Files
tycho-protocol-sdk/protocol-testing/src/test_runner.rs
TAMARA LIPOWSKI f9b4b5c223 fix: UniswapV2 test - use post-cancun created pool
- Also fix balance check: this should use the stop block not start block, since the start block is before the component was even created.
2025-09-29 09:29:44 -04:00

958 lines
36 KiB
Rust

use std::{
collections::{HashMap, HashSet},
path::PathBuf,
str::FromStr,
sync::LazyLock,
};
use alloy::{
primitives::{Address, U256},
rpc::types::Block,
};
use figment::{
providers::{Format, Yaml},
Figment,
};
use itertools::Itertools;
use miette::{miette, IntoDiagnostic, WrapErr};
use num_bigint::{BigInt, BigUint};
use num_rational::BigRational;
use num_traits::{Signed, ToPrimitive, Zero};
use postgres::{Client, Error, NoTls};
use tokio::runtime::Runtime;
use tracing::{debug, error, info, warn};
use tycho_simulation::{
evm::{decoder::TychoStreamDecoder, protocol::u256_num::bytes_to_u256},
protocol::models::{DecoderContext, Update},
tycho_client::feed::{
synchronizer::{ComponentWithState, Snapshot, StateSyncMessage},
BlockHeader, FeedMessage,
},
tycho_common::{
dto::{Chain, ProtocolComponent, ResponseAccount, ResponseProtocolState},
models::token::Token,
Bytes,
},
tycho_execution::encoding::evm::utils::bytes_to_address,
};
use crate::{
adapter_builder::AdapterContractBuilder,
config::{IntegrationTest, IntegrationTestsConfig, ProtocolComponentWithTestConfig},
encoding::encode_swap,
execution,
rpc::RPCProvider,
state_registry::register_decoder_for_protocol,
tycho_rpc::TychoClient,
tycho_runner::TychoRunner,
utils::build_spkg,
};
static CLONE_TO_BASE_PROTOCOL: LazyLock<HashMap<&str, &str>> = LazyLock::new(|| {
HashMap::from([
("ethereum-sushiswap-v2", "ethereum-uniswap-v2"),
("ethereum-pancakeswap-v2", "ethereum-uniswap-v2"),
])
});
pub struct TestRunner {
db_url: String,
vm_simulation_traces: bool,
substreams_path: PathBuf,
adapter_contract_builder: AdapterContractBuilder,
match_test: Option<String>,
config_file_path: PathBuf,
runtime: Runtime,
rpc_provider: RPCProvider,
}
impl TestRunner {
pub fn new(
root_path: PathBuf,
protocol: String,
match_test: Option<String>,
db_url: String,
vm_traces: bool,
execution_traces: bool,
rpc_url: String,
) -> miette::Result<Self> {
let base_protocol = CLONE_TO_BASE_PROTOCOL
.get(protocol.as_str())
.unwrap_or(&protocol.as_str())
.to_string();
let substreams_path = root_path
.join("substreams")
.join(&base_protocol);
let evm_path = root_path.join("evm");
let adapter_contract_builder =
AdapterContractBuilder::new(evm_path.to_string_lossy().to_string());
// Calculate config file path based on protocol. If the protocol is a clone of another
// protocol, we assume this protocol name will be appended to the integration test filename.
