asset to receive
/// @param deadline optional deadline
/// @param swapFeePpm fee in parts-per-million for this pool (may be used for future fee logic)
/// @return amountOutUint uint amount of asset i sent to receiver
function burnSwap(
address payer,
address receiver,
uint256 lpAmount,
uint256 inputTokenIndex,
uint256 deadline,
uint256 swapFeePpm
) external returns (uint256 amountOutUint, uint256 feeTokenUint) {
uint256 n = tokens.length;
require(inputTokenIndex < n, "burnSwap: idx");
require(lpAmount > 0, "burnSwap: zero lp");
require(deadline == 0 || block.timestamp <= deadline, "burnSwap: deadline");
uint256 supply = _totalSupply;
require(supply > 0, "burnSwap: empty supply");
require(_balances[payer] >= lpAmount, "burnSwap: insufficient LP");
// alpha = lpAmount / supply as Q64.64 (adjusted for fee)
int128 alpha = ABDKMath64x64.divu(lpAmount, supply) // fraction of total supply to burn
.mul(ABDKMath64x64.divu(1000000-swapFeePpm, 1000000)); // adjusted for fee
// Use LMSR view to compute single-asset payout and burned size-metric
(int128 payoutInternal, ) = lmsr.swapAmountsForBurn(inputTokenIndex, alpha);
// Convert payoutInternal -> uint (floor) to favor pool
amountOutUint = _internalToUintFloor(payoutInternal, bases[inputTokenIndex]);
require(amountOutUint > 0, "burnSwap: output zero");
// Compute gross payout (no swap fee) so we can determine token-side fee = gross - net
int128 alphaGross = ABDKMath64x64.divu(lpAmount, supply); // gross fraction (no swap fee)
(int128 payoutGrossInternal, ) = lmsr.swapAmountsForBurn(inputTokenIndex, alphaGross);
uint256 payoutGrossUint = _internalToUintFloor(payoutGrossInternal, bases[inputTokenIndex]);
feeTokenUint = (payoutGrossUint > amountOutUint) ? (payoutGrossUint - amountOutUint) : 0;
// Transfer the payout to receiver
tokens[inputTokenIndex].safeTransfer(receiver, amountOutUint);
// Burn LP tokens from payer (authorization via allowance)
if (msg.sender != payer) {
uint256 allowed = _allowances[payer][msg.sender];
require(allowed >= lpAmount, "burnSwap: allowance insufficient");
_approve(payer, msg.sender, allowed - lpAmount);
}
_burn(payer, lpAmount);
// Update cached balances by reading on-chain balances for all tokens
int128[] memory newQInternal = new int128[](n);
for (uint256 idx = 0; idx < n; idx++) {
uint256 bal = IERC20(tokens[idx]).balanceOf(address(this));
// implementation writes raw onchain values; wrapper will set effective cached values
cachedUintBalances[idx] = bal;
newQInternal[idx] = _uintToInternalFloor(bal, bases[idx]);
}
// Emit BurnSwap with public-facing info only (do not expose ΔS or LP burned)
emit BurnSwap(payer, receiver, inputTokenIndex, amountOutUint);
// If entire pool drained, deinit; else update proportionally
bool allZero = true;
for (uint256 idx = 0; idx < n; idx++) {
if (newQInternal[idx] != int128(0)) { allZero = false; break; }
}
if (allZero) {
lmsr.deinit();
} else {
lmsr.updateForProportionalChange(newQInternal);
}
emit Burn(payer, receiver, new uint256[](n), lpAmount);
return (amountOutUint, feeTokenUint);
}
/// @notice Pure version of _uintToInternalFloor for use in view functions
function _uintToInternalFloorPure(uint256 amount, uint256 base) internal pure returns (int128) {
// amount / base as Q64.64, floored
return ABDKMath64x64.divu(amount, base);
}
/// @notice Pure version of _internalToUintCeil for use in view functions
function _internalToUintCeilPure(int128 amount, uint256 base) internal pure returns (uint256) {
