feat: Add execution for curve

- Add CurveSwapStructEncoder and tests
- Add CurveSwapExecutorExposed and tests
  - Add needed interfaces

#time 0m


#time 0m

#time 0m
This commit is contained in:
Diana Carvalho
2024-09-05 13:13:09 +01:00
parent f181688090
commit a6caf84f55
11 changed files with 1282 additions and 3 deletions

View File

@@ -0,0 +1,174 @@
// SPDX-License-Identifier: UNLICENCED
pragma solidity ^0.8.0;
import "../interfaces/ISwapExecutor.sol";
import "./interfaces/ICurvePool.sol";
import "./interfaces/ICurvePoolNoReturn.sol";
import "./interfaces/ICurveCryptoPool.sol";
import "./interfaces/ICurvePoolNoReturn.sol";
import "./interfaces/ICurvePoolWithReturn.sol";
import {
IERC20,
SafeERC20
} from "openzeppelin-contracts/contracts/token/ERC20/utils/SafeERC20.sol";
import "src/libraries/EfficientERC20.sol";
interface IWETH is IERC20 {
function deposit() external payable;
function withdraw(uint256) external;
}
contract CurveSwapExecutor is ISwapExecutor, ISwapExecutorErrors {
using EfficientERC20 for IERC20;
IWETH private constant weth =
IWETH(0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2);
address private constant ETH = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
function _decodeParams(bytes calldata data)
internal
pure
returns (
IERC20 tokenOut,
address target,
address receiver,
uint8 poolType,
int128 i,
int128 j,
bool tokenApprovalNeeded
)
{
tokenOut = IERC20(address(bytes20(data[0:20])));
target = address(bytes20(data[20:40]));
receiver = address(bytes20(data[40:60]));
poolType = uint8(data[60]);
i = int128(uint128(uint8(data[61])));
j = int128(uint128(uint8(data[62])));
tokenApprovalNeeded = data[63] != 0;
}
function swap(uint256 amountIn, bytes calldata data)
external
payable
returns (uint256 res)
{
(
IERC20 tokenOut,
address target,
address receiver,
uint8 poolType,
int128 i,
int128 j,
bool tokenApprovalNeeded
) = _decodeParams(data);
// Approve the token for the pool's address if `tokenApprovalNeeded` is
// true
if (tokenApprovalNeeded) {
address tokenIn;
// pool type 6 has a different function signature to get the coins
if (poolType == 6) {
tokenIn = ICurvePoolNoReturn(target).underlying_coins(int128(i));
} else {
tokenIn = ICurvePool(target).coins(uint256(uint128(i)));
}
IERC20(tokenIn).forceApprove(target, type(uint256).max);
}
if (poolType == 0) {
// simple exchange with int128
// e.g. AAVE, EURS
res = ICurvePoolWithReturn(target).exchange(i, j, amountIn, 0);
if (receiver != address(this)) {
tokenOut.safeTransfer(receiver, res);
}
} else if (poolType == 1) {
// simple exchange with int128 but no amountOut,
