Files
tycho-execution/src/encoding/evm/strategy_encoder/strategy_encoders.rs
2025-05-26 12:50:11 +01:00

2815 lines
123 KiB
Rust

use std::{collections::HashSet, str::FromStr};
use alloy_primitives::{aliases::U24, U8};
use tycho_common::Bytes;
use crate::encoding::{
errors::EncodingError,
evm::{
group_swaps::group_swaps,
strategy_encoder::{
strategy_validators::{SequentialSwapValidator, SplitSwapValidator, SwapValidator},
transfer_optimizations::TransferOptimization,
},
swap_encoder::swap_encoder_registry::SwapEncoderRegistry,
utils::{get_token_position, percentage_to_uint24, ple_encode},
},
models::{Chain, EncodedSolution, EncodingContext, NativeAction, Solution, UserTransferType},
strategy_encoder::StrategyEncoder,
swap_encoder::SwapEncoder,
};
/// Represents the encoder for a swap strategy which supports single swaps.
///
/// # Fields
/// * `swap_encoder_registry`: SwapEncoderRegistry, containing all possible swap encoders
/// * `selector`: String, the selector for the swap function in the router contract
/// * `router_address`: Address of the router to be used to execute swaps
/// * `transfer_optimization`: TransferOptimization, responsible for optimizing the token transfers
#[derive(Clone)]
pub struct SingleSwapStrategyEncoder {
swap_encoder_registry: SwapEncoderRegistry,
selector: String,
router_address: Bytes,
transfer_optimization: TransferOptimization,
}
impl SingleSwapStrategyEncoder {
pub fn new(
chain: Chain,
swap_encoder_registry: SwapEncoderRegistry,
user_transfer_type: UserTransferType,
router_address: Bytes,
) -> Result<Self, EncodingError> {
let selector = if user_transfer_type == UserTransferType::TransferFromPermit2 {
"singleSwapPermit2(uint256,address,address,uint256,bool,bool,address,((address,uint160,uint48,uint48),address,uint256),bytes,bytes)"
} else {
"singleSwap(uint256,address,address,uint256,bool,bool,address,bool,bytes)"
}.to_string();
Ok(Self {
selector,
swap_encoder_registry,
router_address: router_address.clone(),
transfer_optimization: TransferOptimization::new(
chain.native_token()?,
chain.wrapped_token()?,
user_transfer_type,
router_address,
),
})
}
/// Encodes information necessary for performing a single hop against a given executor for
/// a protocol.
fn encode_swap_header(&self, executor_address: Bytes, protocol_data: Vec<u8>) -> Vec<u8> {
let mut encoded = Vec::new();
encoded.extend(executor_address.to_vec());
encoded.extend(protocol_data);
encoded
}
}
impl StrategyEncoder for SingleSwapStrategyEncoder {
fn encode_strategy(&self, solution: Solution) -> Result<EncodedSolution, EncodingError> {
let grouped_swaps = group_swaps(solution.clone().swaps);
let number_of_groups = grouped_swaps.len();
if number_of_groups != 1 {
return Err(EncodingError::InvalidInput(format!(
"Executor strategy only supports exactly one swap for non-groupable protocols. Found {number_of_groups}",
)))
}
let grouped_swap = grouped_swaps
.first()
.ok_or_else(|| EncodingError::FatalError("Swap grouping failed".to_string()))?;
if grouped_swap.split != 0f64 {
return Err(EncodingError::InvalidInput(
"Splits not supported for single swaps.".to_string(),
))
}
let (mut unwrap, mut wrap) = (false, false);
if let Some(action) = solution.native_action.clone() {
match action {
NativeAction::Wrap => wrap = true,
NativeAction::Unwrap => unwrap = true,
}
}
let protocol = grouped_swap.protocol_system.clone();
let swap_encoder = self
.get_swap_encoder(&protocol)
.ok_or_else(|| {
EncodingError::InvalidInput(format!(
"Swap encoder not found for protocol: {protocol}"
))
})?;
let swap_receiver =
if !unwrap { solution.receiver.clone() } else { self.router_address.clone() };
let transfer = self
.transfer_optimization
.get_transfers(grouped_swap.clone(), solution.given_token.clone(), wrap, false);
let encoding_context = EncodingContext {
receiver: swap_receiver.clone(),
exact_out: solution.exact_out,
router_address: Some(self.router_address.clone()),
group_token_in: grouped_swap.token_in.clone(),
group_token_out: grouped_swap.token_out.clone(),
transfer_type: transfer,
};
let mut grouped_protocol_data: Vec<u8> = vec![];
for swap in grouped_swap.swaps.iter() {
let protocol_data = swap_encoder.encode_swap(swap.clone(), encoding_context.clone())?;
grouped_protocol_data.extend(protocol_data);
}
let swap_data = self.encode_swap_header(
Bytes::from_str(swap_encoder.executor_address())
.map_err(|_| EncodingError::FatalError("Invalid executor address".to_string()))?,
grouped_protocol_data,
);
Ok(EncodedSolution {
selector: self.selector.clone(),
interacting_with: self.router_address.clone(),
swaps: swap_data,
permit: None,
n_tokens: 0,
})
}
fn get_swap_encoder(&self, protocol_system: &str) -> Option<&Box<dyn SwapEncoder>> {
self.swap_encoder_registry
.get_encoder(protocol_system)
}
fn clone_box(&self) -> Box<dyn StrategyEncoder> {
Box::new(self.clone())
}
}
/// Represents the encoder for a swap strategy which supports sequential swaps.
///
/// # Fields
/// * `swap_encoder_registry`: SwapEncoderRegistry, containing all possible swap encoders
/// * `selector`: String, the selector for the swap function in the router contract
/// * `native_address`: Address of the chain's native token
/// * `wrapped_address`: Address of the chain's wrapped token
/// * `router_address`: Address of the router to be used to execute swaps
/// * `sequential_swap_validator`: SequentialSwapValidator, responsible for checking validity of
/// sequential swap solutions
/// * `transfer_optimization`: TransferOptimization, responsible for optimizing the token transfers
#[derive(Clone)]
pub struct SequentialSwapStrategyEncoder {
swap_encoder_registry: SwapEncoderRegistry,
selector: String,
router_address: Bytes,
native_address: Bytes,
wrapped_address: Bytes,
sequential_swap_validator: SequentialSwapValidator,
transfer_optimization: TransferOptimization,
}
impl SequentialSwapStrategyEncoder {
pub fn new(
chain: Chain,
swap_encoder_registry: SwapEncoderRegistry,
user_transfer_type: UserTransferType,
router_address: Bytes,
) -> Result<Self, EncodingError> {
let selector = if user_transfer_type == UserTransferType::TransferFromPermit2 {
"sequentialSwapPermit2(uint256,address,address,uint256,bool,bool,address,((address,uint160,uint48,uint48),address,uint256),bytes,bytes)"
} else {
"sequentialSwap(uint256,address,address,uint256,bool,bool,address,bool,bytes)"
}.to_string();
Ok(Self {
selector,
swap_encoder_registry,
router_address: router_address.clone(),
native_address: chain.native_token()?,
wrapped_address: chain.wrapped_token()?,
sequential_swap_validator: SequentialSwapValidator,
transfer_optimization: TransferOptimization::new(
chain.native_token()?,
chain.wrapped_token()?,
user_transfer_type,
router_address,
),
})
}
/// Encodes information necessary for performing a single hop against a given executor for
/// a protocol.
