swapMintImpl moved into mintImpl

This commit is contained in:
tim
2025-10-03 13:42:28 -04:00
parent 2e675bceb9
commit b126c52c7c
4 changed files with 393 additions and 390 deletions

View File

@@ -15,6 +15,7 @@ import {PartyPoolMintImpl} from "./PartyPoolMintImpl.sol";
import {PartyPoolSwapMintImpl} from "./PartyPoolSwapMintImpl.sol";
import {ERC20External} from "./ERC20External.sol";
/// @title PartyPool - LMSR-backed multi-asset pool with LP ERC20 token
/// @notice A multi-asset liquidity pool backed by the LMSRStabilized pricing model.
/// The pool issues an ERC20 LP token representing proportional ownership.
@@ -250,13 +251,6 @@ contract PartyPool is PartyPoolBase, ERC20External, IPartyPool {
}
}
/// @dev Helper to record cached balances as effectiveBalance = onchain - owed. Reverts if owed > onchain.
function _recordCachedBalance(uint256 idx, uint256 onchainBal) internal {
uint256 owed = protocolFeesOwed[idx];
require(onchainBal >= owed, "balance < protocol owed");
cachedUintBalances[idx] = onchainBal - owed;
}
/// @notice Swap input token i -> token j. Payer must approve token i.
/// @dev This function transfers the exact gross input (including fee) from payer and sends the computed output to receiver.
/// Non-standard tokens (fee-on-transfer, rebasers) are rejected via balance checks.
@@ -499,7 +493,7 @@ contract PartyPool is PartyPoolBase, ERC20External, IPartyPool {
function swapMintAmounts(uint256 inputTokenIndex, uint256 maxAmountIn) external view
returns (uint256 amountInUsed, uint256 fee, uint256 lpMinted) {
return SWAP_MINT_IMPL.swapMintAmounts(
return MINT_IMPL.swapMintAmounts(
inputTokenIndex,
maxAmountIn,
SWAP_FEE_PPM,
@@ -511,7 +505,7 @@ contract PartyPool is PartyPoolBase, ERC20External, IPartyPool {
function burnSwapAmounts(uint256 lpAmount, uint256 inputTokenIndex) external view
returns (uint256 amountOut) {
return SWAP_MINT_IMPL.burnSwapAmounts(
return MINT_IMPL.burnSwapAmounts(
lpAmount,
inputTokenIndex,
SWAP_FEE_PPM,
@@ -537,32 +531,18 @@ contract PartyPool is PartyPoolBase, ERC20External, IPartyPool {
uint256 deadline
) external returns (uint256 lpMinted) {
bytes memory data = abi.encodeWithSignature(
"swapMint(address,address,uint256,uint256,uint256,uint256)",
"swapMint(address,address,uint256,uint256,uint256,uint256,uint256)",
payer,
receiver,
inputTokenIndex,
maxAmountIn,
deadline,
SWAP_FEE_PPM
SWAP_FEE_PPM,
PROTOCOL_FEE_PPM
);
bytes memory result = Address.functionDelegateCall(address(SWAP_MINT_IMPL), data);
// New ABI: implementation returns (uint256 lpMinted, uint256 feeUintActual)
(uint256 lpOut, uint256 feeUintActual) = abi.decode(result, (uint256, uint256));
// Accrue protocol share (floor) from the fee on the input token
if (PROTOCOL_FEE_PPM > 0 && feeUintActual > 0 && PROTOCOL_FEE_ADDRESS != address(0)) {
uint256 protoShare = (feeUintActual * PROTOCOL_FEE_PPM) / 1_000_000;
if (protoShare > 0) {
protocolFeesOwed[inputTokenIndex] += protoShare;
}
}
// Update cached balance for the input token to effective onchain - owed
uint256 bal = IERC20(tokens[inputTokenIndex]).balanceOf(address(this));
_recordCachedBalance(inputTokenIndex, bal);
return lpOut;
bytes memory result = Address.functionDelegateCall(address(MINT_IMPL), data);
return abi.decode(result, (uint256));
}
/// @notice Burn LP tokens then swap the redeemed proportional basket into a single asset `inputTokenIndex` and send to receiver.
@@ -581,32 +561,18 @@ contract PartyPool is PartyPoolBase, ERC20External, IPartyPool {
uint256 deadline
) external returns (uint256 amountOutUint) {
bytes memory data = abi.encodeWithSignature(
"burnSwap(address,address,uint256,uint256,uint256,uint256)",
"burnSwap(address,address,uint256,uint256,uint256,uint256,uint256)",
payer,
receiver,
lpAmount,
inputTokenIndex,
deadline,
SWAP_FEE_PPM
SWAP_FEE_PPM,
PROTOCOL_FEE_PPM
);
bytes memory result = Address.functionDelegateCall(address(SWAP_MINT_IMPL), data);
// New ABI: implementation returns (uint256 amountOutUint, uint256 feeTokenUint)
(uint256 outAmt, uint256 feeTokenUint) = abi.decode(result, (uint256, uint256));
// Accrue protocol share (floor) from the token-side fee computed by implementation
if (PROTOCOL_FEE_PPM > 0 && feeTokenUint > 0 && PROTOCOL_FEE_ADDRESS != address(0)) {
uint256 protoShare = (feeTokenUint * PROTOCOL_FEE_PPM) / 1_000_000;
if (protoShare > 0) {
protocolFeesOwed[inputTokenIndex] += protoShare;
}
}
// Update cached balance for the target token to effective onchain - owed
uint256 bal = IERC20(tokens[inputTokenIndex]).balanceOf(address(this));
_recordCachedBalance(inputTokenIndex, bal);
return outAmt;
bytes memory result = Address.functionDelegateCall(address(MINT_IMPL), data);
return abi.decode(result, (uint256));
}

View File

@@ -116,4 +116,12 @@ abstract contract PartyPoolBase is ERC20Internal, ReentrancyGuard {
}
return total;
}
/// @dev Helper to record cached balances as effectiveBalance = onchain - owed. Reverts if owed > onchain.