let config_file_name = if protocol != base_protocol {
format!(
"integration_test_{}.tycho.yaml",
protocol
.replace("ethereum-", "")
.replace('-', "_")
)
} else {
"integration_test.tycho.yaml".to_string()
};
let config_file_path = substreams_path.join(&config_file_name);
let rpc_provider = RPCProvider::new(rpc_url, execution_traces);
let runtime = Runtime::new().into_diagnostic()?;
Ok(Self {
db_url,
vm_simulation_traces: vm_traces,
runtime,
rpc_provider,
substreams_path,
adapter_contract_builder,
match_test,
config_file_path,
})
}
pub fn run_tests(&self) -> miette::Result<()> {
let terminal_width = termsize::get()
.map(|size| size.cols as usize - 35) // Remove length of log prefix (35)
.unwrap_or(80);
info!("{}\n", "-".repeat(terminal_width));
// Skip if test files don't exist
if !self.config_file_path.exists() {
warn!("Config file not found at {}.", self.config_file_path.display());
return Ok(());
}
let config = match Self::parse_config(&self.config_file_path) {
Ok(cfg) => cfg,
Err(e) => {
warn!("Failed to parse config: {:?}", e);
return Ok(());
}
};
let substreams_yaml_path = self
.substreams_path
.join(&config.substreams_yaml_path);
if !substreams_yaml_path.exists() {
warn!("substreams.yaml file not found at {}", substreams_yaml_path.display());
return Ok(());
}
let tests = match &self.match_test {
Some(filter) => config
.tests
.iter()
.filter(|test| test.name.contains(filter))
.collect::<Vec<&IntegrationTest>>(),
None => config
.tests
.iter()
.collect::<Vec<&IntegrationTest>>(),
};
let tests_count = tests.len();
info!("Running {} tests ...\n", tests_count);
let mut failed_tests: Vec<String> = Vec::new();
let mut count = 1;
for test in &tests {
info!("TEST {}: {}", count, test.name);
match self.run_test(test, &config) {
Ok(_) => {
info!("✅ {} passed\n", test.name);
}
Err(e) => {
failed_tests.push(test.name.clone());
error!("❗️{} failed: {:?}\n", test.name, e);
}
}
info!("{}\n", "-".repeat(terminal_width));
count += 1;
}
info!("Tests finished!");
info!("Passed {}/{}\n", tests_count - failed_tests.len(), tests_count);
if !failed_tests.is_empty() {
Err(miette!("Failed tests: {}", failed_tests.join(", ")))
} else {
Ok(())
}
}
fn parse_config(config_yaml_path: &PathBuf) -> miette::Result<IntegrationTestsConfig> {
info!("Parsing config YAML at {}", config_yaml_path.display());
let yaml = Yaml::file(config_yaml_path);
let figment = Figment::new().merge(yaml);
let config = figment
.extract::<IntegrationTestsConfig>()
.into_diagnostic()
.wrap_err("Failed to load test configuration:")?;
Ok(config)
}
fn run_test(
&self,
test: &IntegrationTest,
config: &IntegrationTestsConfig,
) -> miette::Result<()> {
self.empty_database()
.into_diagnostic()
.wrap_err("Failed to empty the database")?;
let substreams_yaml_path = self
.substreams_path
.join(&config.substreams_yaml_path);
let mut initialized_accounts = config
.initialized_accounts
.clone()
.unwrap_or_default();
initialized_accounts.extend(
test.initialized_accounts
.clone()
.unwrap_or_default(),
);
let spkg_path =
build_spkg(&substreams_yaml_path, test.start_block).wrap_err("Failed to build spkg")?;
let tycho_runner = TychoRunner::new(self.db_url.clone(), initialized_accounts);
tycho_runner
.run_tycho(
spkg_path.as_str(),
test.start_block,
test.stop_block,
&config.protocol_type_names,
&config.protocol_system,
&config.module_name,
)
.wrap_err("Failed to run Tycho")?;
let rpc_server = tycho_runner.start_rpc_server()?;
let expected_ids = test
.expected_components
.iter()
.map(|c| c.base.id.to_lowercase())
.collect::<Vec<String>>();
let (update, component_tokens, response_protocol_states_by_id, block) = self
.fetch_from_tycho_rpc(
&config.protocol_system,
expected_ids,
&config.adapter_contract,
&config.adapter_build_signature,
&config.adapter_build_args,
self.vm_simulation_traces,
test.stop_block,
)?;
// Step 1: Validate that all expected components are present on Tycho after indexing
self.validate_state(&test.expected_components, update.clone())?;
// Step 2: Validate Token Balances
match config.skip_balance_check {
true => info!("Skipping balance check"),
false => {
self.validate_token_balances(
&component_tokens,
&response_protocol_states_by_id,
test.stop_block,
)?;
info!("All token balances match the values found onchain")
}
}
// Step 3: Run Tycho Simulation and Execution
self.simulate_and_execute(
update,
&component_tokens,
block,
Some(test.expected_components.clone()),
)?;
tycho_runner.stop_rpc_server(rpc_server)?;
Ok(())
}
fn empty_database(&self) -> Result<(), Error> {
// Remove db name from URL. This is required because we cannot drop a database that we are
// currently connected to.
