This commit is contained in:
dexorder
2024-10-17 02:42:28 -04:00
commit 25def69c66
878 changed files with 112489 additions and 0 deletions

150
test/MirrorEnv.sol Normal file
View File

@@ -0,0 +1,150 @@
pragma solidity 0.8.26;
//import "@forge-std/console2.sol";
import "../src/more/MockERC20.sol";
import "../src/core/Util.sol";
import {IUniswapV3Pool} from "../lib_uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol";
import {INonfungiblePositionManager} from "../lib_uniswap/v3-periphery/contracts/interfaces/INonfungiblePositionManager.sol";
import {ISwapRouter} from "../lib_uniswap/v3-periphery/contracts/interfaces/ISwapRouter.sol";
import {IERC20Metadata} from "../lib_uniswap/v3-periphery/contracts/interfaces/IERC20Metadata.sol";
import "./MockUtil.sol";
contract MirrorEnv {
struct MockPool {
IUniswapV3Pool pool;
bool inverted; // true iff the mock pool's token0/1 are flipped relative to the original pool
}
// map original token addresses to their mock counterparts
mapping(IERC20Metadata=>MockERC20) public tokens;
// map original pool addresses to their mock counterparts
mapping(IUniswapV3Pool=>MockPool) public pools;
INonfungiblePositionManager immutable public nfpm;
ISwapRouter immutable public swapRouter;
constructor (INonfungiblePositionManager nfpm_, ISwapRouter swapRouter_) {
nfpm = nfpm_;
swapRouter = swapRouter_;
}
struct TokenInfo {
IERC20Metadata addr;
string name;
string symbol;
uint8 decimals;
}
function mirrorToken( TokenInfo memory info ) public returns (MockERC20 mock) {
// console2.log('MirrorEnv.mirrorToken()');
// console2.log(address(info.addr));
mock = tokens[info.addr];
if ( address(mock) == address(0) ) {
// console2.log('creating mock token');
// console2.log(info.name);
// console2.log(info.symbol);
// console2.log(info.decimals);
mock = new MockERC20(info.name, info.symbol, info.decimals);
// console2.log('setting tokens[]');
tokens[info.addr] = mock;
// console2.log('set tokens[]');
}
// console2.log(address(mock));
// console2.log('mirrorToken complete');
}
struct PoolInfo {
IUniswapV3Pool pool;
IERC20Metadata token0;
IERC20Metadata token1;
uint24 fee;
uint160 sqrtPriceX96;
uint256 amount0;
uint256 amount1;
}
// given the original pool address, create a similar pool using mock tokens
function mirrorPool( PoolInfo memory info ) public returns (MockPool memory mock) {
// console2.log('MirrorEnv.mirrorPool()');
// console2.log(address(info.pool));
mock = pools[info.pool];
// console2.log(address(mock.pool));
if ( address(mock.pool) == address(0) ) {
// console2.log('creating mirror pool');
MockERC20 token0 = tokens[info.token0];
MockERC20 token1 = tokens[info.token1];
// console2.log(address(info.token0));
// console2.log(address(token0));
// console2.log(address(info.token1));
// console2.log(address(token1));
require(address(token0)!=address(0), 'token0 not mirrored');
require(address(token1)!=address(0), 'token1 not mirrored');
// put 100th of the total liquidity on each of the 1774545 ticks
uint256 amount0 = info.amount0 * 1774545 / 100;
uint256 amount1 = info.amount1 * 1774545 / 100;
uint160 initialPrice = info.sqrtPriceX96;
bool inverted = token0 > token1;
// console2.log('got tokens. inverted?');
if( inverted ) {
(token0, token1) = (token1, token0);
(amount0, amount1) = (amount1, amount0);
initialPrice = uint160(2**96 * 2**96 / uint256(initialPrice));
}
// console2.log(inverted);
// console2.log(address(token0));
// console2.log(address(token1));
// console2.log(info.fee);
// console2.log(initialPrice);
IUniswapV3Pool mockPool = IUniswapV3Pool(nfpm.createAndInitializePoolIfNecessary(
address(token0), address(token1), info.fee, initialPrice));
mock = MockPool(mockPool, inverted);
// console2.log('mirror pool / inverted');
// console2.log(address(mockPool));
// console2.log(inverted);
pools[info.pool] = mock;
// console2.log('staking');
MockUtil.stakeWide( nfpm, mockPool, amount0, amount1);
// console2.log('staked');
}
// console2.log('mirrored pool');
}
function mirrorPools( PoolInfo[] memory pool ) public returns (MockPool[] memory mock) {
mock = new MockPool[](pool.length);
for( uint i=0; i<pool.length; i++ )
mock[i] = mirrorPool(pool[i]);
}
// change the price of a mock pool based on the original pool price
function updatePool( IUniswapV3Pool pool, uint160 sqrtPriceX96 ) public returns (MockPool memory mock) {
// console2.log('updating');
// console2.log(address(pool));
mock = pools[pool];
require( address(mock.pool) != address(0), 'not mirrored' );
if (mock.inverted) {
// console2.log('inverting');
// console2.log(sqrtPriceX96);
sqrtPriceX96 = uint160(uint256(2**96 * 2**96) / uint256(sqrtPriceX96));
}
MockUtil.swapToPrice(swapRouter, mock.pool, sqrtPriceX96);
// console2.log('updated pool');
}
struct PoolUpdateInfo {
IUniswapV3Pool pool;
uint160 sqrtPriceX96;
}
function updatePools( PoolUpdateInfo[] memory infos ) public returns (MockPool[] memory mock) {
mock = new MockPool[](infos.length);
for( uint i=0; i<infos.length; i++ ) {
PoolUpdateInfo memory info = infos[i];
mock[i] = updatePool(info.pool, info.sqrtPriceX96);
}
}
}