// e.g. BUSD, HBTC, PAX, renBTC, sBTC, SUSD, USDT, Y, 3pool
uint256 tokenOutBalanceBeforeSwap =
tokenOut.balanceOf(address(this));
ICurvePoolNoReturn(target).exchange(i, j, amountIn, 0);
uint256 tokenOutBalanceAfterSwap = tokenOut.balanceOf(address(this));
res = tokenOutBalanceAfterSwap - tokenOutBalanceBeforeSwap;
if (receiver != address(this)) {
tokenOut.safeTransfer(receiver, res);
}
} else if (poolType == 3) {
// tricrypto case
uint256 tokenOutBalanceBeforeSwap =
tokenOut.balanceOf(address(this));
ICurveCryptoPool(target).exchange(
uint256(uint128(i)),
uint256(uint128(j)),
amountIn,
0,
false //TODO: Check if we can call the entrypoint without
// 'use_eth' as it's false by default.
);
uint256 tokenOutBalanceAfterSwap = tokenOut.balanceOf(address(this));
res = tokenOutBalanceAfterSwap - tokenOutBalanceBeforeSwap;
if (receiver != address(this)) {
tokenOut.safeTransfer(receiver, res);
}
} else if (poolType == 4) {
// (payable) ether based stableswaps - so far no liquidity
// e.g. sETH, stETH, rETH, etc
ICurveCryptoPool pool = ICurveCryptoPool(target);
if (pool.coins(uint256(uint128(i))) == ETH) {
weth.withdraw(amountIn);
res = pool.exchange{value: amountIn}(i, j, amountIn, 0);
} else {
res = pool.exchange(i, j, amountIn, 0);
}
if (pool.coins(uint256(uint128(j))) == ETH) {
weth.deposit{value: res}();
}
if (receiver != address(this)) {
tokenOut.safeTransfer(receiver, res);
}
} else if (poolType == 5) {
// metapool or lending pool interface using int128
// e.g. AAVE
res = ICurvePoolWithReturn(target).exchange_underlying(
i, j, amountIn, 0
);
if (receiver != address(this)) {
tokenOut.safeTransfer(receiver, res);
}
} else if (poolType == 6) {
// metapool or lending pool interface using int128 no amountOut
// returned
// e.g. Y, Compound
uint256 tokenOutBalanceBeforeSwap =
tokenOut.balanceOf(address(this));
ICurvePoolNoReturn(target).exchange_underlying(i, j, amountIn, 0);
uint256 tokenOutBalanceAfterSwap = tokenOut.balanceOf(address(this));
res = tokenOutBalanceAfterSwap - tokenOutBalanceBeforeSwap;
if (receiver != address(this)) {
tokenOut.safeTransfer(receiver, res);
}
} else if (poolType == 7) {
// cryptov2 pool with two tokens
// e.g. LDO/ETH
res = ICurvePoolWithReturn(target).exchange(
uint256(uint128(i)),
uint256(uint128(j)),
amountIn,
0,
false,
receiver
);
} else if (poolType == 8) {
// cryptov2 two tokens not factory pools ETH/CRV and ETH/CVX
res = ICurvePoolWithReturn(target).exchange(
uint256(uint128(i)), uint256(uint128(j)), amountIn, 0, false
);
if (receiver != address(this)) {
tokenOut.safeTransfer(receiver, res);
}
} else {
revert UnknownPoolType(poolType);
}
}
}