fn encode_swap_header(&self, executor_address: Bytes, protocol_data: Vec<u8>) -> Vec<u8> {
let mut encoded = Vec::new();
encoded.extend(executor_address.to_vec());
encoded.extend(protocol_data);
encoded
}
}
impl StrategyEncoder for SequentialSwapStrategyEncoder {
fn encode_strategy(&self, solution: Solution) -> Result<EncodedSolution, EncodingError> {
self.sequential_swap_validator
.validate_swap_path(
&solution.swaps,
&solution.given_token,
&solution.checked_token,
&solution.native_action,
&self.native_address,
&self.wrapped_address,
)?;
let grouped_swaps = group_swaps(solution.swaps);
let mut wrap = false;
if let Some(action) = solution.native_action.clone() {
if action == NativeAction::Wrap {
wrap = true
}
}
let mut swaps = vec![];
let mut next_in_between_swap_optimization_allowed = true;
for (i, grouped_swap) in grouped_swaps.iter().enumerate() {
let protocol = grouped_swap.protocol_system.clone();
let swap_encoder = self
.get_swap_encoder(&protocol)
.ok_or_else(|| {
EncodingError::InvalidInput(format!(
"Swap encoder not found for protocol: {protocol}",
))
})?;
let in_between_swap_optimization_allowed = next_in_between_swap_optimization_allowed;
let next_swap = grouped_swaps.get(i + 1);
let (swap_receiver, next_swap_optimization) = self
.transfer_optimization
.get_receiver(solution.receiver.clone(), next_swap)?;
next_in_between_swap_optimization_allowed = next_swap_optimization;
let transfer = self
.transfer_optimization
.get_transfers(
grouped_swap.clone(),
solution.given_token.clone(),
wrap,
in_between_swap_optimization_allowed,
);
let encoding_context = EncodingContext {
receiver: swap_receiver.clone(),
exact_out: solution.exact_out,
router_address: Some(self.router_address.clone()),
group_token_in: grouped_swap.token_in.clone(),
group_token_out: grouped_swap.token_out.clone(),
transfer_type: transfer,
};
let mut grouped_protocol_data: Vec<u8> = vec![];
for swap in grouped_swap.swaps.iter() {
let protocol_data =
swap_encoder.encode_swap(swap.clone(), encoding_context.clone())?;
grouped_protocol_data.extend(protocol_data);
}
let swap_data = self.encode_swap_header(
Bytes::from_str(swap_encoder.executor_address()).map_err(|_| {
EncodingError::FatalError("Invalid executor address".to_string())
})?,
grouped_protocol_data,
);
swaps.push(swap_data);
}
let encoded_swaps = ple_encode(swaps);
Ok(EncodedSolution {
interacting_with: self.router_address.clone(),
selector: self.selector.clone(),
swaps: encoded_swaps,
permit: None,
n_tokens: 0,
})
}
fn get_swap_encoder(&self, protocol_system: &str) -> Option<&Box<dyn SwapEncoder>> {
self.swap_encoder_registry
.get_encoder(protocol_system)
}
fn clone_box(&self) -> Box<dyn StrategyEncoder> {
Box::new(self.clone())
}
}
/// Represents the encoder for a swap strategy which supports split swaps.
///
/// # Fields
/// * `swap_encoder_registry`: SwapEncoderRegistry, containing all possible swap encoders
/// * `selector`: String, the selector for the swap function in the router contract
/// * `native_address`: Address of the chain's native token
/// * `wrapped_address`: Address of the chain's wrapped token
/// * `split_swap_validator`: SplitSwapValidator, responsible for checking validity of split swap
/// solutions
/// * `router_address`: Address of the router to be used to execute swaps
/// * `transfer_optimization`: TransferOptimization, responsible for optimizing the token transfers
#[derive(Clone)]
pub struct SplitSwapStrategyEncoder {
swap_encoder_registry: SwapEncoderRegistry,
selector: String,
native_address: Bytes,
wrapped_address: Bytes,
split_swap_validator: SplitSwapValidator,
router_address: Bytes,
transfer_optimization: TransferOptimization,
}
impl SplitSwapStrategyEncoder {
pub fn new(
chain: Chain,
swap_encoder_registry: SwapEncoderRegistry,
user_transfer_type: UserTransferType,
router_address: Bytes,
) -> Result<Self, EncodingError> {
let selector = if user_transfer_type == UserTransferType::TransferFromPermit2 {
"splitSwapPermit2(uint256,address,address,uint256,bool,bool,uint256,address,((address,uint160,uint48,uint48),address,uint256),bytes,bytes)"
} else {
"splitSwap(uint256,address,address,uint256,bool,bool,uint256,address,bool,bytes)"
}.to_string();
Ok(Self {
selector,
swap_encoder_registry,
native_address: chain.native_token()?,
wrapped_address: chain.wrapped_token()?,
split_swap_validator: SplitSwapValidator,
router_address: router_address.clone(),
transfer_optimization: TransferOptimization::new(
chain.native_token()?,
chain.wrapped_token()?,
user_transfer_type,
router_address,
),
})
}
/// Encodes information necessary for performing a single hop against a given executor for
/// a protocol as part of a split swap solution.
fn encode_swap_header(
&self,
token_in: U8,
token_out: U8,
split: U24,
executor_address: Bytes,
protocol_data: Vec<u8>,
) -> Vec<u8> {
let mut encoded = Vec::new();
encoded.push(token_in.to_be_bytes_vec()[0]);
encoded.push(token_out.to_be_bytes_vec()[0]);
encoded.extend_from_slice(&split.to_be_bytes_vec());
encoded.extend(executor_address.to_vec());
encoded.extend(protocol_data);
encoded
}
}
impl StrategyEncoder for SplitSwapStrategyEncoder {
fn encode_strategy(&self, solution: Solution) -> Result<EncodedSolution, EncodingError> {
self.split_swap_validator
.validate_split_percentages(&solution.swaps)?;
self.split_swap_validator
.validate_swap_path(
&solution.swaps,
&solution.given_token,
&solution.checked_token,
&solution.native_action,
&self.native_address,
&self.wrapped_address,
)?;
// The tokens array is composed of the given token, the checked token and all the
// intermediary tokens in between. The contract expects the tokens to be in this order.