143
test/MockEnv.sol Normal file
View File

@@ -0,0 +1,143 @@
pragma solidity 0.8.26;
import "@forge-std/console2.sol";
import "../src/more/MockERC20.sol";
import "../src/core/Util.sol";
import "./MockUtil.sol";
import "../lib_uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol";
import "../lib_uniswap/v3-periphery/contracts/libraries/LiquidityAmounts.sol";
import "../lib_uniswap/v3-periphery/contracts/interfaces/INonfungiblePositionManager.sol";
import "../src/more/FeeManagerLib.sol";
import "../src/core/VaultImpl.sol";
import "../src/core/VaultFactory.sol";
import {ArbitrumRouter} from "../src/core/Router.sol";
contract MockEnv {
IVaultFactory public factory;
INonfungiblePositionManager private nfpm =
INonfungiblePositionManager(0xC36442b4a4522E871399CD717aBDD847Ab11FE88); // Arbitrum
IUniswapV3Pool public pool;
uint24 public fee;
MockERC20 public COIN;
MockERC20 public USD;
address public token0; // either COIN or USD depending on the order in the pool
address public token1;
bool public inverted;
// sets up two mock coins COIN and USD, plus a uniswap v3 pool.
function init() public {
initNoFees();
}
function initDebugFees() public {
return init(new ArbitrumRouter(), FeeManagerLib.debugFeeManager());
}
function initNoFees() public {
return init(new ArbitrumRouter(), FeeManagerLib.freeFeeManager());
}
function init(IRouter router, FeeManager feeManager) public {
// console2.log('init MockEnv...');
VaultImpl impl = new VaultImpl(router, feeManager, address(0));
factory = new VaultFactory(msg.sender, address(impl), 2*60); // 2 minutes upgrade notice
console2.log('MockEnv: msg.sender:', msg.sender);
// console2.log('MockEnv: tx.origin:' , tx.origin);
COIN = new MockERC20('Mock Ethereum Hardfork', 'MEH', 18);
console2.log('MEH');
console2.log(address(COIN));
USD = new MockERC20('Joke Currency XD', 'USXD', 6);
console2.log('USXD');
console2.log(address(USD));
fee = 500;
inverted = address(COIN) > address(USD);
token0 = inverted ? address(USD) : address(COIN);
token1 = inverted ? address(COIN) : address(USD);
console2.log('if this is the last line before a revert then make sure to run forge with --rpc-url');
// if this reverts here make sure Anvil is started and you are running forge with --rpc-url
pool = IUniswapV3Pool(nfpm.createAndInitializePoolIfNecessary(token0, token1, fee, oneSqrtX96()));
console2.log('v3 pool');
console2.log(address(pool));
// stake a super wide range so we have liquidity everywhere.
uint256 amount = 10_000*1774545 * 10**12; // 1774545 is the number of ticks so this is $10k liquidity per 0.1%
stake(amount, amount, TickMath.MIN_TICK, TickMath.MAX_TICK);
}
function oneSqrtX96() public view returns (uint160) {
return inverted ? uint160(79228162514264337593543950336000000) : uint160(79228162514264337593543); // $1.00 * 2^96 * 10^±12
}
function swapTo1() public {
swapToPrice(oneSqrtX96());
}
function stake(uint256 amount, int24 width) public {
require(width>0);
(, int24 tick, , , , ,) = pool.slot0();
stake(amount, tick-width, tick+width);
}
function stake(uint256 amount, int24 lower, int24 upper) public {
uint256 coinAmount = amount * 10**18 / 2;
uint256 usdAmount = amount * 10**6 / 2;
stake(coinAmount, usdAmount, lower, upper);
}
function stake(uint256 coinAmount, uint256 usdAmount, int24 lower, int24 upper) public
returns (
uint256 tokenId,
uint128 liquidity,
uint256 amount0,
uint256 amount1
)
{
return _stake(coinAmount, usdAmount, lower, upper);
}
function _stake(uint256 coinAmount, uint256 usdAmount, int24 lower, int24 upper) private
returns (
uint256 tokenId,
uint128 liquidity,
uint256 amount0,
uint256 amount1
)
{
uint256 a0 = inverted ? usdAmount : coinAmount;
uint256 a1 = inverted ? coinAmount : usdAmount;
if (inverted) {
lower = -upper;
upper = -lower;
}
(tokenId, liquidity, amount0, amount1) = MockUtil.stake(pool, a0, a1, lower, upper);
}
function swap(MockERC20 inToken, MockERC20 outToken, uint256 amountIn) public returns (uint256 amountOut) {
uint160 limit = address(inToken) == pool.token0() ? TickMath.MIN_SQRT_RATIO + 1 : TickMath.MAX_SQRT_RATIO - 1;
return swap(inToken, outToken, amountIn, limit);
}
function swap(MockERC20 inToken, MockERC20 outToken, uint256 amountIn, uint160 sqrtPriceLimitX96) public returns (uint256 amountOut) {
return MockUtil.swap(pool, inToken, outToken, amountIn, sqrtPriceLimitX96);
}
function price() public view returns (uint160 sqrtPriceX96) {
(sqrtPriceX96,,,,,,) = pool.slot0();
}
function swapToPrice(uint160 sqrtPriceLimitX96) public {
MockUtil.swapToPrice(pool, sqrtPriceLimitX96);
}
}