View File

@@ -0,0 +1,26 @@
// SPDX-License-Identifier: MIT
pragma solidity >=0.4.0;
interface ICurveCryptoPool {
function get_dy(uint256 i, uint256 j, uint256 dx)
external
view
returns (uint256);
// tricrypto
function exchange(
uint256 i,
uint256 j,
uint256 dx,
uint256 min_dy,
bool use_eth
) external payable;
// eth accepting pools
function exchange(int128 i, int128 j, uint256 dx, uint256 min_dy)
external
payable
returns (uint256);
function coins(uint256 i) external view returns (address);
}

View File

@@ -0,0 +1,174 @@
// SPDX-License-Identifier: GPL-2.0-or-later
pragma solidity >=0.4.0;
interface ICurvePool {
function initialize(
string memory _name,
string memory _symbol,
address _coin,
uint256 _decimals,
uint256 _A,
uint256 _fee,
address _admin
) external;
function decimals() external view returns (uint256);
function transfer(address _to, uint256 _value) external returns (bool);
function transferFrom(address _from, address _to, uint256 _value)
external
returns (bool);
function approve(address _spender, uint256 _value)
external
returns (bool);
function get_previous_balances()
external
view
returns (uint256[2] memory);
function get_balances() external view returns (uint256[2] memory);
function get_twap_balances(
uint256[2] memory _first_balances,
uint256[2] memory _last_balances,
uint256 _time_elapsed
) external view returns (uint256[2] memory);
function get_price_cumulative_last()
external
view
returns (uint256[2] memory);
function admin_fee() external view returns (uint256);
function A() external view returns (uint256);
function A_precise() external view returns (uint256);
function get_virtual_price() external view returns (uint256);
function calc_token_amount(uint256[2] memory _amounts, bool _is_deposit)
external
view
returns (uint256);
function calc_token_amount(
uint256[2] memory _amounts,
bool _is_deposit,
bool _previous
) external view returns (uint256);
function add_liquidity(uint256[2] memory _amounts, uint256 _min_mint_amount)
external
returns (uint256);
function add_liquidity(
uint256[2] memory _amounts,
uint256 _min_mint_amount,
address _receiver
) external returns (uint256);
function get_dy(int128 i, int128 j, uint256 dx)
external
view
returns (uint256);
function get_dy(int128 i, int128 j, uint256 dx, uint256[2] memory _balances)
external
view
returns (uint256);
function get_dy_underlying(int128 i, int128 j, uint256 dx)
external
view
returns (uint256);
function get_dy_underlying(
int128 i,
int128 j,
uint256 dx,
uint256[2] memory _balances
) external view returns (uint256);
function exchange(uint256 i, uint256 j, uint256 dx, uint256 min_dy)
external;
function exchange(
uint256 i,
uint256 j,
uint256 dx,
uint256 min_dy,
address _receiver
) external;
function exchange(int128 i, int128 j, uint256 dx, uint256 min_dy)
external;
function exchange(
int128 i,
int128 j,
uint256 dx,
uint256 min_dy,
address _receiver
) external;
function exchange_underlying(
uint256 i,
uint256 j,
uint256 dx,
uint256 min_dy
) external;
function exchange_underlying(
uint256 i,
uint256 j,
uint256 dx,
uint256 min_dy,
address _receiver
) external;
function exchange_underlying(int128 i, int128 j, uint256 dx, uint256 min_dy)
external;
function exchange_underlying(
int128 i,
int128 j,
uint256 dx,
uint256 min_dy,
address _receiver
) external;
function remove_liquidity(
uint256 _burn_amount,
uint256[2] memory _min_amounts
) external returns (uint256[2] memory);
function remove_liquidity(
uint256 _burn_amount,
uint256[2] memory _min_amounts,
address _receiver
) external returns (uint256[2] memory);
function remove_liquidity_imbalance(
uint256[2] memory _amounts,
uint256 _max_burn_amount
) external returns (uint256);
function remove_liquidity_imbalance(
uint256[2] memory _amounts,
uint256 _max_burn_amount,
address _receiver
) external returns (uint256);
function calc_withdraw_one_coin(uint256 _burn_amount, int128 i)
external
view
returns (uint256);
function calc_withdraw_one_coin(
uint256 _burn_amount,
int128 i,
bool _previous
) external view returns (uint256);
function remove_liquidity_one_coin(
uint256 _burn_amount,
int128 i,
uint256 _min_received
) external returns (uint256);
function remove_liquidity_one_coin(
uint256 _burn_amount,
int128 i,
uint256 _min_received,
address _receiver
) external returns (uint256);
function ramp_A(uint256 _future_A, uint256 _future_time) external;
function stop_ramp_A() external;
function admin_balances(uint256 i) external view returns (uint256);
function withdraw_admin_fees() external;
function admin() external view returns (address);
function coins(uint256 arg0) external view returns (address);
function balances(uint256 arg0) external view returns (uint256);
function fee() external view returns (uint256);
function block_timestamp_last() external view returns (uint256);
function initial_A() external view returns (uint256);
function future_A() external view returns (uint256);
function initial_A_time() external view returns (uint256);
function future_A_time() external view returns (uint256);
function name() external view returns (string memory);
function symbol() external view returns (string memory);
function balanceOf(address arg0) external view returns (uint256);
function allowance(address arg0, address arg1)
external
view
returns (uint256);
function totalSupply() external view returns (uint256);
}

View File

@@ -0,0 +1,22 @@
// SPDX-License-Identifier: MIT
pragma solidity >=0.4.0;
interface ICurvePoolNoReturn {
function get_dy(int128 i, int128 j, uint256 dx)
external
view
returns (uint256);
function get_dy_underlying(int128 i, int128 j, uint256 dx)
external
view
returns (uint256);
function exchange(int128 i, int128 j, uint256 dx, uint256 min_dy)
external;
function exchange_underlying(int128 i, int128 j, uint256 dx, uint256 min_dy)
external;
function coins(int128 arg0) external view returns (address);
function underlying_coins(int128 arg0) external view returns (address);
}