function _recordCachedBalance(uint256 idx, uint256 onchainBal) internal {
uint256 owed = protocolFeesOwed[idx];
require(onchainBal >= owed, "balance < protocol owed");
cachedUintBalances[idx] = onchainBal - owed;
}
}

View File

@@ -1,12 +1,13 @@
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.30;
import "@abdk/ABDKMath64x64.sol";
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "./PartyPoolBase.sol";
import "./LMSRStabilized.sol";
import {PartyPool} from "./PartyPool.sol";
import {ABDKMath64x64} from "../lib/abdk-libraries-solidity/ABDKMath64x64.sol";
import {IERC20} from "../lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
import {SafeERC20} from "../lib/openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";
import {ERC20Internal} from "./ERC20Internal.sol";
import {IPartyPool} from "./IPartyPool.sol";
import {LMSRStabilized} from "./LMSRStabilized.sol";
import {PartyPoolBase} from "./PartyPoolBase.sol";
/// @title PartyPoolMintImpl - Implementation contract for mint and burn functions
/// @notice This contract contains the mint and burn implementation that will be called via delegatecall
@@ -20,6 +21,10 @@ contract PartyPoolMintImpl is PartyPoolBase {
event Mint(address indexed payer, address indexed receiver, uint256[] depositAmounts, uint256 lpMinted);
event Burn(address indexed payer, address indexed receiver, uint256[] withdrawAmounts, uint256 lpBurned);
//
// Initialization Mint
//
function initialMint(address receiver, uint256 lpTokens, int128 KAPPA) external
returns (uint256 lpMinted) {
uint256 n = tokens.length;
@@ -55,6 +60,11 @@ contract PartyPoolMintImpl is PartyPoolBase {
emit Mint(address(0), receiver, depositAmounts, lpMinted);
}
//
// Regular Mint and Burn
//
function mint(address payer, address receiver, uint256 lpTokenAmount, uint256 deadline) external returns (uint256 lpMinted) {
require(deadline == 0 || block.timestamp <= deadline, "mint: deadline exceeded");
uint256 n = tokens.length;
@@ -192,7 +202,8 @@ contract PartyPoolMintImpl is PartyPoolBase {
emit Burn(payer, receiver, withdrawAmounts, lpAmount);
}
function mintAmounts(uint256 lpTokenAmount, uint256 numAssets, uint256 totalSupply, uint256[] memory cachedUintBalances) public pure
function mintAmounts(uint256 lpTokenAmount,
uint256 numAssets, uint256 totalSupply, uint256[] memory cachedUintBalances) public pure
returns (uint256[] memory depositAmounts) {
depositAmounts = new uint256[](numAssets);
@@ -232,4 +243,357 @@ contract PartyPoolMintImpl is PartyPoolBase {
return withdrawAmounts;
}
//
// Swap-Mint and Burn-Swap
//
/// @notice Single-token mint: deposit a single token, charge swap-LMSR cost, and mint LP.
/// @dev swapMint executes as an exact-in planned swap followed by proportional scaling of qInternal.
/// The function emits SwapMint (gross, net, fee) and also emits Mint for LP issuance.
/// @param payer who transfers the input token
/// @param receiver who receives the minted LP tokens
/// @param inputTokenIndex index of the input token
/// @param maxAmountIn maximum uint token input (inclusive of fee)
/// @param deadline optional deadline
/// @param swapFeePpm fee in parts-per-million for this pool
/// @return lpMinted actual LP minted (uint)
function swapMint(
address payer,
address receiver,
uint256 inputTokenIndex,
uint256 maxAmountIn,
uint256 deadline,
uint256 swapFeePpm,
uint256 protocolFeePpm
) external returns (uint256 lpMinted) {
uint256 n = tokens.length;
require(inputTokenIndex < n, "swapMint: idx");
require(maxAmountIn > 0, "swapMint: input zero");
require(deadline == 0 || block.timestamp <= deadline, "swapMint: deadline");
require(lmsr.nAssets > 0, "swapMint: uninit pool");
// compute fee on gross maxAmountIn to get an initial net estimate (we'll recompute based on actual used)
(, uint256 netUintGuess) = _computeFee(maxAmountIn, swapFeePpm);
// Convert the net guess to internal (floor)
int128 netInternalGuess = _uintToInternalFloor(netUintGuess, bases[inputTokenIndex]);
require(netInternalGuess > int128(0), "swapMint: input too small after fee");
// Use LMSR view to determine actual internal consumed and size-increase (ΔS) for mint