174
test/MockUtil.sol Normal file
View File

@@ -0,0 +1,174 @@
pragma solidity 0.8.26;
//import "@forge-std/console2.sol";
import "../lib_uniswap/v3-core/contracts/libraries/TickMath.sol";
import {IUniswapV3Pool} from "../lib_uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol";
import {MockERC20} from "../src/more/MockERC20.sol";
import "../lib_uniswap/v3-periphery/contracts/interfaces/ISwapRouter.sol";
import "../lib_uniswap/v3-periphery/contracts/interfaces/INonfungiblePositionManager.sol";
import "../src/core/Util.sol";
import "../src/core/UniswapV3.sol";
library MockUtil {
// 200 is the largest tick spacing. We move our edges inward to prevent violating the extremum when rounding
int24 constant public FAR_LOWER_TICK = TickMath.MIN_TICK + 200;
int24 constant public FAR_UPPER_TICK = TickMath.MAX_TICK - 200;
function swap(IUniswapV3Pool pool,
MockERC20 inToken, MockERC20 outToken, uint256 amountIn) internal
returns (uint256 amountOut) {
return swap(UniswapV3Arbitrum.swapRouter, pool, inToken, outToken, amountIn);
}
function swap(ISwapRouter swapper, IUniswapV3Pool pool,
MockERC20 inToken, MockERC20 outToken, uint256 amountIn) internal
returns (uint256 amountOut) {
uint160 limit = address(inToken) == pool.token0() ? TickMath.MIN_SQRT_RATIO + 1 : TickMath.MAX_SQRT_RATIO - 1;
return swap(swapper, pool, inToken, outToken, amountIn, limit);
}
function swap(IUniswapV3Pool pool, MockERC20 inToken, MockERC20 outToken,
uint256 amountIn, uint160 sqrtPriceLimitX96) internal
returns (uint256 amountOut) {
return swap(UniswapV3Arbitrum.swapRouter, pool, inToken, outToken, amountIn, sqrtPriceLimitX96);
}
function swap(ISwapRouter swapper, IUniswapV3Pool pool, MockERC20 inToken, MockERC20 outToken,
uint256 amountIn, uint160 sqrtPriceLimitX96) internal
returns (uint256 amountOut) {
inToken.approve(address(swapper), amountIn);
// struct ExactInputSingleParams {
// address tokenIn;
// address tokenOut;
// uint24 fee;
// address recipient;
// uint256 deadline;
// uint256 amountIn;
// uint256 amountOutMinimum;
// uint160 sqrtPriceLimitX96;
// }
ISwapRouter.ExactInputSingleParams memory params = ISwapRouter.ExactInputSingleParams(
address(inToken), address(outToken), pool.fee(), msg.sender, block.timestamp, amountIn, 0, sqrtPriceLimitX96
);
return swapper.exactInputSingle(params);
}
function price(IUniswapV3Pool pool) internal view returns (uint160 sqrtPriceX96) {
(sqrtPriceX96,,,,,,) = pool.slot0();
}
function swapToPrice(IUniswapV3Pool pool, uint160 sqrtPriceLimitX96) internal {
return swapToPrice(UniswapV3Arbitrum.swapRouter, pool, sqrtPriceLimitX96);
}
function swapToPrice(ISwapRouter swapper, IUniswapV3Pool pool, uint160 sqrtPriceLimitX96) internal {
// console2.log('swapToPrice');
// console2.log(sqrtPriceLimitX96);
uint160 curPrice = price(pool);
// console2.log(curPrice);
if( curPrice == sqrtPriceLimitX96 ) {
// console2.log('no swap needed');
return;
}
MockERC20 token0 = MockERC20(pool.token0());
MockERC20 token1 = MockERC20(pool.token1());
MockERC20 inToken = curPrice > sqrtPriceLimitX96 ? MockERC20(token0) : MockERC20(token1);
MockERC20 outToken = curPrice < sqrtPriceLimitX96 ? MockERC20(token0) : MockERC20(token1);
// instead of calculating how much we need, we just mint an absurd amount
uint256 aLot = 2**100;
inToken.mint(address(this), aLot);
swap(swapper, pool, inToken, outToken, aLot, sqrtPriceLimitX96);
}
function stakeWide(IUniswapV3Pool pool, uint256 amount) internal
returns (uint256 tokenId, uint128 liquidity, uint256 amount0, uint256 amount1) {
return stake(UniswapV3Arbitrum.nfpm, pool, amount/2, amount/2, FAR_LOWER_TICK, FAR_UPPER_TICK);
}
function stakeWide(INonfungiblePositionManager nfpm, IUniswapV3Pool pool, uint256 amount0, uint256 amount1) internal
returns (uint256 tokenId, uint128 liquidity, uint256 stakedAmount0, uint256 stakedAmount1) {
return stake(nfpm, pool, amount0, amount1, FAR_LOWER_TICK, FAR_UPPER_TICK);
}
function stake(IUniswapV3Pool pool, uint256 amount, int24 width) internal
returns (uint256 tokenId, uint128 liquidity, uint256 amount0, uint256 amount1) {
return stake(UniswapV3Arbitrum.nfpm, pool, amount, width);
}
function stake(INonfungiblePositionManager nfpm, IUniswapV3Pool pool, uint256 amount, int24 width) internal
returns (uint256 tokenId, uint128 liquidity, uint256 amount0, uint256 amount1) {
require(width>0);
(, int24 tick, , , , ,) = pool.slot0();
return stake(nfpm, pool, amount/2, amount/2, tick-width, tick+width);
}
function stake(IUniswapV3Pool pool, uint256 token0Amount, uint256 token1Amount, int24 lower, int24 upper) internal
returns (uint256 tokenId, uint128 liquidity, uint256 amount0, uint256 amount1) {
return stake(UniswapV3Arbitrum.nfpm, pool, token0Amount, token1Amount, lower, upper);
}
function stake(INonfungiblePositionManager nfpm, IUniswapV3Pool pool, uint256 token0Amount, uint256 token1Amount, int24 lower, int24 upper) internal
returns (uint256 tokenId, uint128 liquidity, uint256 amount0, uint256 amount1)
{
return _stake(nfpm, pool, token0Amount, token1Amount, lower, upper);
}
function _stake(INonfungiblePositionManager nfpm, IUniswapV3Pool pool,
uint256 token0Amount, uint256 token1Amount, int24 lower, int24 upper) private
returns (uint256 tokenId, uint128 liquidity, uint256 amount0, uint256 amount1)
{
// console2.log('stake amounts');
// console2.log(token0Amount);
// console2.log(token1Amount);
MockERC20 token0 = MockERC20(pool.token0());
MockERC20 token1 = MockERC20(pool.token1());
token0.mint(address(this), token0Amount);
token0.approve(address(nfpm), token0Amount);
// console2.log('token0 minted');
token1.mint(address(this), token1Amount);
token1.approve(address(nfpm), token1Amount);
// console2.log('token1 minted');
// struct MintParams {
// address token0;
// address token1;
// uint24 fee;
// int24 tickLower;
// int24 tickUpper;
// uint256 amount0Desired;
// uint256 amount1Desired;
// uint256 amount0Min;
// uint256 amount1Min;
// address recipient;
// uint256 deadline;
// }
int24 ts = pool.tickSpacing();
lower = Util.roundTick(lower, ts);
upper = Util.roundTick(upper, ts);
// console2.log('lower / upper');
// console2.log(lower);
// console2.log(upper);
address recipient = msg.sender;
if (recipient == address(0) ) // anvil will set msg.sender=0x0 this if there is no specific account and this breaks the NFT mint, so we assign the position to ourselves instead
recipient = address(this);
INonfungiblePositionManager.MintParams memory params = INonfungiblePositionManager.MintParams(
address(token0), address(token1), pool.fee(), lower, upper,
token0Amount, token1Amount, 0, 0, recipient, block.timestamp
);
(tokenId, liquidity, amount0, amount1) = nfpm.mint(params);
// console2.log('minted liquidity');
// console2.log(liquidity);
// console2.log(amount0);
// console2.log(amount1);
}
}

85
test/TestCancelOrder.sol Normal file
View File

@@ -0,0 +1,85 @@
pragma solidity 0.8.26;
import "@forge-std/Test.sol";
import "@forge-std/console2.sol";
import {MockEnv} from "./MockEnv.sol";
import {VaultFactory} from "../src/core/VaultFactory.sol";
import {Dexorder} from "../src/more/Dexorder.sol";
import {IVault} from "../src/interface/IVault.sol";
import "../src/core/OrderSpec.sol";
contract TestCancelOrder is MockEnv, Test {
IVault public vault;
// vault gets 100,000 COIN and 100,000 USD
function setUp() public {
initNoFees();
vault = IVault(factory.deployVault(address(this)));
vm.deal(payable(address(vault)), 1 ether); // native for fees
uint256 coinAmount = 100_000 * 10 ** COIN.decimals();
COIN.mint(address(vault), coinAmount);
uint256 usdAmount = 100_000 * 10 ** USD.decimals();
USD.mint(address(vault), usdAmount);
}
function placeOrder() public {
Tranche[] memory tranches = new Tranche[](3);
tranches[0].fraction = 21845;
tranches[0].startTimeIsRelative = true;
tranches[0].startTime = 0;
tranches[1].fraction = 21845;
tranches[1].startTimeIsRelative = true;
tranches[1].startTime = 60;
tranches[2].fraction = 21845;
tranches[2].startTimeIsRelative = true;
tranches[2].startTime = 120;
uint256 amount = 100000000000000000000;
SwapOrder memory order = SwapOrder(
0xFd086bC7CD5C481DCC9C85ebE478A1C0b69FCbb9, 0x82aF49447D8a07e3bd95BD0d56f35241523fBab1,
Route(Exchange.UniswapV3, 500), amount, amount/100, true, false,
NO_CONDITIONAL_ORDER, tranches
);
vault.placeDexorder(order);
}
// Simple test
function testCancelOrder() public {
placeOrder();
placeOrder();
placeOrder();
assert( vault.numSwapOrders() == 3 );
vault.cancelDexorder(0);
assert( vault.orderCanceled(0) );
assert( !vault.orderCanceled(1) );
assert( !vault.orderCanceled(2) );
vault.cancelDexorder(2);
assert( vault.orderCanceled(0) );
assert( !vault.orderCanceled(1) );
assert( vault.orderCanceled(2) );
vault.cancelAllDexorders();
assert( vault.orderCanceled(0) );
assert( vault.orderCanceled(1) );
assert( vault.orderCanceled(2) );
placeOrder();
assert( vault.numSwapOrders() == 4 );
assert( vault.orderCanceled(0) );
assert( vault.orderCanceled(1) );
assert( vault.orderCanceled(2) );
assert( !vault.orderCanceled(3) );
vault.cancelAllDexorders();
assert( vault.orderCanceled(0) );
assert( vault.orderCanceled(1) );
assert( vault.orderCanceled(2) );
assert( vault.orderCanceled(3) );
}
}