// Convert Q64.64 to uint with ceiling: ceil(amount * base)
// Use mulu which floors, then add remainder check for ceiling
uint256 floored = ABDKMath64x64.mulu(amount, base);
// Check if there's a fractional part by computing amount * base - floored
int128 baseQ64 = ABDKMath64x64.fromUInt(base);
int128 flooredQ64 = ABDKMath64x64.fromUInt(floored);
int128 product = amount.mul(baseQ64);
if (product > flooredQ64) {
return floored + 1; // Ceiling
}
return floored;
}
/// @notice Pure version of _internalToUintFloor for use in view functions
function _internalToUintFloorPure(int128 amount, uint256 base) internal pure returns (uint256) {
// Convert Q64.64 to uint with floor: floor(amount * base)
return ABDKMath64x64.mulu(amount, base);
}
/// @notice Pure version of _computeSizeMetric for use in view functions
function _computeSizeMetricPure(int128[] memory qInternal) internal pure returns (int128) {
int128 sum = int128(0);
for (uint256 i = 0; i < qInternal.length; i++) {
sum = sum.add(qInternal[i]);
}
return sum;
}
}

View File

@@ -1,12 +1,20 @@
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.30;
import "forge-std/Test.sol";
import "../src/LMSRStabilized.sol";
import "../src/PartyPlanner.sol";
import "../src/PartyPool.sol";
import {CommonBase} from "../lib/forge-std/src/Base.sol";
import {StdAssertions} from "../lib/forge-std/src/StdAssertions.sol";
import {StdChains} from "../lib/forge-std/src/StdChains.sol";
import {StdCheats, StdCheatsSafe} from "../lib/forge-std/src/StdCheats.sol";
import {StdUtils} from "../lib/forge-std/src/StdUtils.sol";
import {Test} from "../lib/forge-std/src/Test.sol";
import {ERC20} from "../lib/openzeppelin-contracts/contracts/token/ERC20/ERC20.sol";
import {IERC20} from "../lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
import {Deploy} from "../src/Deploy.sol";
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {IPartyPool} from "../src/IPartyPool.sol";
import {LMSRStabilized} from "../src/LMSRStabilized.sol";
import {PartyPlanner} from "../src/PartyPlanner.sol";
import {PartyPool} from "../src/PartyPool.sol";
import {MockERC20} from "./PartyPlanner.t.sol";
// Mock ERC20 token for testing
contract MockERC20 is ERC20 {
@@ -88,7 +96,7 @@ contract PartyPlannerTest is Test {
// Compute kappa then create pool via kappa overload
int128 computedKappa = LMSRStabilized.computeKappaFromSlippage(tokens.length, tradeFrac, targetSlippage);
(PartyPool pool, uint256 lpAmount) = planner.newPool(
(IPartyPool pool, uint256 lpAmount) = planner.newPool(
name,
symbol,
tokens,
@@ -117,7 +125,7 @@ contract PartyPlannerTest is Test {
assertEq(planner.poolsByTokenCount(IERC20(address(tokenB))), initialTokenBCount + 1, "TokenB pool count should increase");
// Verify pools can be retrieved
PartyPool[] memory allPools = planner.getAllPools(0, 10);
IPartyPool[] memory allPools = planner.getAllPools(0, 10);
bool poolFound = false;
for (uint256 i = 0; i < allPools.length; i++) {
if (allPools[i] == pool) {
@@ -128,7 +136,7 @@ contract PartyPlannerTest is Test {
assertTrue(poolFound, "Created pool should be in getAllPools result");
// Verify pool appears in token-specific queries
PartyPool[] memory tokenAPools = planner.getPoolsByToken(IERC20(address(tokenA)), 0, 10);
IPartyPool[] memory tokenAPools = planner.getPoolsByToken(IERC20(address(tokenA)), 0, 10);
bool poolInTokenA = false;
for (uint256 i = 0; i < tokenAPools.length; i++) {
if (tokenAPools[i] == pool) {
@@ -138,7 +146,7 @@ contract PartyPlannerTest is Test {