(int128 amountInInternalUsed, int128 sizeIncreaseInternal) = lmsr.swapAmountsForMint(inputTokenIndex, netInternalGuess);
// amountInInternalUsed may be <= netInternalGuess. Convert to uint (ceil) to determine actual transfer
uint256 amountInUint = _internalToUintCeil(amountInInternalUsed, bases[inputTokenIndex]);
require(amountInUint > 0, "swapMint: input zero after internal conversion");
// Compute fee on the actual used input and total transfer amount (ceiling)
uint256 feeUintActual = _ceilFee(amountInUint, swapFeePpm);
uint256 totalTransfer = amountInUint + feeUintActual;
require(totalTransfer > 0 && totalTransfer <= maxAmountIn, "swapMint: transfer exceeds max");
// Record pre-balance and transfer tokens from payer, require exact receipt (revert on fee-on-transfer)
uint256 prevBalI = IERC20(tokens[inputTokenIndex]).balanceOf(address(this));
tokens[inputTokenIndex].safeTransferFrom(payer, address(this), totalTransfer);
uint256 balIAfter = IERC20(tokens[inputTokenIndex]).balanceOf(address(this));
require(balIAfter == prevBalI + totalTransfer, "swapMint: non-standard tokenIn");
// Accrue protocol share (floor) from the fee on the input token
if (protocolFeePpm > 0 && feeUintActual > 0) {
uint256 protoShare = (feeUintActual * protocolFeePpm) / 1_000_000;
if (protoShare > 0) {
protocolFeesOwed[inputTokenIndex] += protoShare;
}
}
// Update cached balance for the input token to effective onchain - owed
_recordCachedBalance(inputTokenIndex, balIAfter);
// Compute old and new scaled size metrics to determine LP minted
int128 oldTotal = _computeSizeMetric(lmsr.qInternal);
require(oldTotal > int128(0), "swapMint: zero total");
uint256 oldScaled = ABDKMath64x64.mulu(oldTotal, LP_SCALE);
int128 newTotal = oldTotal.add(sizeIncreaseInternal);
uint256 newScaled = ABDKMath64x64.mulu(newTotal, LP_SCALE);
uint256 actualLpToMint;
// Use natural ERC20 function since base contract inherits from ERC20
uint256 currentSupply = _totalSupply;
if (currentSupply == 0) {
// If somehow supply zero (shouldn't happen as lmsr.nAssets>0), mint newScaled
actualLpToMint = newScaled;
} else {
require(oldScaled > 0, "swapMint: oldScaled zero");
uint256 delta = (newScaled > oldScaled) ? (newScaled - oldScaled) : 0;
if (delta > 0) {
// floor truncation rounds in favor of pool
actualLpToMint = (currentSupply * delta) / oldScaled;
} else {
actualLpToMint = 0;
}
}
require(actualLpToMint > 0, "swapMint: zero LP minted");
// Update LMSR internal state: scale qInternal proportionally by newTotal/oldTotal
int128[] memory newQInternal = new int128[](n);
for (uint256 idx = 0; idx < n; idx++) {
// newQInternal[idx] = qInternal[idx] * (newTotal / oldTotal)
newQInternal[idx] = lmsr.qInternal[idx].mul(newTotal).div(oldTotal);
}
// Update cached internal and kappa via updateForProportionalChange
lmsr.updateForProportionalChange(newQInternal);
// Use natural ERC20 function since base contract inherits from ERC20
_mint(receiver, actualLpToMint);
// Emit SwapMint event with gross transfer, net input and fee (planned exact-in)
emit IPartyPool.SwapMint(payer, receiver, inputTokenIndex, totalTransfer, amountInUint, feeUintActual);
// Emit standard Mint event which records deposit amounts and LP minted
emit IPartyPool.Mint(payer, receiver, new uint256[](n), actualLpToMint);
// Note: depositAmounts array omitted (empty) since swapMint uses single-token input
return actualLpToMint;
}
/// @notice Calculate the amounts for a swap mint operation
/// @dev This is a pure view function that computes swap mint amounts from provided state
/// @param inputTokenIndex index of the input token
/// @param maxAmountIn maximum amount of token to deposit (inclusive of fee)
/// @param swapFeePpm fee in parts-per-million
/// @param lmsrState current LMSR state
/// @param bases_ scaling bases for each token
/// @param totalSupply_ current total LP token supply
/// @return amountInUsed actual input amount used (excluding fee)
/// @return fee fee amount charged
/// @return lpMinted LP tokens that would be minted
function swapMintAmounts(
uint256 inputTokenIndex,
uint256 maxAmountIn,
uint256 swapFeePpm,
LMSRStabilized.State memory lmsrState,
uint256[] memory bases_,
uint256 totalSupply_
