Files
tycho-protocol-sdk/evm/test/IntegralSwapAdapter.t.sol

187 lines
6.5 KiB
Solidity

// SPDX-License-Identifier: AGPL-3.0-or-later
pragma solidity ^0.8.13;
import "forge-std/Test.sol";
import "openzeppelin-contracts/contracts/interfaces/IERC20.sol";
import "src/interfaces/ISwapAdapterTypes.sol";
import "src/libraries/FractionMath.sol";
import "src/integral/IntegralSwapAdapter.sol";
contract IntegralSwapAdapterTest is Test, ISwapAdapterTypes {
using FractionMath for Fraction;
IntegralSwapAdapter adapter;
ITwapRelayer relayer;
address constant WETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2;
address constant USDC = 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48;
address constant USDC_WETH_PAIR = 0x2fe16Dd18bba26e457B7dD2080d5674312b026a2;
address constant relayerAddress = 0xd17b3c9784510E33cD5B87b490E79253BcD81e2E;
uint256 constant TEST_ITERATIONS = 100;
function setUp() public {
uint256 forkBlock = 18835309;
vm.createSelectFork(vm.rpcUrl("mainnet"), forkBlock);
adapter = new IntegralSwapAdapter(relayerAddress);
relayer = ITwapRelayer(relayerAddress);
vm.label(address(WETH), "WETH");
vm.label(USDC, "USDC");
vm.label(address(USDC_WETH_PAIR), "USDC_WETH_PAIR");
}
function testPriceFuzzIntegral(uint256 amount0, uint256 amount1) public {
bytes32 pair = bytes32(bytes20(USDC_WETH_PAIR));
uint256[] memory limits = adapter.getLimits(pair, USDC, WETH);
vm.assume(amount0 < limits[0]);
vm.assume(amount1 < limits[1]);
uint256[] memory amounts = new uint256[](2);
amounts[0] = amount0;
amounts[1] = amount1;
Fraction[] memory prices = adapter.price(pair, WETH, USDC, amounts);
for (uint256 i = 0; i < prices.length; i++) {
assertGt(prices[i].numerator, 0);
assertGt(prices[i].denominator, 0);
}
}
/// @dev Since TwapRelayer's calculateAmountOut function is internal, and
/// using quoteSell would
/// revert the transaction if calculateAmountOut is not enough,
/// we need a threshold to cover this internal amount, applied to
function testSwapFuzzIntegral(uint256 specifiedAmount, bool isBuy) public {
OrderSide side = isBuy ? OrderSide.Buy : OrderSide.Sell;
bytes32 pair = bytes32(bytes20(USDC_WETH_PAIR));
uint256[] memory limits = new uint256[](2);
uint256[] memory limitsMin = new uint256[](2);
if (side == OrderSide.Buy) {
limits = adapter.getLimits(pair, USDC, WETH);
vm.assume(specifiedAmount < limits[1]);
limitsMin = getMinLimits(USDC, WETH);
vm.assume(specifiedAmount > limitsMin[1] * 115 / 100);
deal(USDC, address(this), type(uint256).max);
IERC20(USDC).approve(address(adapter), type(uint256).max);
} else {
limits = adapter.getLimits(pair, USDC, WETH);
vm.assume(specifiedAmount < limits[0]);
limitsMin = getMinLimits(USDC, WETH);
vm.assume(specifiedAmount > limitsMin[0] * 115 / 100);
deal(USDC, address(this), type(uint256).max);
IERC20(USDC).approve(address(adapter), specifiedAmount);
}
uint256 usdc_balance_before = IERC20(USDC).balanceOf(address(this));
uint256 weth_balance_before = IERC20(WETH).balanceOf(address(this));
Trade memory trade =
adapter.swap(pair, USDC, WETH, side, specifiedAmount);
if (trade.calculatedAmount > 0) {
if (side == OrderSide.Buy) {
assertEq(
specifiedAmount,
IERC20(WETH).balanceOf(address(this)) - weth_balance_before
);
assertEq(
trade.calculatedAmount,
usdc_balance_before - IERC20(USDC).balanceOf(address(this))
);
} else {
assertEq(
specifiedAmount,
usdc_balance_before - IERC20(USDC).balanceOf(address(this))
);
assertEq(
trade.calculatedAmount,
IERC20(WETH).balanceOf(address(this)) - weth_balance_before
);
}
}
}
function testSwapSellIncreasingIntegral() public {
executeIncreasingSwapsIntegral(OrderSide.Sell);
}
function testSwapBuyIncreasing() public {
executeIncreasingSwapsIntegral(OrderSide.Buy);
}
function executeIncreasingSwapsIntegral(OrderSide side) internal {
bytes32 pair = bytes32(bytes20(USDC_WETH_PAIR));
uint256 amountConstant_ =
side == OrderSide.Sell ? 1000 * 10 ** 6 : 10 ** 17;
uint256[] memory amounts = new uint256[](TEST_ITERATIONS);
amounts[0] = amountConstant_;
for (uint256 i = 1; i < TEST_ITERATIONS; i++) {
amounts[i] = amountConstant_ * i;
}
Trade[] memory trades = new Trade[](TEST_ITERATIONS);
uint256 beforeSwap;
for (uint256 i = 1; i < TEST_ITERATIONS; i++) {
beforeSwap = vm.snapshot();
deal(USDC, address(this), amounts[i]);
IERC20(USDC).approve(address(adapter), amounts[i]);
trades[i] = adapter.swap(pair, USDC, WETH, side, amounts[i]);
vm.revertTo(beforeSwap);
}
for (uint256 i = 1; i < TEST_ITERATIONS - 1; i++) {
assertLe(trades[i].calculatedAmount, trades[i + 1].calculatedAmount);
assertLe(trades[i].gasUsed, trades[i + 1].gasUsed);
assertEq(trades[i].price.compareFractions(trades[i + 1].price), 0);
}
}
function testGetCapabilitiesIntegral(bytes32 pair, address t0, address t1)
public
{
Capability[] memory res = adapter.getCapabilities(pair, t0, t1);
assertEq(res.length, 4);
}
function testGetTokensIntegral() public {
bytes32 pair = bytes32(bytes20(USDC_WETH_PAIR));
address[] memory tokens = adapter.getTokens(pair);
assertEq(tokens.length, 2);
}
function testGetLimitsIntegral() public {
bytes32 pair = bytes32(bytes20(USDC_WETH_PAIR));
uint256[] memory limits = adapter.getLimits(pair, USDC, WETH);
assertEq(limits.length, 2);
}
function getMinLimits(address sellToken, address buyToken)
public
view
returns (uint256[] memory limits)
{
(,, uint256 limitMin0,, uint256 limitMin1,) =
relayer.getPoolState(address(sellToken), address(buyToken));
limits = new uint256[](2);
limits[0] = limitMin0;
limits[1] = limitMin1;
}
}