let base_url = match self.db_url.rfind('/') {
Some(pos) => &self.db_url[..pos],
None => self.db_url.as_str(),
};
let mut client = Client::connect(base_url, NoTls)?;
client.execute("DROP DATABASE IF EXISTS \"tycho_indexer_0\" WITH (FORCE)", &[])?;
client.execute("CREATE DATABASE \"tycho_indexer_0\"", &[])?;
Ok(())
}
/// Fetches protocol data from the Tycho RPC server and prepares it for validation and
/// simulation.
///
/// This method connects to the running Tycho RPC server to retrieve protocol components,
/// states, and contract storage. It then sets up the Tycho Decoder and creates an update
/// message that can be used for validation and simulation testing.
///
/// # Arguments
/// * `protocol_system` - The protocol system identifier (e.g., "uniswap_v2", "balancer_v2")
/// * `expected_component_ids` - List of component IDs to fetch from Tycho
/// * `adapter_contract` - Optional adapter contract name for VM-based protocols
/// * `adapter_build_signature` - Optional build signature for the adapter contract
/// * `adapter_build_args` - Optional build arguments for the adapter contract
/// * `vm_simulation_traces` - Whether to enable VM simulation traces
/// * `stop_block` - The block number to fetch data for
///
/// # Returns
/// A tuple containing:
/// - `Update` - Decoded protocol state update for simulation
/// - `HashMap<String, Vec<Token>>` - Token mappings for each component
/// - `HashMap<String, ResponseProtocolState>` - Protocol states by component ID
/// - `Block` - The block header for the specified block
#[allow(clippy::type_complexity, clippy::too_many_arguments)]
fn fetch_from_tycho_rpc(
&self,
protocol_system: &str,
expected_component_ids: Vec<String>,
adapter_contract: &Option<String>,
adapter_build_signature: &Option<String>,
adapter_build_args: &Option<String>,
vm_simulation_traces: bool,
stop_block: u64,
) -> miette::Result<(
Update,
HashMap<String, Vec<Token>>,
HashMap<String, ResponseProtocolState>,
Block,
)> {
// Create Tycho client for the RPC server
let tycho_client = TychoClient::new("http://localhost:4242")
.into_diagnostic()
.wrap_err("Failed to create Tycho client")?;
let chain = Chain::Ethereum;
// Fetch data from Tycho RPC. We use block_on to avoid using async functions on the testing
// module, in order to simplify debugging
let protocol_components = self
.runtime
.block_on(tycho_client.get_protocol_components(protocol_system, chain))
.into_diagnostic()
.wrap_err("Failed to get protocol components")?;
let protocol_states = self
.runtime
.block_on(tycho_client.get_protocol_state(
protocol_system,
expected_component_ids.clone(),
chain,
))
.into_diagnostic()
.wrap_err("Failed to get protocol state")?;
let vm_storages = self
.runtime
.block_on(tycho_client.get_contract_state(protocol_system, chain))
.into_diagnostic()
.wrap_err("Failed to get contract state")?;
// Create a map of component IDs to components for easy lookup
let mut components_by_id: HashMap<String, ProtocolComponent> = protocol_components
.clone()
.into_iter()
.map(|c| (c.id.to_lowercase(), c))
.collect();
if !expected_component_ids.is_empty() {
components_by_id.retain(|id, _| expected_component_ids.contains(id))
};
let protocol_states_by_id: HashMap<String, ResponseProtocolState> = protocol_states
.into_iter()
.map(|s| (s.component_id.to_lowercase(), s))
.collect();
debug!("Found {} protocol components", components_by_id.len());
debug!("Found {} protocol states", protocol_states_by_id.len());
let adapter_contract_path;
let mut adapter_contract_path_str: Option<&str> = None;
// Adapter contract will only be configured for VM protocols, not natively implemented
// protocols.
if let Some(adapter_contract_name) = &adapter_contract {
// Build/find the adapter contract
adapter_contract_path = match self
.adapter_contract_builder
.find_contract(adapter_contract_name)
{
Ok(path) => {
debug!("Found adapter contract at: {}", path.display());
path
}
Err(_) => {
info!("Adapter contract not found, building it...");
self.adapter_contract_builder
.build_target(
adapter_contract_name,
adapter_build_signature.as_deref(),
adapter_build_args.as_deref(),
)
.wrap_err("Failed to build adapter contract")?