) public pure returns (uint256 amountInUsed, uint256 fee, uint256 lpMinted) {
require(inputTokenIndex < bases_.length, "swapMintAmounts: idx");
require(maxAmountIn > 0, "swapMintAmounts: input zero");
require(lmsrState.nAssets > 0, "swapMintAmounts: uninit pool");
// Compute fee on gross maxAmountIn to get an initial net estimate
uint256 feeGuess = 0;
uint256 netUintGuess = maxAmountIn;
if (swapFeePpm > 0) {
feeGuess = (maxAmountIn * swapFeePpm + 999999) / 1000000; // ceil fee
netUintGuess = maxAmountIn - feeGuess;
}
// Convert the net guess to internal (floor)
int128 netInternalGuess = _uintToInternalFloorPure(netUintGuess, bases_[inputTokenIndex]);
require(netInternalGuess > int128(0), "swapMintAmounts: input too small after fee");
// Use LMSR view to determine actual internal consumed and size-increase (ΔS) for mint
(int128 amountInInternalUsed, int128 sizeIncreaseInternal) =
LMSRStabilized.swapAmountsForMint(lmsrState.nAssets, lmsrState.kappa, lmsrState.qInternal,
inputTokenIndex, netInternalGuess);
// amountInInternalUsed may be <= netInternalGuess. Convert to uint (ceil) to determine actual transfer
amountInUsed = _internalToUintCeilPure(amountInInternalUsed, bases_[inputTokenIndex]);
require(amountInUsed > 0, "swapMintAmounts: input zero after internal conversion");
// Compute fee on the actual used input (ceiling)
fee = 0;
if (swapFeePpm > 0) {
fee = (amountInUsed * swapFeePpm + 999999) / 1000000; // ceil fee
}
uint256 totalTransfer = amountInUsed + fee;
require(totalTransfer > 0 && totalTransfer <= maxAmountIn, "swapMintAmounts: transfer exceeds max");
// Compute old and new scaled size metrics to determine LP minted
int128 oldTotal = _computeSizeMetricPure(lmsrState.qInternal);
require(oldTotal > int128(0), "swapMintAmounts: zero total");
uint256 oldScaled = ABDKMath64x64.mulu(oldTotal, LP_SCALE);
int128 newTotal = oldTotal.add(sizeIncreaseInternal);
uint256 newScaled = ABDKMath64x64.mulu(newTotal, LP_SCALE);
if (totalSupply_ == 0) {
// If somehow supply zero (shouldn't happen as lmsr.nAssets>0), mint newScaled
lpMinted = newScaled;
} else {
require(oldScaled > 0, "swapMintAmounts: oldScaled zero");
uint256 delta = (newScaled > oldScaled) ? (newScaled - oldScaled) : 0;
if (delta > 0) {
// floor truncation rounds in favor of pool
lpMinted = (totalSupply_ * delta) / oldScaled;
} else {
lpMinted = 0;
}
}
require(lpMinted > 0, "swapMintAmounts: zero LP minted");
}
/// @notice Calculate the amounts for a burn swap operation
/// @dev This is a pure view function that computes burn swap amounts from provided state
/// @param lpAmount amount of LP tokens to burn
/// @param inputTokenIndex index of target asset to receive
/// @param swapFeePpm fee in parts-per-million
/// @param lmsrState current LMSR state
/// @param bases_ scaling bases for each token
/// @param totalSupply_ current total LP token supply
/// @return amountOut amount of target asset that would be received
function burnSwapAmounts(
uint256 lpAmount,
uint256 inputTokenIndex,
uint256 swapFeePpm,
LMSRStabilized.State memory lmsrState,
uint256[] memory bases_,
uint256 totalSupply_
) public pure returns (uint256 amountOut) {
require(inputTokenIndex < bases_.length, "burnSwapAmounts: idx");
require(lpAmount > 0, "burnSwapAmounts: zero lp");
require(totalSupply_ > 0, "burnSwapAmounts: empty supply");
// alpha = lpAmount / supply as Q64.64
int128 alpha = ABDKMath64x64.divu(lpAmount, totalSupply_) // fraction of total supply to burn
.mul(ABDKMath64x64.divu(1000000-swapFeePpm, 1000000)); // adjusted for fee
// Use LMSR view to compute single-asset payout and burned size-metric
(int128 payoutInternal, ) = LMSRStabilized.swapAmountsForBurn(lmsrState.nAssets, lmsrState.kappa, lmsrState.qInternal,
inputTokenIndex, alpha);
// Convert payoutInternal -> uint (floor) to favor pool
amountOut = _internalToUintFloorPure(payoutInternal, bases_[inputTokenIndex]);
require(amountOut > 0, "burnSwapAmounts: output zero");
}
/// @notice Burn LP tokens then swap the redeemed proportional basket into a single asset `inputTokenIndex` and send to receiver.
/// @dev The function burns LP tokens (authorization via allowance if needed), sends the single-asset payout and updates LMSR state.