let solution_tokens: HashSet<Bytes> =
vec![solution.given_token.clone(), solution.checked_token.clone()]
.into_iter()
.collect();
let grouped_swaps = group_swaps(solution.swaps);
let intermediary_tokens: HashSet<Bytes> = grouped_swaps
.iter()
.flat_map(|grouped_swap| {
vec![grouped_swap.token_in.clone(), grouped_swap.token_out.clone()]
})
.collect();
let mut intermediary_tokens: Vec<Bytes> = intermediary_tokens
.difference(&solution_tokens)
.cloned()
.collect();
// this is only to make the test deterministic (same index for the same token for different
// runs)
intermediary_tokens.sort();
let (mut unwrap, mut wrap) = (false, false);
if let Some(action) = solution.native_action.clone() {
match action {
NativeAction::Wrap => wrap = true,
NativeAction::Unwrap => unwrap = true,
}
}
let mut tokens = Vec::with_capacity(2 + intermediary_tokens.len());
if wrap {
tokens.push(self.wrapped_address.clone());
} else {
tokens.push(solution.given_token.clone());
}
tokens.extend(intermediary_tokens);
if unwrap {
tokens.push(self.wrapped_address.clone());
} else {
tokens.push(solution.checked_token.clone());
}
let mut swaps = vec![];
for grouped_swap in grouped_swaps.iter() {
let protocol = grouped_swap.protocol_system.clone();
let swap_encoder = self
.get_swap_encoder(&protocol)
.ok_or_else(|| {
EncodingError::InvalidInput(format!(
"Swap encoder not found for protocol: {protocol}",
))
})?;
let swap_receiver = if !unwrap && grouped_swap.token_out == solution.checked_token {
solution.receiver.clone()
} else {
self.router_address.clone()
};
let transfer = self
.transfer_optimization
.get_transfers(grouped_swap.clone(), solution.given_token.clone(), wrap, false);
let encoding_context = EncodingContext {
receiver: swap_receiver.clone(),
exact_out: solution.exact_out,
router_address: Some(self.router_address.clone()),
group_token_in: grouped_swap.token_in.clone(),
group_token_out: grouped_swap.token_out.clone(),
transfer_type: transfer,
};
let mut grouped_protocol_data: Vec<u8> = vec![];
for swap in grouped_swap.swaps.iter() {
let protocol_data =
swap_encoder.encode_swap(swap.clone(), encoding_context.clone())?;
grouped_protocol_data.extend(protocol_data);
}
let swap_data = self.encode_swap_header(
get_token_position(tokens.clone(), grouped_swap.token_in.clone())?,
get_token_position(tokens.clone(), grouped_swap.token_out.clone())?,
percentage_to_uint24(grouped_swap.split),
Bytes::from_str(swap_encoder.executor_address()).map_err(|_| {
EncodingError::FatalError("Invalid executor address".to_string())
})?,
grouped_protocol_data,
);
swaps.push(swap_data);
}
let encoded_swaps = ple_encode(swaps);
let tokens_len = if solution.given_token == solution.checked_token {
tokens.len() - 1
} else {
tokens.len()
};
Ok(EncodedSolution {
interacting_with: self.router_address.clone(),
selector: self.selector.clone(),
swaps: encoded_swaps,
permit: None,
n_tokens: tokens_len,
})
}
fn get_swap_encoder(&self, protocol_system: &str) -> Option<&Box<dyn SwapEncoder>> {
self.swap_encoder_registry
.get_encoder(protocol_system)
}
fn clone_box(&self) -> Box<dyn StrategyEncoder> {
Box::new(self.clone())
}
}
#[cfg(test)]
mod tests {
use std::{collections::HashMap, str::FromStr};
use alloy::{hex::encode, signers::local::PrivateKeySigner};
use alloy_primitives::{hex, Address, B256, U256};
use num_bigint::{BigInt, BigUint};
use tycho_common::{
models::{protocol::ProtocolComponent, Chain as TychoCommonChain},
Bytes,
};
use super::*;
use crate::encoding::{
evm::{
approvals::permit2::Permit2, encoding_utils::encode_tycho_router_call,
utils::write_calldata_to_file,
},
models::{PermitSingle, Swap},
};
fn eth_chain() -> Chain {
TychoCommonChain::Ethereum.into()
}
fn eth() -> Bytes {
Bytes::from(hex!("0000000000000000000000000000000000000000").to_vec())
}
fn weth() -> Bytes {
Bytes::from(hex!("c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").to_vec())
}
fn get_swap_encoder_registry() -> SwapEncoderRegistry {
let eth_chain = eth_chain();
SwapEncoderRegistry::new(Some("config/test_executor_addresses.json".to_string()), eth_chain)
.unwrap()
}
fn router_address() -> Bytes {
Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap()
}
fn get_permit(router_address: Bytes, solution: &Solution) -> PermitSingle {
let permit2 = Permit2::new().unwrap();
permit2
.get_permit(
&router_address,
&solution.sender,
&solution.given_token,
&solution.given_amount,
)
.unwrap()
}
fn get_signer() -> PrivateKeySigner {
// Set up a mock private key for signing (Alice's pk in our contract tests)
let private_key =
"0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string();
let pk = B256::from_str(&private_key).unwrap();
PrivateKeySigner::from_bytes(&pk).unwrap()
}
mod single {
use alloy_sol_types::SolValue;
use super::*;
use crate::encoding::evm::utils::biguint_to_u256;
#[test]
fn test_single_swap_strategy_encoder() {
// Performs a single swap from WETH to DAI on a USV2 pool, with no grouping
// optimizations.