View File

@@ -0,0 +1,39 @@
// SPDX-License-Identifier: MIT
pragma solidity >=0.4.0;
interface ICurvePoolWithReturn {
function get_dy(int128 i, int128 j, uint256 dx)
external
view
returns (uint256);
function get_dy_underlying(int128 i, int128 j, uint256 dx)
external
view
returns (uint256);
function exchange(int128 i, int128 j, uint256 dx, uint256 min_dy)
external
returns (uint256);
function exchange_underlying(int128 i, int128 j, uint256 dx, uint256 min_dy)
external
returns (uint256);
function exchange(
uint256 i,
uint256 j,
uint256 dx,
uint256 min_dy,
bool use_eth,
address receiver
) external returns (uint256);
function exchange(
uint256 i,
uint256 j,
uint256 dx,
uint256 min_dy,
bool use_eth
) external returns (uint256);
}

View File

@@ -0,0 +1,295 @@
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.0;
import "openzeppelin-contracts/contracts/interfaces/IERC20.sol";
import "openzeppelin-contracts/contracts/utils/Address.sol";
/**
* @title Propellerheads Safe ERC20 Transfer Library
* @author PropellerHeads Developers
* @dev Gas-efficient version of Openzeppelin's SafeERC20 contract.
* This is a mix between SafeERC20 and GPv2SafeERC20 libraries. It
* provides efficient transfers optimised for router contracts, while
* keeping the Openzeppelins compatibility for approvals.
*/
library EfficientERC20 {
using Address for address;
error TransferFailed(uint256 balance, uint256 amount);
error TransferFromFailed(uint256 balance, uint256 amount);
bytes4 private constant _balanceOfSelector = hex"70a08231";
bytes4 private constant _transferSelector = hex"a9059cbb";
/// @dev Wrapper around a call to the ERC20 function `transfer` that reverts
/// also when the token returns `false`.
function safeTransfer(IERC20 token, address to, uint256 value) internal {
// solhint-disable-next-line no-inline-assembly
assembly {
let freeMemoryPointer := mload(0x40)
mstore(freeMemoryPointer, _transferSelector)
mstore(
add(freeMemoryPointer, 4),
and(to, 0xffffffffffffffffffffffffffffffffffffffff)
)
mstore(add(freeMemoryPointer, 36), value)
if iszero(call(gas(), token, 0, freeMemoryPointer, 68, 0, 0)) {
returndatacopy(0, 0, returndatasize())
revert(0, returndatasize())
}
}
if (!getLastTransferResult(token)) {
uint256 balance = token.balanceOf(address(this));
revert TransferFailed(balance, value);
}
}
/**
* @dev Transfers the callers balance - 1. This effectively leaves dust on
* the contract
* which will lead to more gas efficient transfers in the future.
*/
function transferBalanceLeavingDust(IERC20 token, address to) internal {
uint256 amount;
assembly {
// Load free memory pointer
let input := mload(0x40)
// Prepare call data: function selector (4 bytes) + contract address
// (32 bytes)
mstore(input, _balanceOfSelector)
mstore(add(input, 0x04), address())
// Call 'balanceOf' function and store result in 'amount'
let success := staticcall(gas(), token, input, 0x24, input, 0x20)
if iszero(success) {
// Get the size of the returned error message and forward it
let returnSize := returndatasize()
returndatacopy(input, 0, returnSize)
revert(input, returnSize)
}
amount := sub(mload(input), 1)
// Prepare call data: function selector (4 bytes) + to (32 bytes) +
// amount (32 bytes)
mstore(input, _transferSelector)
mstore(add(input, 0x04), to)
mstore(add(input, 0x24), amount)
if iszero(call(gas(), token, 0, input, 0x44, 0, 0)) {
returndatacopy(0, 0, returndatasize())
revert(0, returndatasize())
}
}
if (!getLastTransferResult(token)) {
uint256 balance = token.balanceOf(address(this));
revert TransferFailed(balance, amount);
}
}
/**
* @dev Wrapper around a call to the ERC20 function `transferFrom` that
* reverts also when the token returns `false`.
*/
function safeTransferFrom(
IERC20 token,
address from,
address to,
uint256 value
) internal {
bytes4 selector_ = token.transferFrom.selector;
// solhint-disable-next-line no-inline-assembly
assembly {
let freeMemoryPointer := mload(0x40)
mstore(freeMemoryPointer, selector_)
mstore(
add(freeMemoryPointer, 4),
and(from, 0xffffffffffffffffffffffffffffffffffffffff)
)
mstore(
add(freeMemoryPointer, 36),
and(to, 0xffffffffffffffffffffffffffffffffffffffff)
)
mstore(add(freeMemoryPointer, 68), value)
if iszero(call(gas(), token, 0, freeMemoryPointer, 100, 0, 0)) {
returndatacopy(0, 0, returndatasize())
revert(0, returndatasize())
}
}
if (!getLastTransferResult(token)) {
uint256 balance = token.balanceOf(address(this));
revert TransferFailed(balance, value);
}
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(IERC20 token, address spender, uint256 value)
internal
{
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(