/// @param payer who burns LP tokens
/// @param receiver who receives the single asset
/// @param lpAmount amount of LP tokens to burn
/// @param inputTokenIndex index of target asset to receive
/// @param deadline optional deadline
/// @param swapFeePpm fee in parts-per-million for this pool (may be used for future fee logic)
/// @return amountOutUint uint amount of asset i sent to receiver
function burnSwap(
address payer,
address receiver,
uint256 lpAmount,
uint256 inputTokenIndex,
uint256 deadline,
uint256 swapFeePpm,
uint256 protocolFeePpm
) external returns (uint256 amountOutUint) {
uint256 n = tokens.length;
require(inputTokenIndex < n, "burnSwap: idx");
require(lpAmount > 0, "burnSwap: zero lp");
require(deadline == 0 || block.timestamp <= deadline, "burnSwap: deadline");
uint256 supply = _totalSupply;
require(supply > 0, "burnSwap: empty supply");
require(_balances[payer] >= lpAmount, "burnSwap: insufficient LP");
// alpha = lpAmount / supply as Q64.64 (adjusted for fee)
int128 alpha = ABDKMath64x64.divu(lpAmount, supply) // fraction of total supply to burn
.mul(ABDKMath64x64.divu(1000000-swapFeePpm, 1000000)); // adjusted for fee
// Use LMSR view to compute single-asset payout and burned size-metric
(int128 payoutInternal, ) = lmsr.swapAmountsForBurn(inputTokenIndex, alpha);
// Convert payoutInternal -> uint (floor) to favor pool
amountOutUint = _internalToUintFloor(payoutInternal, bases[inputTokenIndex]);
require(amountOutUint > 0, "burnSwap: output zero");
// Compute gross payout (no swap fee) so we can determine token-side fee = gross - net
int128 alphaGross = ABDKMath64x64.divu(lpAmount, supply); // gross fraction (no swap fee)
(int128 payoutGrossInternal, ) = lmsr.swapAmountsForBurn(inputTokenIndex, alphaGross);
uint256 payoutGrossUint = _internalToUintFloor(payoutGrossInternal, bases[inputTokenIndex]);
uint256 feeTokenUint = (payoutGrossUint > amountOutUint) ? (payoutGrossUint - amountOutUint) : 0;
// Accrue protocol share (floor) from the token-side fee
if (protocolFeePpm > 0 && feeTokenUint > 0) {
uint256 protoShare = (feeTokenUint * protocolFeePpm) / 1_000_000;
if (protoShare > 0) {
protocolFeesOwed[inputTokenIndex] += protoShare;
}
}
// Transfer the payout to receiver
tokens[inputTokenIndex].safeTransfer(receiver, amountOutUint);
// Burn LP tokens from payer (authorization via allowance)
if (msg.sender != payer) {
uint256 allowed = _allowances[payer][msg.sender];
require(allowed >= lpAmount, "burnSwap: allowance insufficient");
_approve(payer, msg.sender, allowed - lpAmount);
}
_burn(payer, lpAmount);
// Update cached balances by reading on-chain balances for all tokens
int128[] memory newQInternal = new int128[](n);
for (uint256 idx = 0; idx < n; idx++) {
uint256 bal = IERC20(tokens[idx]).balanceOf(address(this));
cachedUintBalances[idx] = bal;
_recordCachedBalance(inputTokenIndex, bal);
newQInternal[idx] = _uintToInternalFloor(bal, bases[idx]);
}
// Emit BurnSwap with public-facing info only (do not expose ΔS or LP burned)
emit IPartyPool.BurnSwap(payer, receiver, inputTokenIndex, amountOutUint);
// If entire pool drained, deinit; else update proportionally
bool allZero = true;
for (uint256 idx = 0; idx < n; idx++) {
if (newQInternal[idx] != int128(0)) { allZero = false; break; }
}
if (allZero) {
lmsr.deinit();
} else {
lmsr.updateForProportionalChange(newQInternal);
}
emit IPartyPool.Burn(payer, receiver, new uint256[](n), lpAmount);
return amountOutUint;
}
/// @notice Pure version of _uintToInternalFloor for use in view functions
function _uintToInternalFloorPure(uint256 amount, uint256 base) internal pure returns (int128) {
// amount / base as Q64.64, floored
return ABDKMath64x64.divu(amount, base);
}
/// @notice Pure version of _internalToUintCeil for use in view functions
function _internalToUintCeilPure(int128 amount, uint256 base) internal pure returns (uint256) {
// Convert Q64.64 to uint with ceiling: ceil(amount * base)
// Use mulu which floors, then add remainder check for ceiling
uint256 floored = ABDKMath64x64.mulu(amount, base);
// Check if there's a fractional part by computing amount * base - floored
int128 baseQ64 = ABDKMath64x64.fromUInt(base);
int128 flooredQ64 = ABDKMath64x64.fromUInt(floored);
int128 product = amount.mul(baseQ64);
if (product > flooredQ64) {
return floored + 1; // Ceiling
}
return floored;
}
/// @notice Pure version of _internalToUintFloor for use in view functions
function _internalToUintFloorPure(int128 amount, uint256 base) internal pure returns (uint256) {
// Convert Q64.64 to uint with floor: floor(amount * base)
return ABDKMath64x64.mulu(amount, base);
}
/// @notice Pure version of _computeSizeMetric for use in view functions
function _computeSizeMetricPure(int128[] memory qInternal) internal pure returns (int128) {
int128 sum = int128(0);
for (uint256 i = 0; i < qInternal.length; i++) {
sum = sum.add(qInternal[i]);
}
return sum;
}
}

View File

@@ -6,6 +6,7 @@ import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
import "./PartyPoolBase.sol";
import "./LMSRStabilized.sol";
import {IPartyPool} from "./IPartyPool.sol";
/// @title PartyPoolSwapMintImpl - Implementation contract for swapMint and burnSwap functions
/// @notice This contract contains the swapMint and burnSwap implementation that will be called via delegatecall
@@ -15,341 +16,5 @@ contract PartyPoolSwapMintImpl is PartyPoolBase {
using LMSRStabilized for LMSRStabilized.State;
using SafeERC20 for IERC20;
// Events that mirror the main contract events
event SwapMint(address indexed payer, address indexed receiver, uint256 indexed inputTokenIndex, uint256 totalTransfer, uint256 amountInUint, uint256 feeUintActual);
event BurnSwap(address indexed payer, address indexed receiver, uint256 indexed inputTokenIndex, uint256 amountOutUint);
event Mint(address indexed payer, address indexed receiver, uint256[] depositAmounts, uint256 lpMinted);
event Burn(address indexed payer, address indexed receiver, uint256[] withdrawAmounts, uint256 lpBurned);
/// @notice Single-token mint: deposit a single token, charge swap-LMSR cost, and mint LP.