let checked_amount = BigUint::from_str("2018817438608734439720").unwrap();
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let swap = Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: dai.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SingleSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
UserTransferType::TransferFromPermit2,
router_address(),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: weth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: dai,
checked_amount: checked_amount.clone(),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap],
..Default::default()
};
let mut encoded_solution = encoder
.encode_strategy(solution.clone())
.unwrap();
let permit = get_permit(router_address(), &solution);
encoded_solution.permit = Some(permit);
let calldata = encode_tycho_router_call(
eth_chain().id,
encoded_solution,
&solution,
UserTransferType::TransferFromPermit2,
eth(),
Some(get_signer()),
)
.unwrap()
.data;
let expected_min_amount_encoded =
hex::encode(U256::abi_encode(&biguint_to_u256(&checked_amount)));
let expected_input = [
"30ace1b1", // Function selector
"0000000000000000000000000000000000000000000000000de0b6b3a7640000", // amount in
"000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"0000000000000000000000006b175474e89094c44da98b954eedeac495271d0f", // token out
&expected_min_amount_encoded, // min amount out
"0000000000000000000000000000000000000000000000000000000000000000", // wrap
"0000000000000000000000000000000000000000000000000000000000000000", // unwrap
"000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
]
.join("");
// after this there is the permit and because of the deadlines (that depend on block
// time) it's hard to assert
let expected_swap = String::from(concat!(
// length of encoded swap without padding
"0000000000000000000000000000000000000000000000000000000000000052",
// Swap data
"5615deb798bb3e4dfa0139dfa1b3d433cc23b72f", // executor address
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"a478c2975ab1ea89e8196811f51a7b7ade33eb11", // component id
"cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
"00", // zero2one
"00", // transfer type TransferFrom
"0000000000000000000000000000", // padding
));
let hex_calldata = encode(&calldata);
assert_eq!(hex_calldata[..456], expected_input);
assert_eq!(hex_calldata[1224..], expected_swap);
write_calldata_to_file("test_single_swap_strategy_encoder", &hex_calldata.to_string());
}
#[test]
fn test_single_swap_strategy_encoder_no_permit2() {
// Performs a single swap from WETH to DAI on a USV2 pool, without permit2 and no
// grouping optimizations.
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let checked_amount = BigUint::from_str("1_640_000000000000000000").unwrap();
let expected_min_amount = U256::from_str("1_640_000000000000000000").unwrap();
let swap = Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: dai.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SingleSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
UserTransferType::TransferFrom,
router_address(),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: weth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: dai,
checked_amount,
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap],
..Default::default()
};
let encoded_solution = encoder
.encode_strategy(solution.clone())
.unwrap();
let calldata = encode_tycho_router_call(
eth_chain().id,
encoded_solution,
&solution,
UserTransferType::TransferFrom,
eth(),
None,
)
.unwrap()
.data;
let expected_min_amount_encoded = hex::encode(U256::abi_encode(&expected_min_amount));
let expected_input = [
"5c4b639c", // Function selector
"0000000000000000000000000000000000000000000000000de0b6b3a7640000", // amount in
"000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"0000000000000000000000006b175474e89094c44da98b954eedeac495271d0f", // token out
&expected_min_amount_encoded, // min amount out
"0000000000000000000000000000000000000000000000000000000000000000", // wrap
"0000000000000000000000000000000000000000000000000000000000000000", // unwrap
"000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
"0000000000000000000000000000000000000000000000000000000000000001", // transfer from needed
"0000000000000000000000000000000000000000000000000000000000000120", // offset of swap bytes
"0000000000000000000000000000000000000000000000000000000000000052", // length of swap bytes without padding
// Swap data
"5615deb798bb3e4dfa0139dfa1b3d433cc23b72f", // executor address
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"a478c2975ab1ea89e8196811f51a7b7ade33eb11", // component id
"cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
"00", // zero2one
"00", // transfer type TransferFrom
"0000000000000000000000000000", // padding
]
.join("");
let hex_calldata = encode(&calldata);
assert_eq!(hex_calldata, expected_input);
write_calldata_to_file(
"test_single_swap_strategy_encoder_no_permit2",
hex_calldata.as_str(),
);
}
#[test]
fn test_single_swap_strategy_encoder_no_transfer_in() {
// Performs a single swap from WETH to DAI on a USV2 pool assuming that the tokens are
// already in the router
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let checked_amount = BigUint::from_str("1_640_000000000000000000").unwrap();
let expected_min_amount = U256::from_str("1_640_000000000000000000").unwrap();
let swap = Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: dai.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SingleSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
UserTransferType::None,
router_address(),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: weth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: dai,
checked_amount,
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap],
..Default::default()
};
let encoded_solution = encoder
.encode_strategy(solution.clone())
.unwrap();
let calldata = encode_tycho_router_call(
eth_chain().id,
encoded_solution,
&solution,
UserTransferType::None,
eth(),
None,
)
.unwrap()
.data;
let expected_min_amount_encoded = hex::encode(U256::abi_encode(&expected_min_amount));
let expected_input = [
"5c4b639c", // Function selector
"0000000000000000000000000000000000000000000000000de0b6b3a7640000", // amount in
"000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"0000000000000000000000006b175474e89094c44da98b954eedeac495271d0f", // token out
&expected_min_amount_encoded, // min amount out
"0000000000000000000000000000000000000000000000000000000000000000", // wrap
"0000000000000000000000000000000000000000000000000000000000000000", // unwrap
"000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
"0000000000000000000000000000000000000000000000000000000000000000", // transfer from not needed
"0000000000000000000000000000000000000000000000000000000000000120", // offset of swap bytes
"0000000000000000000000000000000000000000000000000000000000000052", // length of swap bytes without padding
// Swap data
"5615deb798bb3e4dfa0139dfa1b3d433cc23b72f", // executor address
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"a478c2975ab1ea89e8196811f51a7b7ade33eb11", // component id
"cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
"00", // zero2one
"01", // transfer type Transfer
"0000000000000000000000000000", // padding
]
.join("");
let hex_calldata = encode(&calldata);
assert_eq!(hex_calldata, expected_input);
write_calldata_to_file(
"test_single_swap_strategy_encoder_no_transfer_in",
hex_calldata.as_str(),
);
}
#[test]
fn test_single_swap_strategy_encoder_wrap() {
// Performs a single swap from WETH to DAI on a USV2 pool, wrapping ETH
// Note: This test does not assert anything. It is only used to obtain integration test
// data for our router solidity test.
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let swap = Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth(),
token_out: dai.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SingleSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
UserTransferType::TransferFromPermit2,
router_address(),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: eth(),
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: dai,
checked_amount: BigUint::from_str("1659881924818443699787").unwrap(),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap],
native_action: Some(NativeAction::Wrap),
};
let mut encoded_solution = encoder
.encode_strategy(solution.clone())
.unwrap();
let permit = get_permit(router_address(), &solution);
encoded_solution.permit = Some(permit);
let calldata = encode_tycho_router_call(
eth_chain().id,
encoded_solution,
&solution,
UserTransferType::TransferFromPermit2,
eth(),
Some(get_signer()),
)
.unwrap()
.data;
let hex_calldata = encode(&calldata);
write_calldata_to_file("test_single_swap_strategy_encoder_wrap", hex_calldata.as_str());
}
#[test]
fn test_single_swap_strategy_encoder_unwrap() {
// Performs a single swap from DAI to WETH on a USV2 pool, unwrapping ETH at the end
// Note: This test does not assert anything. It is only used to obtain integration test
// data for our router solidity test.