}
};
debug!("Using adapter contract: {}", adapter_contract_path.display());
adapter_contract_path_str = Some(adapter_contract_path.to_str().unwrap());
}
// Clear the shared database state to ensure test isolation
// This prevents state from previous tests from affecting the current test
tycho_simulation::evm::engine_db::SHARED_TYCHO_DB.clear();
let mut decoder = TychoStreamDecoder::new();
decoder.skip_state_decode_failures(true);
let mut decoder_context = DecoderContext::new().vm_traces(vm_simulation_traces);
if let Some(vm_adapter_path) = adapter_contract_path_str {
decoder_context = decoder_context.vm_adapter_path(vm_adapter_path);
}
register_decoder_for_protocol(&mut decoder, protocol_system, decoder_context)?;
// Mock a stream message, with only a Snapshot and no deltas
let mut states: HashMap<String, ComponentWithState> = HashMap::new();
for (id, component) in &components_by_id {
let component_id = id;
let state = protocol_states_by_id
.get(component_id)
.wrap_err(format!(
"Component {id} does not exist in protocol_states_by_id {protocol_states_by_id:?}"
))?
.clone();
let component_with_state = ComponentWithState {
state,
component: component.clone(),
component_tvl: None,
// Neither UniswapV4 with hooks not certain balancer pools are currently supported
// for SDK testing
entrypoints: vec![],
};
states.insert(component_id.clone(), component_with_state);
}
// Convert vm_storages to a HashMap
let vm_storage: HashMap<Bytes, ResponseAccount> = vm_storages
.into_iter()
.map(|x| (x.address.clone(), x))
.collect();
let snapshot = Snapshot { states, vm_storage };
// Get block header to extract the timestamp
let block_header = self
.runtime
.block_on(
self.rpc_provider
.get_block_header(stop_block),
)
.wrap_err("Failed to get block header")?;
let state_msgs: HashMap<String, StateSyncMessage<BlockHeader>> = HashMap::from([(
String::from(protocol_system),
StateSyncMessage {
header: BlockHeader {
hash: (*block_header.hash()).into(),
number: stop_block,
parent_hash: Bytes::default(),
revert: false,
timestamp: block_header.header.timestamp,
},
snapshots: snapshot,
deltas: None,
removed_components: HashMap::new(),
},
)]);
let all_tokens = self
.runtime
.block_on(tycho_client.get_tokens(Chain::Ethereum, None, None))
.into_diagnostic()
.wrap_err("Failed to get tokens")?;
debug!("Loaded {} tokens", all_tokens.len());
self.runtime
.block_on(decoder.set_tokens(all_tokens));
let message: FeedMessage = FeedMessage { state_msgs, sync_states: Default::default() };
let block_msg = self
.runtime
.block_on(decoder.decode(&message))
.into_diagnostic()
.wrap_err("Failed to decode message")?;
let mut component_tokens: HashMap<String, Vec<Token>> = HashMap::new();
for (id, comp) in block_msg.new_pairs.iter() {
component_tokens
.entry(id.clone())
.or_insert_with(|| comp.tokens.clone());
}
Ok((block_msg, component_tokens, protocol_states_by_id, block_header))
}
/// Validates that the protocol components retrieved from Tycho match the expected
/// configuration.
///
/// This method compares each expected component from the test configuration against
/// the actual components found in the protocol state update. It ensures that all
/// expected components are present and their properties (tokens, addresses, fees, etc.)
/// match the expected values.
///
/// # Arguments
/// * `expected_components` - Vector of expected protocol components with their test
/// configuration
/// * `block_msg` - The decoded protocol state update containing the actual component data
///
/// # Returns
/// Returns `Ok(())` if all expected components are found and match their expected state.