/// @dev swapMint executes as an exact-in planned swap followed by proportional scaling of qInternal.
/// The function emits SwapMint (gross, net, fee) and also emits Mint for LP issuance.
/// @param payer who transfers the input token
/// @param receiver who receives the minted LP tokens
/// @param inputTokenIndex index of the input token
/// @param maxAmountIn maximum uint token input (inclusive of fee)
/// @param deadline optional deadline
/// @param swapFeePpm fee in parts-per-million for this pool
/// @return lpMinted actual LP minted (uint)
function swapMint(
address payer,
address receiver,
uint256 inputTokenIndex,
uint256 maxAmountIn,
uint256 deadline,
uint256 swapFeePpm
) external returns (uint256 lpMinted, uint256 feeUintActual) {
uint256 n = tokens.length;
require(inputTokenIndex < n, "swapMint: idx");
require(maxAmountIn > 0, "swapMint: input zero");
require(deadline == 0 || block.timestamp <= deadline, "swapMint: deadline");
require(lmsr.nAssets > 0, "swapMint: uninit pool");
// compute fee on gross maxAmountIn to get an initial net estimate (we'll recompute based on actual used)
(, uint256 netUintGuess) = _computeFee(maxAmountIn, swapFeePpm);
// Convert the net guess to internal (floor)
int128 netInternalGuess = _uintToInternalFloor(netUintGuess, bases[inputTokenIndex]);
require(netInternalGuess > int128(0), "swapMint: input too small after fee");
// Use LMSR view to determine actual internal consumed and size-increase (ΔS) for mint
(int128 amountInInternalUsed, int128 sizeIncreaseInternal) = lmsr.swapAmountsForMint(inputTokenIndex, netInternalGuess);
// amountInInternalUsed may be <= netInternalGuess. Convert to uint (ceil) to determine actual transfer
uint256 amountInUint = _internalToUintCeil(amountInInternalUsed, bases[inputTokenIndex]);
require(amountInUint > 0, "swapMint: input zero after internal conversion");
// Compute fee on the actual used input and total transfer amount (ceiling)
feeUintActual = _ceilFee(amountInUint, swapFeePpm);
uint256 totalTransfer = amountInUint + feeUintActual;
require(totalTransfer > 0 && totalTransfer <= maxAmountIn, "swapMint: transfer exceeds max");
// Record pre-balance and transfer tokens from payer, require exact receipt (revert on fee-on-transfer)
uint256 prevBalI = IERC20(tokens[inputTokenIndex]).balanceOf(address(this));
tokens[inputTokenIndex].safeTransferFrom(payer, address(this), totalTransfer);
uint256 balIAfter = IERC20(tokens[inputTokenIndex]).balanceOf(address(this));
require(balIAfter == prevBalI + totalTransfer, "swapMint: non-standard tokenIn");
// Update cached uint balances for token inputTokenIndex (implementation writes onchain value; wrapper will set effective)
cachedUintBalances[inputTokenIndex] = balIAfter;
// Compute old and new scaled size metrics to determine LP minted
int128 oldTotal = _computeSizeMetric(lmsr.qInternal);
require(oldTotal > int128(0), "swapMint: zero total");
uint256 oldScaled = ABDKMath64x64.mulu(oldTotal, LP_SCALE);
int128 newTotal = oldTotal.add(sizeIncreaseInternal);
uint256 newScaled = ABDKMath64x64.mulu(newTotal, LP_SCALE);
uint256 actualLpToMint;
// Use natural ERC20 function since base contract inherits from ERC20
uint256 currentSupply = _totalSupply;
if (currentSupply == 0) {
// If somehow supply zero (shouldn't happen as lmsr.nAssets>0), mint newScaled
actualLpToMint = newScaled;
} else {
require(oldScaled > 0, "swapMint: oldScaled zero");
uint256 delta = (newScaled > oldScaled) ? (newScaled - oldScaled) : 0;
if (delta > 0) {
// floor truncation rounds in favor of pool
actualLpToMint = (currentSupply * delta) / oldScaled;
} else {
actualLpToMint = 0;
}
}
require(actualLpToMint > 0, "swapMint: zero LP minted");
// Update LMSR internal state: scale qInternal proportionally by newTotal/oldTotal
int128[] memory newQInternal = new int128[](n);
for (uint256 idx = 0; idx < n; idx++) {
// newQInternal[idx] = qInternal[idx] * (newTotal / oldTotal)
newQInternal[idx] = lmsr.qInternal[idx].mul(newTotal).div(oldTotal);
}
// Update cached internal and kappa via updateForProportionalChange
lmsr.updateForProportionalChange(newQInternal);
// Use natural ERC20 function since base contract inherits from ERC20
_mint(receiver, actualLpToMint);
// Emit SwapMint event with gross transfer, net input and fee (planned exact-in)
emit SwapMint(payer, receiver, inputTokenIndex, totalTransfer, amountInUint, feeUintActual);
// Emit standard Mint event which records deposit amounts and LP minted
emit Mint(payer, receiver, new uint256[](n), actualLpToMint);
// Note: depositAmounts array omitted (empty) since swapMint uses single-token input
lpMinted = actualLpToMint;
return (lpMinted, feeUintActual);
}
/// @notice Calculate the amounts for a swap mint operation