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let swap = Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: dai.clone(),
token_out: weth(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SingleSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
UserTransferType::TransferFromPermit2,
Bytes::from("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395"),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: dai,
given_amount: BigUint::from_str("3_000_000000000000000000").unwrap(),
checked_token: eth(),
checked_amount: BigUint::from_str("1_000000000000000000").unwrap(),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap],
native_action: Some(NativeAction::Unwrap),
};
let mut encoded_solution = encoder
.encode_strategy(solution.clone())
.unwrap();
let permit = get_permit(router_address(), &solution);
encoded_solution.permit = Some(permit);
let calldata = encode_tycho_router_call(
eth_chain().id,
encoded_solution,
&solution,
UserTransferType::TransferFromPermit2,
eth(),
Some(get_signer()),
)
.unwrap()
.data;
let hex_calldata = encode(&calldata);
write_calldata_to_file(
"test_single_swap_strategy_encoder_unwrap",
hex_calldata.as_str(),
);
}
}
mod sequential {
use super::*;
#[test]
fn test_sequential_swap_strategy_encoder() {
// Note: This test does not assert anything. It is only used to obtain integration test
// data for our router solidity test.
//
// Performs a sequential swap from WETH to USDC though WBTC using USV2 pools
//
// WETH ───(USV2)──> WBTC ───(USV2)──> USDC
let weth = weth();
let wbtc = Bytes::from_str("0x2260fac5e5542a773aa44fbcfedf7c193bc2c599").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let swap_weth_wbtc = Swap {
component: ProtocolComponent {
id: "0xBb2b8038a1640196FbE3e38816F3e67Cba72D940".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: wbtc.clone(),
split: 0f64,
};
let swap_wbtc_usdc = Swap {
component: ProtocolComponent {
id: "0x004375Dff511095CC5A197A54140a24eFEF3A416".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: wbtc.clone(),
token_out: usdc.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SequentialSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
UserTransferType::TransferFromPermit2,
router_address(),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: weth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: usdc,
checked_amount: BigUint::from_str("26173932").unwrap(),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap_weth_wbtc, swap_wbtc_usdc],
..Default::default()
};
let mut encoded_solution = encoder
.encode_strategy(solution.clone())
.unwrap();
let permit = get_permit(router_address(), &solution);
encoded_solution.permit = Some(permit);
let calldata = encode_tycho_router_call(
eth_chain().id,
encoded_solution,
&solution,
UserTransferType::TransferFromPermit2,
eth(),
Some(get_signer()),
)
.unwrap()
.data;
let hex_calldata = encode(&calldata);
write_calldata_to_file("test_sequential_swap_strategy_encoder", hex_calldata.as_str());
}
#[test]
fn test_sequential_swap_strategy_encoder_no_permit2() {
// Performs a sequential swap from WETH to USDC though WBTC using USV2 pools
//
// WETH ───(USV2)──> WBTC ───(USV2)──> USDC
let weth = weth();
let wbtc = Bytes::from_str("0x2260fac5e5542a773aa44fbcfedf7c193bc2c599").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let swap_weth_wbtc = Swap {
component: ProtocolComponent {
id: "0xBb2b8038a1640196FbE3e38816F3e67Cba72D940".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: wbtc.clone(),
split: 0f64,
};
let swap_wbtc_usdc = Swap {
component: ProtocolComponent {
id: "0x004375Dff511095CC5A197A54140a24eFEF3A416".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: wbtc.clone(),
token_out: usdc.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SequentialSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
UserTransferType::TransferFrom,
router_address(),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: weth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: usdc,
checked_amount: BigUint::from_str("26173932").unwrap(),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap_weth_wbtc, swap_wbtc_usdc],
..Default::default()
};
let encoded_solution = encoder
.encode_strategy(solution.clone())
.unwrap();
let calldata = encode_tycho_router_call(
eth_chain().id,
encoded_solution,
&solution,
UserTransferType::TransferFrom,
eth(),
None,
)
.unwrap()
.data;
let hex_calldata = encode(&calldata);
let expected = String::from(concat!(
"e21dd0d3", /* function selector */
"0000000000000000000000000000000000000000000000000de0b6b3a7640000", // amount in
"000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token ou
"00000000000000000000000000000000000000000000000000000000018f61ec", /* min amount out */
"0000000000000000000000000000000000000000000000000000000000000000", // wrap
"0000000000000000000000000000000000000000000000000000000000000000", // unwrap
"000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
"0000000000000000000000000000000000000000000000000000000000000001", /* transfer from needed */
"0000000000000000000000000000000000000000000000000000000000000120", /* length ple
* encode */
"00000000000000000000000000000000000000000000000000000000000000a8",
// swap 1
"0052", // swap length
"5615deb798bb3e4dfa0139dfa1b3d433cc23b72f", // executor address
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"bb2b8038a1640196fbe3e38816f3e67cba72d940", // component id
"004375dff511095cc5a197a54140a24efef3a416", // receiver (next pool)
"00", // zero to one
"00", // transfer type TransferFrom
// swap 2
"0052", // swap length
"5615deb798bb3e4dfa0139dfa1b3d433cc23b72f", // executor address
"2260fac5e5542a773aa44fbcfedf7c193bc2c599", // token in
"004375dff511095cc5a197a54140a24efef3a416", // component id
"cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver (final user)
"01", // zero to one
"02", // transfer type None
"000000000000000000000000000000000000000000000000", // padding
));
assert_eq!(hex_calldata, expected);
write_calldata_to_file(
"test_sequential_swap_strategy_encoder_no_permit2",
hex_calldata.as_str(),
);
}
#[test]
fn test_sequential_strategy_cyclic_swap() {
// This test has start and end tokens that are the same
// The flow is:
// USDC -> WETH -> USDC using two pools
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
// Create two Uniswap V3 pools for the cyclic swap
// USDC -> WETH (Pool 1)
let swap_usdc_weth = Swap {
component: ProtocolComponent {
id: "0x88e6A0c2dDD26FEEb64F039a2c41296FcB3f5640".to_string(), /* USDC-WETH USV3
* Pool 1 */
protocol_system: "uniswap_v3".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(500).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: usdc.clone(),
token_out: weth.clone(),
split: 0f64,
};
// WETH -> USDC (Pool 2)
let swap_weth_usdc = Swap {
component: ProtocolComponent {
id: "0x8ad599c3A0ff1De082011EFDDc58f1908eb6e6D8".to_string(), /* USDC-WETH USV3
* Pool 2 */