///
/// # Errors
/// Returns an error if:
/// - Any expected component is missing from the Tycho state
/// - Any component's properties don't match the expected values (shows detailed diff)
fn validate_state(
&self,
expected_components: &Vec<ProtocolComponentWithTestConfig>,
block_msg: Update,
) -> miette::Result<()> {
debug!("Validating {:?} expected components", expected_components.len());
for expected_component in expected_components {
let component_id = expected_component
.base
.id
.to_lowercase();
let component = block_msg
.new_pairs
.get(&component_id)
.ok_or_else(|| miette!("Component {:?} was not found on Tycho", component_id))?;
let diff = expected_component
.base
.compare(component, true);
match diff {
Some(diff) => {
return Err(miette!(
"Component {} does not match the expected state:\n{}",
component_id,
diff
));
}
None => {
info!("Component {} matches the expected state", component_id);
}
}
}
info!(
"All expected components were successfully found on Tycho and match the expected state"
);
Ok(())
}
/// Performs comprehensive simulation and execution testing on protocol components.
///
/// This method tests each protocol component by:
/// 1. Computing spot prices for all token pairs
/// 2. Simulating swaps with different input amounts (0.1%, 1%, 10% of limits)
/// 3. Testing all possible swap directions between tokens
/// 4. Simulating actual execution using historical block state
/// 5. Comparing simulation results with execution results for accuracy
///
/// The simulation uses the Tycho SDK to calculate expected outputs, while execution
/// uses `debug_traceCall` with state overwrites to simulate actual on-chain behavior
/// at historical blocks.
///
/// # Arguments
/// * `update` - The decoded protocol state containing all component data
/// * `component_tokens` - Mapping of component IDs to their associated tokens
/// * `block` - The historical block to use for execution testing
/// * `expected_components` - Optional test configuration to determine which components to skip
///
/// # Returns
/// Returns `Ok(())` if all simulations and executions complete successfully within tolerance.
///
/// # Errors
/// Returns an error if:
/// - Spot price calculation fails for any component
/// - Simulation fails to calculate amount out
/// - Execution simulation fails or reverts
/// - Difference between simulation and execution exceeds 5% slippage tolerance
///
/// Components can be skipped using `skip_simulation` or `skip_execution` flags
/// in the test configuration.
fn simulate_and_execute(
&self,
update: Update,
component_tokens: &HashMap<String, Vec<Token>>,
block: Block,
expected_components: Option<Vec<ProtocolComponentWithTestConfig>>,
) -> miette::Result<()> {
let mut skip_simulation = HashSet::new();
let mut skip_execution = HashSet::new();
if let Some(components) = expected_components {
skip_simulation = components
.iter()
.filter(|c| c.skip_simulation)
.map(|c| c.base.id.to_lowercase())
.collect();
skip_execution = components
.iter()
.filter(|c| c.skip_execution)
.map(|c| c.base.id.to_lowercase())
.collect();
}
for (id, state) in update.states.iter() {
if skip_simulation.contains(id) {
info!("Skipping simulation for component {id}");
continue
}
if let Some(tokens) = component_tokens.get(id) {
let formatted_token_str = format!("{:}/{:}", &tokens[0].symbol, &tokens[1].symbol);
state
.spot_price(&tokens[0], &tokens[1])
.map(|price| info!("Spot price {:?}: {:?}", formatted_token_str, price))
.into_diagnostic()
.wrap_err(format!("Error calculating spot price for Pool {id:?}."))?;
// Test get_amount_out with different percentages of limits. The reserves or limits
// are relevant because we need to know how much to test with. We
// don't know if a pool is going to revert with 10 or 10 million
// USDC, for example, so by using the limits we can use "safe
// values" where the sim shouldn't break. We then retrieve the
// amount out for 0.1%, 1% and 10%.