24
test/TestCreateVault.sol Normal file
View File

@@ -0,0 +1,24 @@
pragma solidity 0.8.26;
import "@forge-std/console2.sol";
import "../src/core/VaultFactory.sol";
import "../src/more/VaultAddress.sol";
import "@forge-std/Test.sol";
import {MockEnv} from "./MockEnv.sol";
contract TestCreateVault is Test, MockEnv {
Vault public vault;
function setUp() public {
initNoFees();
console2.log('factory');
console2.log(address(factory));
}
function testCreateVault() public {
factory.deployVault(address(this));
}
}

167
test/TestFees.sol Normal file
View File

@@ -0,0 +1,167 @@
pragma solidity 0.8.26;
import {Test} from "@forge-std/Test.sol";
import {console2} from "@forge-std/console2.sol";
import {FullMath} from '@uniswap/v3-core/contracts/libraries/FullMath.sol';
import {IUniswapV3Pool} from '@uniswap/v3-core/contracts/interfaces/IUniswapV3Pool.sol';
import {MockEnv, MockERC20} from "./MockEnv.sol";
import {VaultFactory} from "../src/core/VaultFactory.sol";
import {Dexorder} from "../src/more/Dexorder.sol";
import {IVault} from "../src/interface/IVault.sol";
import "../src/core/OrderSpec.sol";
import {float} from "../src/core/IEEE754.sol";
/*
contract TestFees is MockEnv, Test {
IVault public vault;
Dexorder public dexorder;
Dexorder.FeeSched feeSched = Dexorder.FeeSched(100,1,2,3,1);
function getPriceX96(address poolAddress) public view returns (uint256) {
(uint160 sqrtPriceX96,,,,,,) = IUniswapV3Pool(poolAddress).slot0();
return FullMath.mulDiv(sqrtPriceX96, sqrtPriceX96, 1<<96);
}
// function logPrice() public view {
// uint256 priceX96 = getPriceX96(address(pool));
// console2.log("getPrice:", priceX96>>96, priceX96&(1<<96-1), priceX96);
// console2.log("fee:", IUniswapV3Pool(address(pool)).fee());
// }
function setUp() public {
initNoFees();
dexorder = new Dexorder();
vm.prank(address(0));
dexorder.SetFeeSched(feeSched);
vault = IVault(factory.deployVault(address(this)));
vm.deal(payable(address(vault)), 1 ether);
}
uint64 constant nOrders = 5;
uint64 constant nSingles = 2; // nSingles must be <= nOrders
uint16 constant nTranches = 3;
function testFees() public {
require(nSingles <= nOrders, "testFees: nSingles <= nOrders violated");
address fillFeeAccount = dexorder.fillFeeAccount.address;
address nativeFeeAccount = dexorder.orderFeeAccount.address;
assert(dexorder.orderFeeAccount.address == dexorder.trancheFeeAccount.address);
// Set up Tranches and fund USD
Tranche[] memory tranches = new Tranche[](nTranches);
for (uint i=0; i<nTranches; i++) {
tranches[i].fraction = MAX_FRACTION / nTranches;
tranches[i].endTime = DISTANT_FUTURE;
tranches[i].marketOrder = true;
}
uint256 trancheAmount = 1 * 10**COIN.decimals() / 10; // 0.3 COIN
uint256 amount = trancheAmount * nTranches;
console2.log("COIN.decimals():", COIN.decimals());
console2.log("USD.decimals():", USD.decimals());
console2.log("amount * nOrders:", amount * nOrders);
COIN.mint(address(vault), amount * nOrders); // create COIN to sell
console2.log("Mint: COIN.balanceOf:", COIN.balanceOf(address(vault)));
// Swap order
SwapOrder memory order = SwapOrder(
address(COIN), address(USD), // sell COIN for USD
Route(Exchange.UniswapV3, fee), amount, amount/100, true, false,
NO_CONDITIONAL_ORDER, tranches
);
// Place order and verify fees
uint256 vaultBalance = address(vault).balance;
uint256 expectedFee = (feeSched.order<<feeSched.orderExp);
expectedFee += tranches.length*(feeSched.tranche<<feeSched.trancheExp);
expectedFee *= nOrders;
// try some placeDexorder
for (uint8 i=0; i<nSingles; i++)
vault.placeDexorder(order);
// try some placeDexorders
SwapOrder[] memory orders = new SwapOrder[](nOrders-nSingles);
for (uint8 i=0; i<nOrders-nSingles; i++)
orders[i] = order;
vault.placeDexorders(orders, OcoMode.NO_OCO);
// Check fees
require(address(vault).balance == vaultBalance - expectedFee, "native order fee wrong");
require(nativeFeeAccount.balance == expectedFee, "native order fee wrong");
// Execute and verify fees
// logPrice();
uint256 expectedCOINbalance = COIN.balanceOf(address(vault));
uint256 vaultUSDbalance = USD.balanceOf(address(vault));
uint256 expectedUSDbalance_afterPrice = vaultUSDbalance;
uint256 expectedUSDbalance_beforePrice = vaultUSDbalance;
for (uint8 trancheIndex=0; trancheIndex<nTranches; trancheIndex++)
for (uint8 orderIndex=0; orderIndex<nOrders; orderIndex++) {
uint256 beforePrice = getPriceX96(address(pool));
vault.execute(orderIndex, trancheIndex, PriceProof(0));
uint256 afterPrice = getPriceX96(address(pool));
require(afterPrice >= beforePrice, "testFees: beforePrice > afterPrice!");
expectedCOINbalance -= trancheAmount;
require(
COIN.balanceOf(address(vault)) == expectedCOINbalance,
"testFees: Bad COIN balance"
);
console2.log("vault balances: COIN, USD:", COIN.balanceOf(address(vault)), USD.balanceOf(address(vault)));
// logPrice();
// expectedUSDbalance using beforePrice
uint256 expectedTrancheUSD;
uint256 dexorderFeeAmount_beforePrice;
expectedTrancheUSD = FullMath.mulDiv(trancheAmount, 1<<96, beforePrice);
expectedTrancheUSD = FullMath.mulDiv(expectedTrancheUSD, 1000000 - IUniswapV3Pool(address(pool)).fee(), 1000000);
dexorderFeeAmount_beforePrice = FullMath.mulDiv(expectedTrancheUSD, feeSched.fillFeeHalfBps, 20000);
expectedTrancheUSD -= dexorderFeeAmount_beforePrice;
expectedUSDbalance_beforePrice += expectedTrancheUSD;
// expectedUSDbalance using afterPrice
uint256 dexorderFeeAmount_afterPrice;
expectedTrancheUSD = FullMath.mulDiv(trancheAmount, 1<<96, afterPrice);
expectedTrancheUSD = FullMath.mulDiv(expectedTrancheUSD, 1000000 - IUniswapV3Pool(address(pool)).fee(), 1000000);
dexorderFeeAmount_afterPrice = FullMath.mulDiv(expectedTrancheUSD, feeSched.fillFeeHalfBps, 20000);
expectedTrancheUSD -= dexorderFeeAmount_afterPrice;
expectedUSDbalance_afterPrice += expectedTrancheUSD;
// Check that vaultUSDbalance matches expected
vaultUSDbalance = USD.balanceOf(address(vault));
console2.log("expected USD balance:", expectedUSDbalance_beforePrice);
console2.log("expected USD balance:", expectedUSDbalance_afterPrice);
console2.log("vault USD balance:", vaultUSDbalance);
console2.log("fillFee USD balance:", USD.balanceOf(fillFeeAccount));
require(
expectedUSDbalance_beforePrice >= vaultUSDbalance
&& vaultUSDbalance >= expectedUSDbalance_afterPrice,
"testFees: Bad USD balance"
);
}
}
}
*/