/// @dev This is a pure view function that computes swap mint amounts from provided state
/// @param inputTokenIndex index of the input token
/// @param maxAmountIn maximum amount of token to deposit (inclusive of fee)
/// @param swapFeePpm fee in parts-per-million
/// @param lmsrState current LMSR state
/// @param bases_ scaling bases for each token
/// @param totalSupply_ current total LP token supply
/// @return amountInUsed actual input amount used (excluding fee)
/// @return fee fee amount charged
/// @return lpMinted LP tokens that would be minted
function swapMintAmounts(
uint256 inputTokenIndex,
uint256 maxAmountIn,
uint256 swapFeePpm,
LMSRStabilized.State memory lmsrState,
uint256[] memory bases_,
uint256 totalSupply_
) public pure returns (uint256 amountInUsed, uint256 fee, uint256 lpMinted) {
require(inputTokenIndex < bases_.length, "swapMintAmounts: idx");
require(maxAmountIn > 0, "swapMintAmounts: input zero");
require(lmsrState.nAssets > 0, "swapMintAmounts: uninit pool");
// Compute fee on gross maxAmountIn to get an initial net estimate
uint256 feeGuess = 0;
uint256 netUintGuess = maxAmountIn;
if (swapFeePpm > 0) {
feeGuess = (maxAmountIn * swapFeePpm + 999999) / 1000000; // ceil fee
netUintGuess = maxAmountIn - feeGuess;
}
// Convert the net guess to internal (floor)
int128 netInternalGuess = _uintToInternalFloorPure(netUintGuess, bases_[inputTokenIndex]);
require(netInternalGuess > int128(0), "swapMintAmounts: input too small after fee");
// Use LMSR view to determine actual internal consumed and size-increase (ΔS) for mint
(int128 amountInInternalUsed, int128 sizeIncreaseInternal) =
LMSRStabilized.swapAmountsForMint(lmsrState.nAssets, lmsrState.kappa, lmsrState.qInternal,
inputTokenIndex, netInternalGuess);
// amountInInternalUsed may be <= netInternalGuess. Convert to uint (ceil) to determine actual transfer
amountInUsed = _internalToUintCeilPure(amountInInternalUsed, bases_[inputTokenIndex]);
require(amountInUsed > 0, "swapMintAmounts: input zero after internal conversion");
// Compute fee on the actual used input (ceiling)
fee = 0;
if (swapFeePpm > 0) {
fee = (amountInUsed * swapFeePpm + 999999) / 1000000; // ceil fee
}
uint256 totalTransfer = amountInUsed + fee;
require(totalTransfer > 0 && totalTransfer <= maxAmountIn, "swapMintAmounts: transfer exceeds max");
// Compute old and new scaled size metrics to determine LP minted
int128 oldTotal = _computeSizeMetricPure(lmsrState.qInternal);
require(oldTotal > int128(0), "swapMintAmounts: zero total");
uint256 oldScaled = ABDKMath64x64.mulu(oldTotal, LP_SCALE);
int128 newTotal = oldTotal.add(sizeIncreaseInternal);
uint256 newScaled = ABDKMath64x64.mulu(newTotal, LP_SCALE);
if (totalSupply_ == 0) {
// If somehow supply zero (shouldn't happen as lmsr.nAssets>0), mint newScaled
lpMinted = newScaled;
} else {
require(oldScaled > 0, "swapMintAmounts: oldScaled zero");
uint256 delta = (newScaled > oldScaled) ? (newScaled - oldScaled) : 0;
if (delta > 0) {
// floor truncation rounds in favor of pool
lpMinted = (totalSupply_ * delta) / oldScaled;
} else {
lpMinted = 0;
}
}
require(lpMinted > 0, "swapMintAmounts: zero LP minted");
}
/// @notice Calculate the amounts for a burn swap operation
/// @dev This is a pure view function that computes burn swap amounts from provided state
/// @param lpAmount amount of LP tokens to burn
/// @param inputTokenIndex index of target asset to receive
/// @param swapFeePpm fee in parts-per-million
/// @param lmsrState current LMSR state
/// @param bases_ scaling bases for each token
/// @param totalSupply_ current total LP token supply
/// @return amountOut amount of target asset that would be received
function burnSwapAmounts(
uint256 lpAmount,
uint256 inputTokenIndex,
uint256 swapFeePpm,
LMSRStabilized.State memory lmsrState,
uint256[] memory bases_,
uint256 totalSupply_
) public pure returns (uint256 amountOut) {
require(inputTokenIndex < bases_.length, "burnSwapAmounts: idx");
require(lpAmount > 0, "burnSwapAmounts: zero lp");
require(totalSupply_ > 0, "burnSwapAmounts: empty supply");
// alpha = lpAmount / supply as Q64.64
int128 alpha = ABDKMath64x64.divu(lpAmount, totalSupply_) // fraction of total supply to burn
.mul(ABDKMath64x64.divu(1000000-swapFeePpm, 1000000)); // adjusted for fee
// Use LMSR view to compute single-asset payout and burned size-metric
(int128 payoutInternal, ) = LMSRStabilized.swapAmountsForBurn(lmsrState.nAssets, lmsrState.kappa, lmsrState.qInternal,
inputTokenIndex, alpha);
// Convert payoutInternal -> uint (floor) to favor pool
amountOut = _internalToUintFloorPure(payoutInternal, bases_[inputTokenIndex]);
require(amountOut > 0, "burnSwapAmounts: output zero");
}
/// @notice Burn LP tokens then swap the redeemed proportional basket into a single asset `inputTokenIndex` and send to receiver.