}
assertTrue(poolInTokenA, "Pool should be indexed under tokenA");
PartyPool[] memory tokenBPools = planner.getPoolsByToken(IERC20(address(tokenB)), 0, 10);
IPartyPool[] memory tokenBPools = planner.getPoolsByToken(IERC20(address(tokenB)), 0, 10);
bool poolInTokenB = false;
for (uint256 i = 0; i < tokenBPools.length; i++) {
if (tokenBPools[i] == pool) {
@@ -167,7 +175,7 @@ contract PartyPlannerTest is Test {
deposits1[1] = INITIAL_DEPOSIT_AMOUNT;
int128 kappa1 = LMSRStabilized.computeKappaFromSlippage(tokens1.length, int128((1 << 64) - 1), int128(1 << 62));
(PartyPool pool1,) = planner.newPool(
(IPartyPool pool1,) = planner.newPool(
"Pool 1", "LP1", tokens1, bases1,
kappa1, 3000, 5000, false,
payer, receiver, deposits1, 1000e18, 0
@@ -187,7 +195,7 @@ contract PartyPlannerTest is Test {
deposits2[1] = INITIAL_DEPOSIT_AMOUNT / 1e12; // Adjust for 6 decimals
int128 kappa2 = LMSRStabilized.computeKappaFromSlippage(tokens2.length, int128((1 << 64) - 1), int128(1 << 62));
(PartyPool pool2,) = planner.newPool(
(IPartyPool pool2,) = planner.newPool(
"Pool 2", "LP2", tokens2, bases2,
kappa2, 3000, 5000, false,
payer, receiver, deposits2, 1000e18, 0
@@ -203,7 +211,7 @@ contract PartyPlannerTest is Test {
assertEq(planner.poolsByTokenCount(IERC20(address(tokenC))), 1, "TokenC should be in 1 pool");
// Verify tokenB appears in both pools
PartyPool[] memory tokenBPools = planner.getPoolsByToken(IERC20(address(tokenB)), 0, 10);
IPartyPool[] memory tokenBPools = planner.getPoolsByToken(IERC20(address(tokenB)), 0, 10);
assertEq(tokenBPools.length, 2, "TokenB should have 2 pools");
bool pool1Found = false;
@@ -274,7 +282,7 @@ contract PartyPlannerTest is Test {
function test_poolIndexing_Pagination() public {
// Create multiple pools for pagination testing
uint256 numPools = 5;
PartyPool[] memory createdPools = new PartyPool[](numPools);
IPartyPool[] memory createdPools = new IPartyPool[](numPools);
for (uint256 i = 0; i < numPools; i++) {
IERC20[] memory tokens = new IERC20[](2);
@@ -290,7 +298,7 @@ contract PartyPlannerTest is Test {
deposits[1] = INITIAL_DEPOSIT_AMOUNT;
int128 kappaLoop = LMSRStabilized.computeKappaFromSlippage(tokens.length, int128((1 << 64) - 1), int128(1 << 62));
(PartyPool pool,) = planner.newPool(
(IPartyPool pool,) = planner.newPool(
string(abi.encodePacked("Pool ", vm.toString(i))),
string(abi.encodePacked("LP", vm.toString(i))),
tokens, bases,
@@ -304,19 +312,19 @@ contract PartyPlannerTest is Test {
assertEq(planner.poolCount(), numPools, "Should have created all pools");
// Test pagination - get first 3 pools
PartyPool[] memory page1 = planner.getAllPools(0, 3);
IPartyPool[] memory page1 = planner.getAllPools(0, 3);
assertEq(page1.length, 3, "First page should have 3 pools");
// Test pagination - get next 2 pools
PartyPool[] memory page2 = planner.getAllPools(3, 3);
IPartyPool[] memory page2 = planner.getAllPools(3, 3);
assertEq(page2.length, 2, "Second page should have 2 pools");
// Test pagination - offset beyond bounds
PartyPool[] memory emptyPage = planner.getAllPools(10, 3);
IPartyPool[] memory emptyPage = planner.getAllPools(10, 3);
assertEq(emptyPage.length, 0, "Should return empty array for out of bounds offset");
// Verify all pools are accessible through pagination
PartyPool[] memory allPools = planner.getAllPools(0, 10);
IPartyPool[] memory allPools = planner.getAllPools(0, 10);
assertEq(allPools.length, numPools, "Should return all pools");
for (uint256 i = 0; i < numPools; i++) {