22
test/TestFullMath.py Normal file
View File

@@ -0,0 +1,22 @@
Mask256 = 2**256-1
MinusOne = -1
MAXpos = Mask256 >> 1
MAXneg = -MAXpos-1
print("MAXpos:", hex(MAXpos))
print("MAXneg:", hex(MAXneg))
# https://github.com/Uniswap/v3-core/issues/586
a = 316922101631557355182318461781248010879680643072; # ~2^157
b = 2694519998095207227803175883740; # ~2^101
d = 79232019085396855395509160680691688; # ~2^116
expected = 10777876804631170754249523106393912452806121; # ~2^143
r = a * b // d
print("Expected issue 586", expected)
assert r == expected
pass

98
test/TestFullMath.sol Normal file
View File

@@ -0,0 +1,98 @@
pragma solidity 0.8.26;
import "@forge-std/Test.sol";
import '@uniswap/v3-core/contracts/libraries/FullMath.sol';
// FullMath relies on wrapping behavior. However, Solidity 0.8 checks by
// default and so FullMath will fail indicating overflow. We have modified
// FullMath to be unchecked. These tests verify that it still operated as
// intended.
contract TestFullMath is Test {
function setUp() public pure {
console2.log('FullMath setup()');
}
function testFullMath() public pure {
console2.log('FullMath testFullMath()');
// Constants
uint256 MinusOne = uint256(int256(-1));
uint256 MAXneg = 2**255;
uint256 MAXpos = ~MAXneg;
// Check Constants
require(MAXpos == MinusOne>>1);
require(MAXneg == MAXpos+1);
unchecked{
require(MinusOne+1 == 0);
}
// Case 1 -- Max negative values
uint256 q = FullMath.mulDiv(MAXneg, MAXneg, MAXneg); // DUT
require(q == MAXneg, "case 1 failed"); // check
// Case 2 -- All ones (-1) case
q = FullMath.mulDiv(MinusOne, MinusOne, MinusOne);
require(q == MinusOne, "case 2 failed");
// Case 3 -- All max positive values case
q = FullMath.mulDiv(MAXpos, MAXpos, MAXpos);
require(q == MAXpos, "case 3 failed");
// Case 4 -- Mixed pos and neg
q = FullMath.mulDiv(MAXpos, MAXneg, MAXpos);
require(q == MAXneg, "case 4a failed");
q = FullMath.mulDiv(MAXpos, MAXneg, MAXneg);
require(q == MAXpos, "case 4b failed");
q = FullMath.mulDiv(MAXpos, MinusOne, MAXpos);
require(q == MinusOne, "case 4c failed");
q = FullMath.mulDiv(MAXneg, MinusOne, MAXneg);
require(q == MinusOne, "case 4d failed");
q = FullMath.mulDiv(MAXpos, MinusOne, MinusOne);
require(q == MAXpos, "case 4e failed");
q = FullMath.mulDiv(MAXneg, MinusOne, MinusOne);
require(q == MAXneg, "case 4f failed");
// Case 5
// https://github.com/Uniswap/v3-core/issues/586
uint256 a;
uint256 b;
uint256 d;
uint256 expected;
a = 316922101631557355182318461781248010879680643072; // ~2^157
b = 2694519998095207227803175883740; // ~2^101
d = 79232019085396855395509160680691688; // ~2^116
expected = 10777876804631170754249523106393912452806121; // ~2^143
require (FullMath.mulDiv(a, b, d) == expected, "Case 5 failed");
// Case 10 -- various exponents
uint256 aExp;
uint256 bExp;
uint256 dExp;
aExp = 255;
bExp = 255;
dExp = 255;
a = 2**aExp;
b = 2**bExp;
d = 2**dExp;
expected = 2**(aExp+bExp-dExp);
q = FullMath.mulDiv(a,b,d); // DUT
require(q == expected, "case 10 failed"); // check
}
}

49
test/TestIEEE754.py Executable file
View File

@@ -0,0 +1,49 @@
#!/usr/bin/python3
import struct
from fractions import Fraction
def to_float_binary(value):
# Use 'struct.pack' to pack the value into bytes using IEEE 754 floating-point format
# '>f' specifies big-endian single-precision float. Change to '>d' for double precision.
packed = struct.pack('>f', value)
# Convert the bytes to an integer and then to a binary string
return ''.join(f'{byte:08b}' for byte in packed)
def to_float_bits(number) :
float_bytes = struct.pack('>f', number)
return struct.unpack('>I', float_bytes)[0], float_bytes
def fixedPoint(n, shift) :
if shift >= 0 :
return Fraction(n) * (1<<shift)
else :
return Fraction(n) / (1<<-shift)
def print_float_fix(number) :
float_int32, float_bytes = to_float_bits(number)
print (f"float hex: 0x{float_int32:08x} 0x{int(number*(1<<128)):x}")
# print ("float hex:", float_bytes.hex(), hex(int(number*(1<<128))))
print("Assuming 128.128 fixed point")
print("largest number:")
number = fixedPoint(0xffffff, 127-24) # Largest number that converts to FP and fits in 128.128
assert number < 1<<256
# print (hex(1<<255))
# print (hex(int(number)<<128))
print_float_fix(number)
print("negative largest number:")
number = fixedPoint(-0xffffff, 127-24) # Largest number
print_float_fix(number)
print("smallest number:")
number = fixedPoint(0x1, -128) # Smallest number
print_float_fix(number)
print("negative smallest number:")
number = fixedPoint(-0x1, -128)
print_float_fix(number)
print()
# number = fixedPoint(0x7fffff, 127-23)
# print_float_fix(number)
# number = fixedPoint(0xffffff, 127-23)
# print_float_fix(number)