/// @dev The function burns LP tokens (authorization via allowance if needed), sends the single-asset payout and updates LMSR state.
/// @param payer who burns LP tokens
/// @param receiver who receives the single asset
/// @param lpAmount amount of LP tokens to burn
/// @param inputTokenIndex index of target asset to receive
/// @param deadline optional deadline
/// @param swapFeePpm fee in parts-per-million for this pool (may be used for future fee logic)
/// @return amountOutUint uint amount of asset i sent to receiver
function burnSwap(
address payer,
address receiver,
uint256 lpAmount,
uint256 inputTokenIndex,
uint256 deadline,
uint256 swapFeePpm
) external returns (uint256 amountOutUint, uint256 feeTokenUint) {
uint256 n = tokens.length;
require(inputTokenIndex < n, "burnSwap: idx");
require(lpAmount > 0, "burnSwap: zero lp");
require(deadline == 0 || block.timestamp <= deadline, "burnSwap: deadline");
uint256 supply = _totalSupply;
require(supply > 0, "burnSwap: empty supply");
require(_balances[payer] >= lpAmount, "burnSwap: insufficient LP");
// alpha = lpAmount / supply as Q64.64 (adjusted for fee)
int128 alpha = ABDKMath64x64.divu(lpAmount, supply) // fraction of total supply to burn
.mul(ABDKMath64x64.divu(1000000-swapFeePpm, 1000000)); // adjusted for fee
// Use LMSR view to compute single-asset payout and burned size-metric
(int128 payoutInternal, ) = lmsr.swapAmountsForBurn(inputTokenIndex, alpha);
// Convert payoutInternal -> uint (floor) to favor pool
amountOutUint = _internalToUintFloor(payoutInternal, bases[inputTokenIndex]);
require(amountOutUint > 0, "burnSwap: output zero");
// Compute gross payout (no swap fee) so we can determine token-side fee = gross - net
int128 alphaGross = ABDKMath64x64.divu(lpAmount, supply); // gross fraction (no swap fee)
(int128 payoutGrossInternal, ) = lmsr.swapAmountsForBurn(inputTokenIndex, alphaGross);
uint256 payoutGrossUint = _internalToUintFloor(payoutGrossInternal, bases[inputTokenIndex]);
feeTokenUint = (payoutGrossUint > amountOutUint) ? (payoutGrossUint - amountOutUint) : 0;
// Transfer the payout to receiver
tokens[inputTokenIndex].safeTransfer(receiver, amountOutUint);
// Burn LP tokens from payer (authorization via allowance)
if (msg.sender != payer) {
uint256 allowed = _allowances[payer][msg.sender];
require(allowed >= lpAmount, "burnSwap: allowance insufficient");
_approve(payer, msg.sender, allowed - lpAmount);
}
_burn(payer, lpAmount);
// Update cached balances by reading on-chain balances for all tokens
int128[] memory newQInternal = new int128[](n);
for (uint256 idx = 0; idx < n; idx++) {
uint256 bal = IERC20(tokens[idx]).balanceOf(address(this));
// implementation writes raw onchain values; wrapper will set effective cached values
cachedUintBalances[idx] = bal;
newQInternal[idx] = _uintToInternalFloor(bal, bases[idx]);
}
// Emit BurnSwap with public-facing info only (do not expose ΔS or LP burned)
emit BurnSwap(payer, receiver, inputTokenIndex, amountOutUint);
// If entire pool drained, deinit; else update proportionally
bool allZero = true;
for (uint256 idx = 0; idx < n; idx++) {
if (newQInternal[idx] != int128(0)) { allZero = false; break; }
}
if (allZero) {
lmsr.deinit();
} else {
lmsr.updateForProportionalChange(newQInternal);
}
emit Burn(payer, receiver, new uint256[](n), lpAmount);
return (amountOutUint, feeTokenUint);
}
/// @notice Pure version of _uintToInternalFloor for use in view functions
function _uintToInternalFloorPure(uint256 amount, uint256 base) internal pure returns (int128) {
// amount / base as Q64.64, floored
return ABDKMath64x64.divu(amount, base);
}
/// @notice Pure version of _internalToUintCeil for use in view functions
function _internalToUintCeilPure(int128 amount, uint256 base) internal pure returns (uint256) {
// Convert Q64.64 to uint with ceiling: ceil(amount * base)
// Use mulu which floors, then add remainder check for ceiling
uint256 floored = ABDKMath64x64.mulu(amount, base);
// Check if there's a fractional part by computing amount * base - floored
int128 baseQ64 = ABDKMath64x64.fromUInt(base);
int128 flooredQ64 = ABDKMath64x64.fromUInt(floored);
int128 product = amount.mul(baseQ64);
if (product > flooredQ64) {
return floored + 1; // Ceiling
}
return floored;
}
/// @notice Pure version of _internalToUintFloor for use in view functions
function _internalToUintFloorPure(int128 amount, uint256 base) internal pure returns (uint256) {
// Convert Q64.64 to uint with floor: floor(amount * base)
return ABDKMath64x64.mulu(amount, base);
}
/// @notice Pure version of _computeSizeMetric for use in view functions
function _computeSizeMetricPure(int128[] memory qInternal) internal pure returns (int128) {
int128 sum = int128(0);
for (uint256 i = 0; i < qInternal.length; i++) {
sum = sum.add(qInternal[i]);
}
return sum;
}
}