protocol_system: "uniswap_v3".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(3000).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: weth.clone(),
token_out: usdc.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SequentialSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
UserTransferType::TransferFromPermit2,
Bytes::from("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395"),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: usdc.clone(),
given_amount: BigUint::from_str("100000000").unwrap(), // 100 USDC (6 decimals)
checked_token: usdc.clone(),
checked_amount: BigUint::from_str("99389294").unwrap(), /* Expected output
* from test */
swaps: vec![swap_usdc_weth, swap_weth_usdc],
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
..Default::default()
};
let mut encoded_solution = encoder
.encode_strategy(solution.clone())
.unwrap();
let permit = get_permit(router_address(), &solution);
encoded_solution.permit = Some(permit);
let calldata = encode_tycho_router_call(
eth_chain().id,
encoded_solution,
&solution,
UserTransferType::TransferFromPermit2,
eth(),
Some(get_signer()),
)
.unwrap()
.data;
let hex_calldata = hex::encode(&calldata);
let expected_input = [
"51bcc7b6", // selector
"0000000000000000000000000000000000000000000000000000000005f5e100", // given amount
"000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // given token
"000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // checked token
"0000000000000000000000000000000000000000000000000000000005ec8f6e", // min amount out
"0000000000000000000000000000000000000000000000000000000000000000", // wrap action
"0000000000000000000000000000000000000000000000000000000000000000", // unwrap action
"000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
]
.join("");
let expected_swaps = [
"00000000000000000000000000000000000000000000000000000000000000d6", // length of ple encoded swaps without padding
"0069", // ple encoded swaps
"2e234dae75c793f67a35089c9d99245e1c58470b", // executor address
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token in
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token out
"0001f4", // pool fee
"3ede3eca2a72b3aecc820e955b36f38437d01395", // receiver
"88e6a0c2ddd26feeb64f039a2c41296fcb3f5640", // component id
"01", // zero2one
"00", // transfer type TransferFrom
"0069", // ple encoded swaps
"2e234dae75c793f67a35089c9d99245e1c58470b", // executor address
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token out
"000bb8", // pool fee
"cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
"8ad599c3a0ff1de082011efddc58f1908eb6e6d8", // component id
"00", // zero2one
"01", // transfer type Transfer
"00000000000000000000", // padding
]
.join("");
assert_eq!(hex_calldata[..456], expected_input);
assert_eq!(hex_calldata[1224..], expected_swaps);
write_calldata_to_file("test_sequential_strategy_cyclic_swap", hex_calldata.as_str());
}
mod optimized_transfers {
// In this module we test the ability to chain swaps or not. Different protocols are
// tested. The encoded data is used for solidity tests as well
use super::*;
#[test]
fn test_uniswap_v3_uniswap_v2() {
// Note: This test does not assert anything. It is only used to obtain integration
// test data for our router solidity test.
//
// Performs a sequential swap from WETH to USDC though WBTC using USV3 and USV2
// pools
//
// WETH ───(USV3)──> WBTC ───(USV2)──> USDC
let weth = weth();
let wbtc = Bytes::from_str("0x2260fac5e5542a773aa44fbcfedf7c193bc2c599").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let swap_weth_wbtc = Swap {
component: ProtocolComponent {
id: "0xCBCdF9626bC03E24f779434178A73a0B4bad62eD".to_string(),
protocol_system: "uniswap_v3".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(3000).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: weth.clone(),
token_out: wbtc.clone(),
split: 0f64,
};
let swap_wbtc_usdc = Swap {
component: ProtocolComponent {
id: "0x004375Dff511095CC5A197A54140a24eFEF3A416".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: wbtc.clone(),
token_out: usdc.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SequentialSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
UserTransferType::TransferFrom,
router_address(),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: weth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: usdc,
checked_amount: BigUint::from_str("26173932").unwrap(),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2")
.unwrap(),
swaps: vec![swap_weth_wbtc, swap_wbtc_usdc],
..Default::default()
};
let encoded_solution = encoder
.encode_strategy(solution.clone())
.unwrap();
let calldata = encode_tycho_router_call(
eth_chain().id,
encoded_solution,
&solution,
UserTransferType::TransferFrom,
eth(),
None,
)
.unwrap()
.data;
let hex_calldata = encode(&calldata);
write_calldata_to_file("test_uniswap_v3_uniswap_v2", hex_calldata.as_str());
}
#[test]
fn test_uniswap_v3_uniswap_v3() {
// Note: This test does not assert anything. It is only used to obtain integration
// test data for our router solidity test.
//
// Performs a sequential swap from WETH to USDC though WBTC using USV3 pools
// There is no optimization between the two USV3 pools, this is currently not
// supported.
//
// WETH ───(USV3)──> WBTC ───(USV3)──> USDC
let weth = weth();
let wbtc = Bytes::from_str("0x2260fac5e5542a773aa44fbcfedf7c193bc2c599").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let swap_weth_wbtc = Swap {
component: ProtocolComponent {
id: "0xCBCdF9626bC03E24f779434178A73a0B4bad62eD".to_string(),
protocol_system: "uniswap_v3".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(3000).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: weth.clone(),
token_out: wbtc.clone(),
split: 0f64,
};
let swap_wbtc_usdc = Swap {
component: ProtocolComponent {
id: "0x99ac8cA7087fA4A2A1FB6357269965A2014ABc35".to_string(),
protocol_system: "uniswap_v3".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(3000).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: wbtc.clone(),
token_out: usdc.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SequentialSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
UserTransferType::TransferFrom,
router_address(),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: weth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: usdc,
checked_amount: BigUint::from_str("26173932").unwrap(),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2")
.unwrap(),
swaps: vec![swap_weth_wbtc, swap_wbtc_usdc],
..Default::default()
};
let encoded_solution = encoder
.encode_strategy(solution.clone())
.unwrap();
let calldata = encode_tycho_router_call(
eth_chain().id,
encoded_solution,
&solution,
UserTransferType::TransferFrom,
eth(),
None,
)
.unwrap()
.data;
let hex_calldata = encode(&calldata);
write_calldata_to_file("test_uniswap_v3_uniswap_v3", hex_calldata.as_str());
}
#[test]
fn test_uniswap_v3_curve() {
// Note: This test does not assert anything. It is only used to obtain integration
// test data for our router solidity test.