84
test/TestIEEE754.sol Normal file
View File

@@ -0,0 +1,84 @@
pragma solidity 0.8.26;
import "@forge-std/Test.sol";
import {IEEE754, float} from "../src/core/IEEE754.sol";
contract TestIEEE754 is Test {
function setUp() external pure {
console2.log('TestFloat setup()');
}
// Useful constants
uint256 constant internal umin = 0;
uint256 constant internal umax = ~umin; // 0xff...
int256 constant internal imax = int256(umax>>1); // 0x7f...
int256 constant internal imin = ~imax; // 0x80...
// must be external because called as this.sanityReverts
function sanityReverts(int256 t) external pure {
console2.log("sanityReverts", t);
uint256 u;
int256 i;
if (t == 1) {
u = umax+1; // Overflow
} else if (t == 2) {
u = umin-1; // Underflow
} else if (t == 3) {
i = imax+1; // Overflow
} else if (t == 4) {
i = imin-1; // Underflow
} else {
// Will not revert
}
}
function testSanity() external {
console2.log('Float.testSanity()');
int256 i;
for (i=1; i<=4; i++) {
vm.expectRevert();
this.sanityReverts(i); // Convoluted way to check reverts
}
i = imax << 1; // Changes sign bit, but should not over/underflow
i = imin << 1; // Changes sign bit, but should not over/underflow
}
struct Item {
float floatingPoint;
uint8 fixedBits;
int256 fixedPoint;
}
function testToFixed() external pure {
console2.log('TestIEEE754.testToFixed()');
Item[11] memory items = [
Item(float.wrap(0x3f800000), 0, 1 << 0), // 1.0
Item(float.wrap(0x3f800000), 128, 1 << 128), // 1.0
Item(float.wrap(0x3f800000), 254, 1 << 254), // 1.0
Item(float.wrap(0xbf800000), 128, -1 << 128), // -1.0
Item(float.wrap(0x40000000), 128, 2 << 128), // 1.0
Item(float.wrap(0xc0000000), 128, -2 << 128), // 1.0
Item(float.wrap(0x00200000), 128, int256(uint256(0x1))), // smallest positive is subnormal
Item(float.wrap(0x80200000), 128, int256(uint256(int256(-0x1)))), // smallest negative is subnormal
Item(float.wrap(0x7effffff), 128, int256(uint256(0x7fffff8000000000000000000000000000000000000000000000000000000000))), // largest positive
Item(float.wrap(0xff7fffff), 128, -int256(uint256(0xffffff0000000000000000000000000000000000000000000000000000000000))), // largest negative
Item(float.wrap(0x7f7fffff), 120, int256(uint256(0xffffff0000000000000000000000000000000000000000000000000000000000)))
];
for (uint i=0; i<items.length; i++) {
console2.log("exp: %x", uint256(items[i].fixedPoint));
int256 fixedPoint = IEEE754.toFixed(
items[i].floatingPoint, items[i].fixedBits
);
console2.log("got: %x", uint256(fixedPoint));
console2.log(IEEE754.isPositive(items[i].floatingPoint)?' positive':' negative');
require(items[i].fixedPoint == fixedPoint);
}
}
}

56
test/TestMirror.sol Normal file
View File

@@ -0,0 +1,56 @@
pragma solidity 0.8.26;
import "@forge-std/Test.sol";
import "@forge-std/console2.sol";
import {UniswapV3Arbitrum} from "../src/core/UniswapV3.sol";
import "./MirrorEnv.sol";
contract TestMirror is Test {
MirrorEnv public mirror;
MirrorEnv.TokenInfo public tokenInfo0;
MirrorEnv.TokenInfo public tokenInfo1;
function setUp() public virtual {
mirror = new MirrorEnv(UniswapV3Arbitrum.nfpm, UniswapV3Arbitrum.swapRouter);
tokenInfo0 = MirrorEnv.TokenInfo(IERC20Metadata(address(0x1234)), 'Test', 'TST', 18);
tokenInfo1 = MirrorEnv.TokenInfo(IERC20Metadata(address(0x12345)), 'Testy', 'TSTY', 8);
}
}
contract TestMirrorToken is TestMirror {
function testMirrorToken() public {
mirror.mirrorToken(tokenInfo0);
}
}
contract TestMirrorPool is TestMirror {
MockERC20 public mock0;
MockERC20 public mock1;
function setUp() public override {
TestMirror.setUp();
mock0 = mirror.mirrorToken(tokenInfo0);
mock1 = mirror.mirrorToken(tokenInfo1);
console2.log('MirrorPool setUp');
}
function testMirrorPool() public {
MirrorEnv.PoolInfo memory poolInfo = MirrorEnv.PoolInfo(
IUniswapV3Pool(address(0x4321)), // IUniswapV3Pool pool;
tokenInfo0.addr, // IERC20Metadata token0;
tokenInfo1.addr, // IERC20Metadata token1;
3000, // uint24 fee;
2**96, // uint160 sqrtPriceX96;
1_000_000 * 10 ** tokenInfo0.decimals, // uint256 amount0;
1_000_000 * 10 ** tokenInfo1.decimals // uint256 amount1;
);
mirror.mirrorPool(poolInfo);
}
}