let percentages = [0.001, 0.01, 0.1];
// Test all permutations of swap directions
let swap_directions: Vec<_> = tokens
.iter()
.permutations(2)
.map(|perm| (perm[0], perm[1]))
.collect();
for (token_in, token_out) in &swap_directions {
let (max_input, max_output) = state
.get_limits(token_in.address.clone(), token_out.address.clone())
.into_diagnostic()
.wrap_err(format!(
"Error getting limits for Pool {id:?} for in token: {}, and out token: {}",
token_in.address, token_out.address
))?;
info!(
"Retrieved limits. | Max input: {max_input} {} | Max output: {max_output} {}",
token_in.symbol, token_out.symbol
);
for percentage in &percentages {
// For precision, multiply by 1000 then divide by 1000
let percentage_biguint = BigUint::from((percentage * 1000.0) as u32);
let thousand = BigUint::from(1000u32);
let amount_in = (&max_input * &percentage_biguint) / &thousand;
// Skip if amount is zero
if amount_in.is_zero() {
info!("Amount in multiplied by percentage {percentage} is zero. Skipping pool {id}.");
continue;
}
let amount_out_result = state
.get_amount_out(amount_in.clone(), token_in, token_out)
.into_diagnostic()
.wrap_err(format!(
"Error calculating amount out for Pool {id:?} at {:.1}% with input of {amount_in} {}.",
percentage * 100.0,
token_in.symbol,
))?;
info!(
"Simulated amount out for trading {:.1}% of max: ({} {} -> {} {}) (gas: {})",
percentage * 100.0,
amount_in,
token_in.symbol,
amount_out_result.amount,
token_out.symbol,
amount_out_result.gas
);
// Only execute for components that should have execution
if skip_execution.contains(id) {
info!("Skipping execution for component {id}");
continue;
}
let protocol_component = update.new_pairs.get(id).unwrap();
let (calldata, solution) = encode_swap(
protocol_component,
&token_in.address,
&token_out.address,
&amount_in,
&amount_out_result.amount,
)?;
info!("Simulating swap at historical block {}", block.number());
// Simulate the trade using debug_traceCall with overwrites
let execution_amount_out =
self.runtime
.block_on(execution::simulate_trade_with_eth_call(
&self.rpc_provider,
&calldata,
&solution,
&block,
));
match execution_amount_out {
Ok(amount_out) => {
info!(
"Simulating execution passed with {} {} -> {} {}",
solution.given_amount,
token_in.symbol,
amount_out,
token_out.symbol
);
// Compare execution amount out with simulation amount out
let diff = BigInt::from(amount_out_result.amount) -
BigInt::from(amount_out.clone());
let slippage: BigRational =
BigRational::new(diff.abs(), BigInt::from(amount_out));
if slippage.to_f64() > Some(0.05) {
return Err(miette!(
"Execution amount and simulation amount differ more than 5%!"
));
}
}
Err(e) => {
return Err(miette!(
"Simulating execution failed for {} -> {}: {}",
token_in.symbol,
token_out.symbol,
e
));
}
}
}
}
}
}
Ok(())
}
/// Validate that the token balances of the components match the values
/// on-chain, extracted by querying the token balances using a node.
fn validate_token_balances(
&self,
component_tokens: &HashMap<String, Vec<Token>>,
protocol_states_by_id: &HashMap<String, ResponseProtocolState>,
stop_block: u64,
) -> miette::Result<()> {
for (id, component) in protocol_states_by_id.iter() {
let tokens = component_tokens.get(id);
if let Some(tokens) = tokens {
for token in tokens {
let mut balance: U256 = U256::from(0);
let bal = component.balances.get(&token.address);
if let Some(bal) = bal {
let bal = bal.clone().into();
balance = bytes_to_u256(bal);
}
info!(
"Validating token balance for component {} and token {}",
id, token.symbol
);
let token_address = bytes_to_address(&token.address).into_diagnostic()?;
let component_address =
Address::from_str(id.as_str()).expect("Failed to parse component address");
let node_balance =
self.runtime
.block_on(self.rpc_provider.get_token_balance(
token_address,
component_address,
stop_block,
))?;
if balance != node_balance {
return Err(miette!(
"Token balance mismatch for component {id} and token {}. Balance: {balance}, Node balance: {node_balance}",
token.symbol
));
}
info!(