token,
abi.encodeWithSelector(token.approve.selector, spender, value)
);
}
/**
* @dev Set the calling contract's allowance toward `spender` to `value`. If
* `token` returns no value,
* non-reverting calls are assumed to be successful. Meant to be used with
* tokens that require the approval
* to be set to zero before setting it to a non-zero value, such as USDT.
*/
function forceApprove(IERC20 token, address spender, uint256 value)
internal
{
bytes memory approvalCall =
abi.encodeCall(token.approve, (spender, value));
if (!_callOptionalReturnBool(token, approvalCall)) {
_callOptionalReturn(
token, abi.encodeCall(token.approve, (spender, 0))
);
_callOptionalReturn(token, approvalCall);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to
* a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is
* returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its
* variants).
*/
function _callOptionalReturn(IERC20 token, bytes memory data) private {
// We need to perform a low level call here, to bypass Solidity's return
// data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to
// perform this call, which verifies that
// the target address contains contract code and also asserts for
// success in the low-level call.
bytes memory returndata = address(token).functionCall(data);
if (returndata.length > 0) {
// Return data is optional
require(
abi.decode(returndata, (bool)),
"SafeERC20: ERC20 operation did not succeed"
);
}
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to
* a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is
* returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its
* variants).
*
* This is a variant of {_callOptionalReturn} that silently catches all
* reverts and returns a bool instead.
*/
function _callOptionalReturnBool(IERC20 token, bytes memory data)
private
returns (bool)
{
// We need to perform a low level call here, to bypass Solidity's return
// data size checking mechanism, since
// we're implementing it ourselves. We cannot use {Address-functionCall}
// here since this should return false
// and not revert is the subcall reverts.
(bool success, bytes memory returndata) = address(token).call(data);
return success
&& (returndata.length == 0 || abi.decode(returndata, (bool)))
&& address(token).code.length > 0;
}
/// @dev Verifies that the last return was a successful `transfer*` call.
/// This is done by checking that the return data is either empty, or
/// is a valid ABI encoded boolean.
function getLastTransferResult(IERC20 token)
private
view
returns (bool success)
{
// NOTE: Inspecting previous return data requires assembly. Note that
// we write the return data to memory 0 in the case where the return
// data size is 32, this is OK since the first 64 bytes of memory are
// reserved by Solidy as a scratch space that can be used within
// assembly blocks.
// <https://docs.soliditylang.org/en/v0.7.6/internals/layout_in_memory.html>
// solhint-disable-next-line no-inline-assembly
assembly {
/// @dev Revert with an ABI encoded Solidity error with a message
/// that fits into 32-bytes.
///
/// An ABI encoded Solidity error has the following memory layout:
///
/// ------------+----------------------------------
/// byte range | value
/// ------------+----------------------------------
/// 0x00..0x04 | selector("Error(string)")
/// 0x04..0x24 | string offset (always 0x20)
/// 0x24..0x44 | string length
/// 0x44..0x64 | string value, padded to 32-bytes
function revertWithMessage(length, message) {
mstore(0x00, "\x08\xc3\x79\xa0")
mstore(0x04, 0x20)
mstore(0x24, length)
mstore(0x44, message)
revert(0x00, 0x64)
}
switch returndatasize()
// Non-standard ERC20 transfer without return.
case 0 {
// NOTE: When the return data size is 0, verify that there
// is code at the address. This is done in order to maintain
// compatibility with Solidity calling conventions.
// <https://docs.soliditylang.org/en/v0.7.6/control-structures.html#external-function-calls>
if iszero(extcodesize(token)) {
revertWithMessage(20, "GPv2: not a contract")
}
success := 1
}
// Standard ERC20 transfer returning boolean success value.
case 32 {
returndatacopy(0, 0, returndatasize())
// NOTE: For ABI encoding v1, any non-zero value is accepted
// as `true` for a boolean. In order to stay compatible with
// OpenZeppelin's `SafeERC20` library which is known to work
// with the existing ERC20 implementation we care about,
// make sure we return success for any non-zero return value
// from the `transfer*` call.
success := iszero(iszero(mload(0)))
}
default { revertWithMessage(31, "GPv2: malformed transfer result") }
}
}
}