152
test/TestOrder.sol Normal file
View File

@@ -0,0 +1,152 @@
pragma solidity 0.8.26;
import "@forge-std/Test.sol";
import "@forge-std/console2.sol";
import {MockEnv, MockERC20} from "./MockEnv.sol";
import {VaultFactory} from "../src/core/VaultFactory.sol";
import {Dexorder} from "../src/more/Dexorder.sol";
import {IVault} from "../src/interface/IVault.sol";
import "../src/core/OrderSpec.sol";
import {float} from "../src/core/IEEE754.sol";
contract TestOrder is MockEnv, Test {
IVault public vault;
// vault gets 100,000 COIN and 100,000 USD
function setUp() public virtual {
initNoFees();
vault = IVault(factory.deployVault(address(this)));
uint256 coinAmount = 100_000 * 10 ** COIN.decimals();
COIN.mint(address(vault), coinAmount);
uint256 usdAmount = 100_000 * 10 ** USD.decimals();
USD.mint(address(vault), usdAmount);
}
function testPlaceOrder() public {
placeOrder();
}
function placeOrder() public {
Tranche[] memory tranches = new Tranche[](3);
tranches[0].fraction = 21845;
tranches[0].startTimeIsRelative = true;
tranches[0].startTime = 0;
tranches[1].fraction = 21845;
tranches[1].startTimeIsRelative = true;
tranches[1].startTime = 60;
tranches[2].fraction = 21845;
tranches[2].startTimeIsRelative = true;
tranches[2].startTime = 120;
uint256 amount = 100000000000000000000;
SwapOrder memory order = SwapOrder(
0xFd086bC7CD5C481DCC9C85ebE478A1C0b69FCbb9, 0x82aF49447D8a07e3bd95BD0d56f35241523fBab1,
Route(Exchange.UniswapV3, 500), amount, amount/100, true, false,
NO_CONDITIONAL_ORDER, tranches
);
console2.logBytes(abi.encode(order));
console2.log("testPlaceOrder: calling vault.numSwapOrders");
console2.log(vault.numSwapOrders());
console2.log("testPlaceOrder: Placing order");
vault.placeDexorder(order);
}
}
contract TestExecute is TestOrder {
uint256 public coinInitialBalance;
uint256 public usdInitialBalance;
uint64 public exactOutputOrderIndex;
uint64 public exactInputOrderIndex;
uint64 public limitOrderIndex;
function setUp() public override {
TestOrder.setUp();
coinInitialBalance = 1_000_000 * 10**COIN.decimals();
usdInitialBalance = 1_000_000 * 10**USD.decimals();
COIN.mint(address(vault), coinInitialBalance);
USD.mint(address(vault), usdInitialBalance);
// #0: Exact Output Order
Tranche[] memory tranches = new Tranche[](1);
tranches[0].fraction = MAX_FRACTION;
tranches[0].endTime = DISTANT_FUTURE;
tranches[0].marketOrder = true;
uint256 amount = 3 * 10**USD.decimals() / 10; // 0.3 USD
SwapOrder memory order = SwapOrder(
address(COIN), address(USD), // sell COIN for USD
Route(Exchange.UniswapV3, 500), amount, amount/100, false, false,
NO_CONDITIONAL_ORDER, tranches
);
exactOutputOrderIndex = vault.numSwapOrders();
vault.placeDexorder(order);
// #1: Exact Input Order
tranches = new Tranche[](1);
tranches[0].fraction = MAX_FRACTION;
tranches[0].endTime = DISTANT_FUTURE;
tranches[0].marketOrder = true;
amount = 3 * 10**COIN.decimals() / 10; // 0.3 COIN
order = SwapOrder(
address(COIN), address(USD), // sell COIN for USD
Route(Exchange.UniswapV3, fee), amount, amount/100, true, false,
NO_CONDITIONAL_ORDER, tranches
);
exactInputOrderIndex = vault.numSwapOrders();
vault.placeDexorder(order);
buildLimitOrder();
}
function testExecuteOrderExactOutput() public {
vault.execute(exactOutputOrderIndex, 0, PriceProof(0));
}
function testExecuteOrderExactInput() public {
vault.execute(exactInputOrderIndex, 0, PriceProof(0));
}
function buildLimitOrder() private {
// #2: Limit Order
// test selling token0 above a certain price
Tranche[] memory tranches = new Tranche[](1);
tranches[0].fraction = MAX_FRACTION;
tranches[0].endTime = DISTANT_FUTURE;
tranches[0].minLine.intercept = inverted ? float.wrap(0x5368da9b) : float.wrap(0x2b8cc066); // float 1.0001e±12
MockERC20 token = MockERC20(token0);
uint256 amount = 3*10**token.decimals() / 10; // selling 0.3 token0
SwapOrder memory order = SwapOrder(
token0, token1, // sell
Route(Exchange.UniswapV3, fee), amount, amount/100, true, false,
NO_CONDITIONAL_ORDER, tranches
);
limitOrderIndex = vault.numSwapOrders();
vault.placeDexorder(order);
}
function testExecuteLimitOrder() public {
swapTo1();
vm.expectRevert(bytes('LL'));
// should revert with code 'LL' because the initial limit is above the current price
vault.execute(limitOrderIndex, 0, PriceProof(0));
console2.log('inverted');
console2.log(inverted);
console2.log('original price');
console2.log(price());
// better price for token0
uint160 newPrice = oneSqrtX96()*10002/10000;
swapToPrice(newPrice); // move price to be above our limit
console2.log('new price');
console2.log(newPrice);
vault.execute(limitOrderIndex, 0, PriceProof(0)); // should work now
}
}

79
test/TestProxy.sol Normal file
View File

@@ -0,0 +1,79 @@
pragma solidity 0.8.26;
import "@forge-std/console2.sol";
import "@forge-std/Test.sol";
// Inplementaton shared as library
contract Impl {
// Begin storage shared with Proxy
uint256 inc;
// End storage
function proxy_target(uint256 x) external view returns(uint256) {
return(x+inc);
}
}
// The proxy for the implementation
contract Proxy {
// Begin storage shared with implementation
uint256 inc;
// End storage
Impl immutable impl; // Address of the library or implementation contract
constructor(Impl _impl, uint256 _inc) {
impl = _impl;
inc = _inc;
}
fallback() external payable {
address _impl = address(impl);
assembly {
// Copy the data sent to the memory at position `0`
calldatacopy(0, 0, calldatasize())
// Forward the call to the implementation contract with the provided input
let result := delegatecall(gas(), _impl, 0, calldatasize(), 0, 0)
// Copy the returned data
returndatacopy(0, 0, returndatasize())
// Check if the call was successful and return the data or revert
switch result
case 0 { revert(0, returndatasize()) }
default { return(0, returndatasize()) }
}
}
}
// Interface for Proxy/Implementation
interface IProxy {
function proxy_target(uint256 x) external returns(uint256);
}
// Test it
contract TestProxy is Test {
// Create shared implementation
Impl _impl = new Impl();
IProxy _proxy;
IProxy _proxy2;
function setUp() public {
// New proxy instance linked to _impl with IProxy interface
_proxy = IProxy(address(new Proxy(_impl, 1))); // cannot directly cast Proxy to Iproxy
_proxy2 = IProxy(address(new Proxy(_impl, 2))); // cannot directly cast Proxy to Iproxy
}
function testProxy() public {
require(_proxy.proxy_target(1) == 2, "fail");
require(_proxy2.proxy_target(1) == 3, "fail");
}
}

44
test/TestReentrancy.sol Normal file
View File

@@ -0,0 +1,44 @@
pragma solidity 0.8.26;
import "@forge-std/console2.sol";
import "@forge-std/Test.sol";
contract ReentrancyContract {
bool private locked;
modifier reentrancyProhibited() {
require(!locked, "Reentrancy prohibited");
locked = true;
_;
locked = false;
}
uint256 private foo = 0;
uint256 private bar = 0;
function reentrancyProtected() public reentrancyProhibited {
foo++;
}
function reentrancyVulnerable() public {
bar++;
}
}
contract TestCosts is Test {
function setUp() public {
}
uint256 constant N = 101;
function testReentrancy() public {
ReentrancyContract reentrancyContract = new ReentrancyContract();
for(uint256 i=0; i<N; i++) {
reentrancyContract.reentrancyProtected();
reentrancyContract.reentrancyVulnerable();
}
}
}

