// SPDX-License-Identifier: AGPL-3.0-or-later pragma solidity ^0.8.13; import "forge-std/Test.sol"; import "openzeppelin-contracts/contracts/interfaces/IERC20.sol"; import "src/interfaces/ISwapAdapterTypes.sol"; import "src/libraries/FractionMath.sol"; import "src/integral/IntegralSwapAdapter.sol"; contract IntegralSwapAdapterTest is Test, ISwapAdapterTypes { using FractionMath for Fraction; IntegralSwapAdapter adapter; ITwapRelayer relayer; address constant WETH = 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2; address constant USDC = 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48; address constant USDC_WETH_PAIR = 0x2fe16Dd18bba26e457B7dD2080d5674312b026a2; address constant relayerAddress = 0xd17b3c9784510E33cD5B87b490E79253BcD81e2E; uint256 constant TEST_ITERATIONS = 100; function setUp() public { uint256 forkBlock = 18835309; vm.createSelectFork(vm.rpcUrl("mainnet"), forkBlock); adapter = new IntegralSwapAdapter(relayerAddress); relayer = ITwapRelayer(relayerAddress); vm.label(address(WETH), "WETH"); vm.label(USDC, "USDC"); vm.label(address(USDC_WETH_PAIR), "USDC_WETH_PAIR"); } function testPriceFuzzIntegral(uint256 amount0, uint256 amount1) public { bytes32 pair = bytes32(bytes20(USDC_WETH_PAIR)); uint256[] memory limits = adapter.getLimits(pair, USDC, WETH); vm.assume(amount0 < limits[0]); vm.assume(amount1 < limits[1]); uint256[] memory amounts = new uint256[](2); amounts[0] = amount0; amounts[1] = amount1; Fraction[] memory prices = adapter.price(pair, WETH, USDC, amounts); for (uint256 i = 0; i < prices.length; i++) { assertGt(prices[i].numerator, 0); assertGt(prices[i].denominator, 0); } } /// @dev Since TwapRelayer's calculateAmountOut function is internal, and /// using quoteSell would /// revert the transaction if calculateAmountOut is not enough, /// we need a threshold to cover this internal amount, applied to function testSwapFuzzIntegral(uint256 specifiedAmount, bool isBuy) public { OrderSide side = isBuy ? OrderSide.Buy : OrderSide.Sell; bytes32 pair = bytes32(bytes20(USDC_WETH_PAIR)); uint256[] memory limits = new uint256[](2); uint256[] memory limitsMin = new uint256[](2); if (side == OrderSide.Buy) { limits = adapter.getLimits(pair, USDC, WETH); vm.assume(specifiedAmount < limits[1]); limitsMin = getMinLimits(USDC, WETH); vm.assume(specifiedAmount > limitsMin[1] * 115 / 100); deal(USDC, address(this), type(uint256).max); IERC20(USDC).approve(address(adapter), type(uint256).max); } else { limits = adapter.getLimits(pair, USDC, WETH); vm.assume(specifiedAmount < limits[0]); limitsMin = getMinLimits(USDC, WETH); vm.assume(specifiedAmount > limitsMin[0] * 115 / 100); deal(USDC, address(this), type(uint256).max); IERC20(USDC).approve(address(adapter), specifiedAmount); } uint256 usdc_balance_before = IERC20(USDC).balanceOf(address(this)); uint256 weth_balance_before = IERC20(WETH).balanceOf(address(this)); Trade memory trade = adapter.swap(pair, USDC, WETH, side, specifiedAmount); if (trade.calculatedAmount > 0) { if (side == OrderSide.Buy) { assertEq( specifiedAmount, IERC20(WETH).balanceOf(address(this)) - weth_balance_before ); assertEq( trade.calculatedAmount, usdc_balance_before - IERC20(USDC).balanceOf(address(this)) ); } else { assertEq( specifiedAmount, usdc_balance_before - IERC20(USDC).balanceOf(address(this)) ); assertEq( trade.calculatedAmount, IERC20(WETH).balanceOf(address(this)) - weth_balance_before ); } } } function testSwapSellIncreasingIntegral() public { executeIncreasingSwapsIntegral(OrderSide.Sell); } function testSwapBuyIncreasing() public { executeIncreasingSwapsIntegral(OrderSide.Buy); } function executeIncreasingSwapsIntegral(OrderSide side) internal { bytes32 pair = bytes32(bytes20(USDC_WETH_PAIR)); uint256 amountConstant_ = side == OrderSide.Sell ? 1000 * 10 ** 6 : 10 ** 17; uint256[] memory amounts = new uint256[](TEST_ITERATIONS); amounts[0] = amountConstant_; for (uint256 i = 1; i < TEST_ITERATIONS; i++) { amounts[i] = amountConstant_ * i; } Trade[] memory trades = new Trade[](TEST_ITERATIONS); uint256 beforeSwap; for (uint256 i = 1; i < TEST_ITERATIONS; i++) { beforeSwap = vm.snapshot(); deal(USDC, address(this), amounts[i]); IERC20(USDC).approve(address(adapter), amounts[i]); trades[i] = adapter.swap(pair, USDC, WETH, side, amounts[i]); vm.revertTo(beforeSwap); } for (uint256 i = 1; i < TEST_ITERATIONS - 1; i++) { assertLe(trades[i].calculatedAmount, trades[i + 1].calculatedAmount); assertLe(trades[i].gasUsed, trades[i + 1].gasUsed); assertEq(trades[i].price.compareFractions(trades[i + 1].price), 0); } } function testGetCapabilitiesIntegral(bytes32 pair, address t0, address t1) public { Capability[] memory res = adapter.getCapabilities(pair, t0, t1); assertEq(res.length, 4); } function testGetTokensIntegral() public { bytes32 pair = bytes32(bytes20(USDC_WETH_PAIR)); address[] memory tokens = adapter.getTokens(pair); assertEq(tokens.length, 2); } function testGetLimitsIntegral() public { bytes32 pair = bytes32(bytes20(USDC_WETH_PAIR)); uint256[] memory limits = adapter.getLimits(pair, USDC, WETH); assertEq(limits.length, 2); } function getMinLimits(address sellToken, address buyToken) public view returns (uint256[] memory limits) { (,, uint256 limitMin0,, uint256 limitMin1,) = relayer.getPoolState(address(sellToken), address(buyToken)); limits = new uint256[](2); limits[0] = limitMin0; limits[1] = limitMin1; } }