//
// Performs a sequential swap from WETH to USDT though WBTC using USV3 and curve
// pools
//
// WETH ───(USV3)──> WBTC ───(curve)──> USDT
let weth = weth();
let wbtc = Bytes::from_str("0x2260fac5e5542a773aa44fbcfedf7c193bc2c599").unwrap();
let usdt = Bytes::from_str("0xdAC17F958D2ee523a2206206994597C13D831ec7").unwrap();
let swap_weth_wbtc = Swap {
component: ProtocolComponent {
id: "0xCBCdF9626bC03E24f779434178A73a0B4bad62eD".to_string(),
protocol_system: "uniswap_v3".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(3000).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: weth.clone(),
token_out: wbtc.clone(),
split: 0f64,
};
let swap_wbtc_usdt = Swap {
component: ProtocolComponent {
id: String::from("0xD51a44d3FaE010294C616388b506AcdA1bfAAE46"),
protocol_system: String::from("vm:curve"),
static_attributes: {
let mut attrs: HashMap<String, Bytes> = HashMap::new();
attrs.insert(
"factory".into(),
Bytes::from(
"0x0000000000000000000000000000000000000000"
.as_bytes()
.to_vec(),
),
);
attrs.insert(
"coins".into(),
Bytes::from_str("0x5b22307864616331376639353864326565353233613232303632303639393435393763313364383331656337222c22307832323630666163356535353432613737336161343466626366656466376331393362633263353939222c22307863303261616133396232323366653864306130653563346632376561643930383363373536636332225d")
.unwrap(),
);
attrs
},
..Default::default()
},
token_in: wbtc.clone(),
token_out: usdt.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SequentialSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
UserTransferType::TransferFrom,
router_address(),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: weth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: usdt,
checked_amount: BigUint::from_str("26173932").unwrap(),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2")
.unwrap(),
swaps: vec![swap_weth_wbtc, swap_wbtc_usdt],
..Default::default()
};
let encoded_solution = encoder
.encode_strategy(solution.clone())
.unwrap();
let calldata = encode_tycho_router_call(
eth_chain().id,
encoded_solution,
&solution,
UserTransferType::TransferFrom,
eth(),
None,
)
.unwrap()
.data;
let hex_calldata = encode(&calldata);
write_calldata_to_file("test_uniswap_v3_curve", hex_calldata.as_str());
}
#[test]
fn test_balancer_v2_uniswap_v2() {
// Note: This test does not assert anything. It is only used to obtain integration
// test data for our router solidity test.
//
// Performs a sequential swap from WETH to USDC though WBTC using balancer and USV2
// pools
//
// WETH ───(balancer)──> WBTC ───(USV2)──> USDC
let weth = weth();
let wbtc = Bytes::from_str("0x2260fac5e5542a773aa44fbcfedf7c193bc2c599").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let swap_weth_wbtc = Swap {
component: ProtocolComponent {
id: "0xa6f548df93de924d73be7d25dc02554c6bd66db500020000000000000000000e"
.to_string(),
protocol_system: "vm:balancer_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: wbtc.clone(),
split: 0f64,
};
let swap_wbtc_usdc = Swap {
component: ProtocolComponent {
id: "0x004375Dff511095CC5A197A54140a24eFEF3A416".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: wbtc.clone(),
token_out: usdc.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SequentialSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
UserTransferType::TransferFrom,
router_address(),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: weth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: usdc,
checked_amount: BigUint::from_str("26173932").unwrap(),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2")
.unwrap(),
swaps: vec![swap_weth_wbtc, swap_wbtc_usdc],
..Default::default()
};
let encoded_solution = encoder
.encode_strategy(solution.clone())
.unwrap();
let calldata = encode_tycho_router_call(
eth_chain().id,
encoded_solution,
&solution,
UserTransferType::TransferFrom,
eth(),
None,
)
.unwrap()
.data;
let hex_calldata = encode(&calldata);
write_calldata_to_file("test_balancer_v2_uniswap_v2", hex_calldata.as_str());
}
#[test]
fn test_multi_protocol() {
// Note: This test does not assert anything. It is only used to obtain integration
// test data for our router solidity test.
//
// Performs the following swap:
//
// DAI ─(USV2)-> WETH ─(bal)─> WBTC ─(curve)─> USDT ─(ekubo)─> USDC ─(USV4)─> ETH
let weth = weth();
let eth = eth();
let wbtc = Bytes::from_str("0x2260fac5e5542a773aa44fbcfedf7c193bc2c599").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let usdt = Bytes::from_str("0xdAC17F958D2ee523a2206206994597C13D831ec7").unwrap();
let dai = Bytes::from_str("0x6B175474E89094C44Da98b954EedeAC495271d0F").unwrap();
let usv2_swap_dai_weth = Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: dai.clone(),
token_out: weth.clone(),
split: 0f64,
};
let balancer_swap_weth_wbtc = Swap {
component: ProtocolComponent {
id: "0xa6f548df93de924d73be7d25dc02554c6bd66db500020000000000000000000e"
.to_string(),
protocol_system: "vm:balancer_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: wbtc.clone(),
split: 0f64,
};
let curve_swap_wbtc_usdt = Swap {
component: ProtocolComponent {
id: String::from("0xD51a44d3FaE010294C616388b506AcdA1bfAAE46"),
protocol_system: String::from("vm:curve"),
static_attributes: {
let mut attrs: HashMap<String, Bytes> = HashMap::new();
attrs.insert(
"factory".into(),
Bytes::from(
"0x0000000000000000000000000000000000000000"
.as_bytes()
.to_vec(),
),
);
attrs.insert(
"coins".into(),
Bytes::from_str("0x5b22307864616331376639353864326565353233613232303632303639393435393763313364383331656337222c22307832323630666163356535353432613737336161343466626366656466376331393362633263353939222c22307863303261616133396232323366653864306130653563346632376561643930383363373536636332225d")
.unwrap(),
);
attrs
},
..Default::default()
},
token_in: wbtc.clone(),
token_out: usdt.clone(),
split: 0f64,
};
// Ekubo
let component = ProtocolComponent {
// All Ekubo swaps go through the core contract - not necessary to specify pool
// id for test
protocol_system: "ekubo_v2".to_string(),
// 0.0025% fee & 0.005% base pool
static_attributes: HashMap::from([
("fee".to_string(), Bytes::from(461168601842738_u64)),
("tick_spacing".to_string(), Bytes::from(50_u32)),
("extension".to_string(), Bytes::zero(20)),
]),
..Default::default()
};
let ekubo_swap_usdt_usdc = Swap {
component,
token_in: usdt.clone(),
token_out: usdc.clone(),
split: 0f64,
};
// USV4
// Fee and tick spacing information for this test is obtained by querying the
// USV4 Position Manager contract: 0xbd216513d74c8cf14cf4747e6aaa6420ff64ee9e
// Using the poolKeys function with the first 25 bytes of the pool id
let pool_fee_usdc_eth = Bytes::from(BigInt::from(3000).to_signed_bytes_be());
let tick_spacing_usdc_eth = Bytes::from(BigInt::from(60).to_signed_bytes_be());
let mut static_attributes_usdc_eth: HashMap<String, Bytes> = HashMap::new();
static_attributes_usdc_eth.insert("key_lp_fee".into(), pool_fee_usdc_eth);
static_attributes_usdc_eth.insert("tick_spacing".into(), tick_spacing_usdc_eth);
let usv4_swap_usdc_eth = Swap {
component: ProtocolComponent {
id: "0xdce6394339af00981949f5f3baf27e3610c76326a700af57e4b3e3ae4977f78d"
.to_string(),
protocol_system: "uniswap_v4".to_string(),
static_attributes: static_attributes_usdc_eth,
..Default::default()
},
token_in: usdc.clone(),
token_out: eth.clone(),
split: 0f64,
};
// Put all components together
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SequentialSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
UserTransferType::TransferFromPermit2,
router_address(),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: dai,
given_amount: BigUint::from_str("1500_000000000000000000").unwrap(),
checked_token: eth.clone(),
checked_amount: BigUint::from_str("732214216964381330").unwrap(),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2")
.unwrap(),
swaps: vec![
usv2_swap_dai_weth,
balancer_swap_weth_wbtc,
curve_swap_wbtc_usdt,
ekubo_swap_usdt_usdc,
usv4_swap_usdc_eth,
],
..Default::default()
};
let mut encoded_solution = encoder
.encode_strategy(solution.clone())
.unwrap();
let permit = get_permit(router_address(), &solution);
encoded_solution.permit = Some(permit);
let calldata = encode_tycho_router_call(
eth_chain().id,
encoded_solution,
&solution,
UserTransferType::TransferFromPermit2,
eth,
Some(get_signer()),
)
.unwrap()
.data;
let hex_calldata = encode(&calldata);
write_calldata_to_file("test_multi_protocol", hex_calldata.as_str());
}
}
}
mod split {
use super::*;
#[test]
fn test_split_swap_strategy_encoder() {
// Note: This test does not assert anything. It is only used to obtain integration test
// data for our router solidity test.