View File

@@ -0,0 +1,90 @@
pragma solidity 0.8.26;
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
import "@forge-std/console2.sol";
import "@forge-std/Script.sol";
import "@forge-std/Test.sol";
import "../src/core/VaultFactory.sol";
import "../src/interface/IVault.sol";
import {MockEnv} from "./MockEnv.sol";
// Evilcoin is reentrant. Call to transfer will perform reentrant call to vault.execute()
contract EvilCoin is ERC20, Script {
constructor(uint256 initialSupply) ERC20("EvilCoin", "ECOIN") {
_mint(msg.sender, initialSupply);
}
function mint(address to, uint256 amount) public {
_mint(to, amount);
}
function transfer(address recipient, uint256 amount) public override returns (bool) {
bool beEvil = true;
if (beEvil) {
console2.log("Evil: make me some mischief...");
IVault vault = IVault(payable(msg.sender));
console2.log("Evil: vault", address(vault));
uint64 orderIndex;
uint8 tranche_index;
PriceProof memory priceProof;
console2.log("Evil: reentrant call to execute...");
vm.expectRevert(ReentrancyGuard.ReentrancyGuardReentrantCall.selector); // revert must match exactly
vault.execute(orderIndex, tranche_index, priceProof);
console2.log("Evil: mischief detected and inhibited.");
}
return (super.transfer(recipient, amount));
}
}
contract TestReentrancyGuard is Test, MockEnv {
IVault public vault;
address payable owner = payable(address(this)); // this contract owns vault
receive() external payable {} // this is owner and needs to be able to receive native
uint256 constant runnerGib = 2**96-1; // Test runner gives Test{} some native to start;
function setUp() public {
initNoFees();
console2.log("setUp()");
console2.log("msg.sender, balance ", msg.sender, payable(msg.sender).balance);
console2.log("owner, balance ", owner, owner.balance);
assert (owner == address(this));
assert (owner.balance == runnerGib);
console2.log("factory, balance ", address(factory), address(factory).balance);
vault = factory.deployVault(owner);
assert (vault.owner() == owner);
console2.log("vault, balance ", address(vault), address(vault).balance);
}
function testReentrancyGuard() public {
EvilCoin evilCoin = new EvilCoin(0); // Zero tokens to start
console2.log("testReentrancyGuard()");
// give vault some tokens
address payable vaultAddr = payable(address(vault));
assert(evilCoin.balanceOf(vaultAddr) == 0);
uint256 vaultTokens = 1000;
uint256 withdrawTokens = 100;
evilCoin.mint(vaultAddr, vaultTokens); // Give vault some tokens
console2.log("vault, balance ", address(vault), evilCoin.balanceOf(vaultAddr)) ;
assert (evilCoin.balanceOf(vaultAddr) == vaultTokens);
vault.withdraw(evilCoin, withdrawTokens); // This one will trigger reentrancy
assert(evilCoin.balanceOf(vaultAddr) == vaultTokens - withdrawTokens);
assert(evilCoin.balanceOf(owner) == withdrawTokens);
console2.log("owner, balance ", owner, evilCoin.balanceOf(owner));
}
}

19
test/TestSinglePool.sol Normal file
View File

@@ -0,0 +1,19 @@
pragma solidity 0.8.26;
import "@forge-std/console2.sol";
import "@forge-std/Test.sol";
import "./MockEnv.sol";
contract TestSinglePool is MockEnv, Test {
function setUp() public {
initNoFees();
}
function testSwap() public {
COIN.mint(address(this), 1 * 10**18);
uint256 usd = swap(COIN, USD, 1 * 10**18);
console2.log(usd);
}
}

130
test/TestVault.sol Normal file
View File

@@ -0,0 +1,130 @@
pragma solidity 0.8.26;
import "@forge-std/console2.sol";
import "../src/core/VaultFactory.sol";
import "../src/more/VaultAddress.sol";
import "@forge-std/Test.sol";
import "../src/interface/IVault.sol";
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
import {MockEnv} from "./MockEnv.sol";
contract TestCoin is ERC20 {
constructor(uint256 initialSupply) ERC20("TestCoin", "TCOIN") {
_mint(msg.sender, initialSupply);
}
function mint(address to, uint256 amount) public {
_mint(to, amount);
}
}
contract TestDeployVault is Test, MockEnv {
function setUp() public {
initNoFees();
}
function testDeployVault() public {
factory.deployVault();
}
}
contract TestVault is Test, MockEnv {
IVault public vault;
address payable owner = payable(address(this)); // this contract owns vault
receive() external payable {} // this is owner and needs to be able to receive native
uint256 constant runnerGib = 2**96-1; // Test runner gives Test{} some native to start;
function setUp() public {
initNoFees();
console2.log("setUp()");
console2.log("msg.sender, balance ", msg.sender, payable(msg.sender).balance);
console2.log("owner, balance ", owner, owner.balance);
assert (owner == address(this));
assert (owner.balance == runnerGib);
console2.log("factory, balance ", address(factory), address(factory).balance);
vault = factory.deployVault(owner);
assert (vault.owner() == owner);
console2.log("vault, balance ", address(vault), address(vault).balance);
}
function testDeterministicAddress() public view {
console2.log(address(vault));
address d = VaultAddress.computeAddress(address(factory), owner);
console2.log(d);
assert(address(vault) == d);
}
function testWithdraw() public {
console2.log("testWithdraw()");
console2.log("msg.sender, balance ", msg.sender, msg.sender.balance); // msg.sender == test runner
// get vault address and give some eth
address payable vaultAddr = payable(address(vault));
assert(vaultAddr.balance == 0);
uint256 vaultNative = 1 ether;
vm.deal(vaultAddr, vaultNative); // Give vault some native
console2.log("vault, balance ", address(vault), address(vault).balance);
assert (vaultAddr.balance == vaultNative);
// get address for withdrawTo()
uint256 seed = uint256(keccak256(abi.encodePacked("testSeed")));
address payable toAddr = payable(vm.addr(seed));
// Verify native withdrawTo()
assert(vaultAddr.balance == vaultNative);
assert(toAddr.balance == 0);
vault.withdrawTo(toAddr, 100);
assert(toAddr.balance == 100);
assert(vaultAddr.balance == vaultNative - 100);
// Verify native withdraw()
vault.withdraw(100);
assert(vaultAddr.balance == vaultNative - 200);
assert(owner.balance == runnerGib + 100);
console2.log("owner, balance ", owner, owner.balance);
}
function testWithdrawERC20() public {
TestCoin testCoin = new TestCoin(0); // Zero tokens to start
console2.log("testWithdrawERC20()");
// give vault some tokens
address payable vaultAddr = payable(address(vault));
assert(testCoin.balanceOf(vaultAddr) == 0);
uint256 vaultTokens = 1000;
testCoin.mint(vaultAddr, vaultTokens); // Give vault some tokens
console2.log("vault, balance ", address(vault), testCoin.balanceOf(vaultAddr)) ;
assert (testCoin.balanceOf(vaultAddr) == vaultTokens);
// get address for withdrawTo()
uint256 seed = uint256(keccak256(abi.encodePacked("testSeed")));
address payable toAddr = payable(vm.addr(seed));
// Verify token withdrawTo()
assert(testCoin.balanceOf(vaultAddr) == vaultTokens);
assert(testCoin.balanceOf(toAddr) == 0);
vault.withdrawTo(testCoin, toAddr, 100);
assert(testCoin.balanceOf(toAddr) == 100);
assert(testCoin.balanceOf(vaultAddr) == vaultTokens - 100);
// Verify token withdraw()
vault.withdraw(testCoin, 100);
assert(testCoin.balanceOf(vaultAddr) == vaultTokens - 200);
assert(testCoin.balanceOf(owner) == 100);
console2.log("owner, balance ", owner, testCoin.balanceOf(owner));
}
}