View File

@@ -0,0 +1,303 @@
// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.13;
import "./SwapExecutor.t.sol";
import "../src/curve/CurveSwapExecutor.sol";
contract CurveSwapExecutorExposed is CurveSwapExecutor {
function decodeParams(bytes calldata data)
external
pure
returns (
IERC20 tokenOut,
address target,
address receiver,
uint8 poolType,
int128 i,
int128 j,
bool tokenApprovalNeeded
)
{
return _decodeParams(data);
}
}
contract CurveSwapExecutorPayable is CurveSwapExecutor {
receive() external payable {}
}
interface ILendingPool {
function deposit(
address asset,
uint256 amount,
address onBehalfOf,
uint16 referralCode
) external;
function withdraw(address asset, uint256 amount, address to)
external
returns (uint256);
}
contract TestCurveSwapExecutor is SwapExecutorTest {
CurveSwapExecutor swapMethod;
address swapMethodAddress;
// type 0 pool
address aDAI_ADDR = 0x028171bCA77440897B824Ca71D1c56caC55b68A3;
address aUSDC_ADDR = 0xBcca60bB61934080951369a648Fb03DF4F96263C;
IERC20 aDAI = IERC20(aDAI_ADDR);
IERC20 aUSDC = IERC20(aUSDC_ADDR);
address AAVE_POOL = 0xDeBF20617708857ebe4F679508E7b7863a8A8EeE;
// type 1 - 3pool
IERC20 DAI = IERC20(DAI_ADDR);
IERC20 USDC = IERC20(USDC_ADDR);
address THREE_POOL = 0xbEbc44782C7dB0a1A60Cb6fe97d0b483032FF1C7;
// type 3 - tricrypto case
IERC20 WETH = IERC20(WETH_ADDR);
IERC20 WBTC = IERC20(WBTC_ADDR);
address TRICRYPTO_POOL = 0xD51a44d3FaE010294C616388b506AcdA1bfAAE46;
// type 4 - stETH
address stETH_ADDR = 0xae7ab96520DE3A18E5e111B5EaAb095312D7fE84;
IERC20 stETH = IERC20(stETH_ADDR);
address stETH_POOL = 0xDC24316b9AE028F1497c275EB9192a3Ea0f67022;
// type 5 - LUSD
address LUSD_ADDR = 0x5f98805A4E8be255a32880FDeC7F6728C6568bA0;
IERC20 LUSD = IERC20(LUSD_ADDR);
IERC20 USDT = IERC20(USDT_ADDR);
address LUSD_POOL = 0xEd279fDD11cA84bEef15AF5D39BB4d4bEE23F0cA;
// type 6 - compound
address CPOOL = 0xA2B47E3D5c44877cca798226B7B8118F9BFb7A56;
// type 7
address LDO_POOL = 0x9409280DC1e6D33AB7A8C6EC03e5763FB61772B5;
IERC20 LDO = IERC20(LDO_ADDR);
// type 8
address CRV_POOL = 0x8301AE4fc9c624d1D396cbDAa1ed877821D7C511;
IERC20 CRV = IERC20(CRV_ADDR);
function setUp() public {
//Fork
uint256 forkBlock = 16000000;
vm.createSelectFork(vm.rpcUrl("mainnet"), forkBlock);
//Setup
swapMethod = new CurveSwapExecutor();
swapMethodAddress = address(swapMethod);
vm.makePersistent(swapMethodAddress);
}
// foundry deal doesn't work with the atokens:
// https://github.com/foundry-rs/forge-std/issues/140
function dealAaveDai() internal {
deal(DAI_ADDR, swapMethodAddress, 100_000 * 10 ** 18);
ILendingPool aave =
ILendingPool(0x7d2768dE32b0b80b7a3454c06BdAc94A69DDc7A9);
vm.startPrank(swapMethodAddress);
DAI.approve(address(aave), type(uint256).max);
aave.deposit(DAI_ADDR, 100_000 * 10 ** 18, swapMethodAddress, 0);