"Token balance for component {} and token {} matches the expected value",
id, token.symbol
);
}
} else {
return Err(miette!("Couldn't find tokens for component {}", id,));
}
}
Ok(())
}
}
#[cfg(test)]
mod tests {
use std::{collections::HashMap, env, str::FromStr};
use dotenv::dotenv;
use glob::glob;
use tycho_simulation::tycho_common::{dto::ResponseProtocolState, Bytes};
use super::*;
#[test]
fn test_parse_all_configs() {
let manifest_dir = env!("CARGO_MANIFEST_DIR");
let curr_dir = PathBuf::from(manifest_dir);
let parent_dir = curr_dir.parent().unwrap();
env::set_current_dir(parent_dir).expect("Failed to set working directory");
let pattern = "./substreams/*/integration_test.tycho.yaml";
let mut results = Vec::new();
if glob(pattern).unwrap().count() == 0 {
panic!("No integration_test.tycho.yaml files found in substreams/*/");
}
for entry in glob(pattern).unwrap() {
match entry {
Ok(path) => {
if !path.is_file() {
results.push(Err(format!("Path is not a file: {}", path.display())));
} else {
let result = TestRunner::parse_config(&path);
if let Err(e) = &result {
results.push(Err(format!(
"Failed to parse config at {}: {e:?}",
path.display(),
)));
} else {
results.push(Ok(()));
}
}
}
Err(e) => results.push(Err(format!("Glob error: {e:?}"))),
}
}
let errors: Vec<_> = results
.iter()
.filter_map(|r| r.as_ref().err())
.collect();
if !errors.is_empty() {
for error in errors {
println!("{error}");
}
panic!("One or more config files failed to parse.");
}
}
fn get_mocked_runner() -> TestRunner {
dotenv().ok();
let rpc_url = env::var("RPC_URL").unwrap();
let current_dir = std::env::current_dir().unwrap();
TestRunner::new(
current_dir,
"test-protocol".to_string(),
None,
"".to_string(),
false,
false,
rpc_url,
)
.unwrap()
}
#[test]
fn test_token_balance_validation() {
let runner = get_mocked_runner();
// Setup mock data
let block_number = 21998530;
let token_bytes = Bytes::from_str("0x0000000000000000000000000000000000000000").unwrap();
let component_id = "0x787B8840100d9BaAdD7463f4a73b5BA73B00C6cA".to_string();
let token = Token::new(&token_bytes, "FAKE", 18, 0, &[], Chain::Ethereum.into(), 100);
let mut balances = HashMap::new();
let balance_bytes = Bytes::from(
U256::from_str("1070041574684539264153")
.unwrap()
.to_be_bytes::<32>(),
);
balances.insert(token_bytes.clone(), balance_bytes.clone());
let protocol_state = ResponseProtocolState {
component_id: component_id.clone(),
balances,
..Default::default()
};
let mut component_tokens = HashMap::new();
component_tokens.insert(component_id.clone(), vec![token]);
let mut protocol_states_by_id = HashMap::new();
protocol_states_by_id.insert(component_id.clone(), protocol_state.clone());
let result =
runner.validate_token_balances(&component_tokens, &protocol_states_by_id, block_number);
assert!(result.is_ok(), "Should pass when balance check is performed and balances match");
}
#[test]
fn test_token_balance_validation_fails_on_mismatch() {
let runner = get_mocked_runner();
// Setup mock data
let block_number = 21998530;
let token_bytes = Bytes::from_str("0x0000000000000000000000000000000000000000").unwrap();
let component_id = "0x787B8840100d9BaAdD7463f4a73b5BA73B00C6cA".to_string();
let token = Token::new(&token_bytes, "FAKE", 18, 0, &[], Chain::Ethereum.into(), 100);
// Set expected balance to zero
let mut balances = HashMap::new();
let balance_bytes = Bytes::from(U256::from(0).to_be_bytes::<32>());
balances.insert(token_bytes.clone(), balance_bytes.clone());
let protocol_state = ResponseProtocolState {
component_id: component_id.clone(),
balances,
..Default::default()
};
let mut component_tokens = HashMap::new();
component_tokens.insert(component_id.clone(), vec![token]);
let mut protocol_states_by_id = HashMap::new();
protocol_states_by_id.insert(component_id.clone(), protocol_state.clone());
dotenv().ok();
let result =
runner.validate_token_balances(&component_tokens, &protocol_states_by_id, block_number);
assert!(
result.is_err(),
"Should fail when balance check is performed and balances do not match"
);
}
}