vm.stopPrank();
}
function testSwapType0() public {
dealAaveDai();
IERC20[] memory tokens = twoTokens(aDAI_ADDR, aUSDC_ADDR);
uint256 expAmountOut = 999647;
address receiver = bob;
bytes memory data =
getDataCurve(tokens[1], AAVE_POOL, receiver, 1, 0, 1, true);
uint256 amountOut = swapMethod.swap(10 ** 18, data);
uint256 finalBalance = aUSDC.balanceOf(receiver);
assertGe(finalBalance, expAmountOut);
assertEq(amountOut, expAmountOut);
}
// 3pool
function testSwapType1() public {
deal(DAI_ADDR, swapMethodAddress, 10_000 * 10 ** 18);
IERC20[] memory tokens = twoTokens(DAI_ADDR, USDC_ADDR);
uint256 expAmountOut = 999963;
address receiver = bob;
bytes memory data =
getDataCurve(tokens[1], THREE_POOL, receiver, 1, 0, 1, true);
uint256 amountOut = swapMethod.swap(10 ** 18, data);
uint256 finalBalance = USDC.balanceOf(receiver);
assertGe(finalBalance, expAmountOut);
assertEq(amountOut, expAmountOut);
}
// tricrypto
function testSwapType3() public {
deal(USDT_ADDR, swapMethodAddress, 10_000 * 10 ** 6);
IERC20[] memory tokens = twoTokens(USDT_ADDR, WBTC_ADDR);
uint256 expAmountOut = 60232482;
address receiver = bob;
bytes memory data =
getDataCurve(tokens[1], TRICRYPTO_POOL, receiver, 3, 0, 1, true);
uint256 amountOut = swapMethod.swap(10_000 * 10 ** 6, data);
uint256 finalBalance = WBTC.balanceOf(receiver);
assertGe(finalBalance, expAmountOut);
assertEq(amountOut, expAmountOut);
}
// stETH/ETH pool
function testSwapType4() public {
CurveSwapExecutorPayable swapMethodPayable =
new CurveSwapExecutorPayable();
address swapMethodPayableAddress = address(swapMethodPayable);
deal(WETH_ADDR, swapMethodPayableAddress, 100 * 10 ** 18);
IERC20[] memory tokens = twoTokens(WETH_ADDR, stETH_ADDR);
uint256 expAmountOut = 1011264689661846353;
bytes memory data = getDataCurve(
tokens[1], stETH_POOL, swapMethodPayableAddress, 4, 0, 1, false
);
vm.prank(swapMethodPayableAddress);
uint256 amountOut = swapMethodPayable.swap(10 ** 18, data);
uint256 finalBalance = stETH.balanceOf(swapMethodPayableAddress);
assertGe(finalBalance, expAmountOut);
// There is something weird with
// stETH that it gives me 1 Wei more here sometimes
assertGe(amountOut, expAmountOut);
// part 2 swap back stETH
tokens = twoTokens(stETH_ADDR, WETH_ADDR);
expAmountOut = 988069860569702379;
address receiver = bob;
data = getDataCurve(tokens[1], stETH_POOL, receiver, 4, 1, 0, true);
uint256 initialBalance = WETH.balanceOf(receiver);
amountOut = swapMethodPayable.swap(10 ** 18, data);
finalBalance = WETH.balanceOf(receiver) - initialBalance;
assertGe(finalBalance, expAmountOut);
assertEq(amountOut, expAmountOut);
}
// // metapool - LUSD
function testSwapType5() public {
deal(LUSD_ADDR, swapMethodAddress, 10_000 * 10 ** 18);
IERC20[] memory tokens = twoTokens(LUSD_ADDR, USDT_ADDR);
uint256 expAmountOut = 1035119;
address receiver = bob;
bytes memory data =
getDataCurve(tokens[1], LUSD_POOL, receiver, 5, 0, 3, true);
uint256 amountOut = swapMethod.swap(10 ** 18, data);
uint256 finalBalance = USDT.balanceOf(receiver);
assertGe(finalBalance, expAmountOut);
assertEq(amountOut, expAmountOut);
}
// Compound
function testSwapType6() public {
deal(DAI_ADDR, swapMethodAddress, 10_000 * 10 ** 18);
IERC20[] memory tokens = twoTokens(DAI_ADDR, USDC_ADDR);
uint256 expAmountOut = 999430;
address receiver = bob;
bytes memory data =
getDataCurve(tokens[1], CPOOL, receiver, 6, 0, 1, true);
uint256 amountOut = swapMethod.swap(10 ** 18, data);
uint256 finalBalance = USDC.balanceOf(receiver);
assertGe(finalBalance, expAmountOut);
assertEq(amountOut, expAmountOut);
}
// Curve v2
function testSwapType7() public {
vm.rollFork(17_000_000); //change block because this pool wasn't
// deployed at block 16M
uint256 amountIn = 10 ** 18;
uint256 expAmountOut = 743676671921315909289;
address receiver = bob;
deal(WETH_ADDR, swapMethodAddress, amountIn);
bytes memory data = abi.encodePacked(
getDataCurve(LDO, LDO_POOL, receiver, 7, 0, 1, true), receiver
);
uint256 amountOut = swapMethod.swap(amountIn, data);
uint256 finalBalance = LDO.balanceOf(bob);
assertGe(finalBalance, expAmountOut);
assertEq(amountOut, expAmountOut);
}
// Curve v2 2 token not factory pool
function testSwapType8() public {
vm.rollFork(17_000_000); //change block because this pool wasn't
// deployed at block 16M
uint256 amountIn = 10 ** 18;
uint256 expAmountOut = 1831110768300490995125;
address receiver = bob;
deal(WETH_ADDR, swapMethodAddress, amountIn);
bytes memory data = abi.encodePacked(
getDataCurve(CRV, CRV_POOL, receiver, 8, 0, 1, true), receiver
);
uint256 amountOut = swapMethod.swap(amountIn, data);
uint256 finalBalance = CRV.balanceOf(bob);
assertGe(finalBalance, expAmountOut);
assertEq(amountOut, expAmountOut);
}
function testDecodeParams() public {
CurveSwapExecutorExposed swapMethodExposed =
new CurveSwapExecutorExposed();
//Logic
bytes memory data = getDataCurve(LDO, LDO_POOL, bob, 7, 0, 1, true);
(
IERC20 tokenOut,
address target,
address receiver,
uint8 poolType,
int128 i,
int128 j,
bool tokenApprovalNeeded
) = swapMethodExposed.decodeParams(data);
//Assertions
assertEq(address(tokenOut), LDO_ADDR);
assertEq(address(target), LDO_POOL);
assertEq(address(receiver), bob);
assertEq(poolType, 7);
assertEq(i, 0);
assertEq(j, 1);
assertEq(tokenApprovalNeeded, true);
}
function getDataCurve(
IERC20 tokenOut,
address pool,
address receiver,
uint8 poolType,
uint8 i,
uint8 j,
bool tokenApprovalNeeded
) internal pure returns (bytes memory data) {
data = abi.encodePacked(
tokenOut, pool, receiver, poolType, i, j, tokenApprovalNeeded
);
}
}