//
// Performs a split swap from WETH to USDC though WBTC and DAI using USV2 pools
//
// ┌──(USV2)──> WBTC ───(USV2)──> USDC
// WETH ─┤
// └──(USV2)──> DAI ───(USV2)──> USDC
//
let weth = weth();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let wbtc = Bytes::from_str("0x2260fac5e5542a773aa44fbcfedf7c193bc2c599").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let swap_weth_dai = Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: dai.clone(),
split: 0.5f64,
};
let swap_weth_wbtc = Swap {
component: ProtocolComponent {
id: "0xBb2b8038a1640196FbE3e38816F3e67Cba72D940".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: wbtc.clone(),
// This represents the remaining 50%, but to avoid any rounding errors we set this
// to 0 to signify "the remainder of the WETH value". It should
// still be very close to 50%
split: 0f64,
};
let swap_dai_usdc = Swap {
component: ProtocolComponent {
id: "0xAE461cA67B15dc8dc81CE7615e0320dA1A9aB8D5".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: dai.clone(),
token_out: usdc.clone(),
split: 0f64,
};
let swap_wbtc_usdc = Swap {
component: ProtocolComponent {
id: "0x004375Dff511095CC5A197A54140a24eFEF3A416".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: wbtc.clone(),
token_out: usdc.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SplitSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
UserTransferType::TransferFromPermit2,
Bytes::from("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395"),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: weth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: usdc,
checked_amount: BigUint::from_str("26173932").unwrap(),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap_weth_dai, swap_weth_wbtc, swap_dai_usdc, swap_wbtc_usdc],
..Default::default()
};
let mut encoded_solution = encoder
.encode_strategy(solution.clone())
.unwrap();
let permit = get_permit(router_address(), &solution);
encoded_solution.permit = Some(permit);
let calldata = encode_tycho_router_call(
eth_chain().id,
encoded_solution,
&solution,
UserTransferType::TransferFromPermit2,
eth(),
Some(get_signer()),
)
.unwrap()
.data;
let hex_calldata = encode(&calldata);
write_calldata_to_file("test_split_swap_strategy_encoder", hex_calldata.as_str());
}
#[test]
fn test_split_input_cyclic_swap() {
// This test has start and end tokens that are the same
// The flow is:
// ┌─ (USV3, 60% split) ──> WETH ─┐
// │ │
// USDC ──────┤ ├──(USV2)──> USDC
// │ │
// └─ (USV3, 40% split) ──> WETH ─┘
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
// USDC -> WETH (Pool 1) - 60% of input
let swap_usdc_weth_pool1 = Swap {
component: ProtocolComponent {
id: "0x88e6A0c2dDD26FEEb64F039a2c41296FcB3f5640".to_string(), /* USDC-WETH USV3
* Pool 1 */
protocol_system: "uniswap_v3".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(500).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: usdc.clone(),
token_out: weth.clone(),
split: 0.6f64, // 60% of input
};
// USDC -> WETH (Pool 2) - 40% of input (remaining)
let swap_usdc_weth_pool2 = Swap {
component: ProtocolComponent {
id: "0x8ad599c3A0ff1De082011EFDDc58f1908eb6e6D8".to_string(), /* USDC-WETH USV3
* Pool 2 */
protocol_system: "uniswap_v3".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(3000).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: usdc.clone(),
token_out: weth.clone(),
split: 0f64, // Remaining 40%
};
// WETH -> USDC (Pool 2)
let swap_weth_usdc_pool2 = Swap {
component: ProtocolComponent {
id: "0xB4e16d0168e52d35CaCD2c6185b44281Ec28C9Dc".to_string(), /* USDC-WETH USV2
* Pool 2 */
protocol_system: "uniswap_v2".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(3000).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: weth.clone(),
token_out: usdc.clone(),
split: 0.0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SplitSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
UserTransferType::TransferFromPermit2,
Bytes::from("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395"),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: usdc.clone(),
given_amount: BigUint::from_str("100000000").unwrap(), // 100 USDC (6 decimals)
checked_token: usdc.clone(),
checked_amount: BigUint::from_str("99574171").unwrap(), /* Expected output
* from
* test */
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap_usdc_weth_pool1, swap_usdc_weth_pool2, swap_weth_usdc_pool2],
..Default::default()
};
let mut encoded_solution = encoder
.encode_strategy(solution.clone())
.unwrap();
let permit = get_permit(router_address(), &solution);
encoded_solution.permit = Some(permit);
let calldata = encode_tycho_router_call(
eth_chain().id,
encoded_solution,
&solution,
UserTransferType::TransferFromPermit2,
eth(),
Some(get_signer()),
)
.unwrap()
.data;
let hex_calldata = hex::encode(&calldata);
let expected_input = [
"7c553846", // selector
"0000000000000000000000000000000000000000000000000000000005f5e100", // given amount
"000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // given token
"000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // checked token
"0000000000000000000000000000000000000000000000000000000005ef619b", // min amount out
"0000000000000000000000000000000000000000000000000000000000000000", // wrap action
"0000000000000000000000000000000000000000000000000000000000000000", // unwrap action
"0000000000000000000000000000000000000000000000000000000000000002", // tokens length
"000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
]
.join("");
let expected_swaps = [
"0000000000000000000000000000000000000000000000000000000000000139", // length of ple encoded swaps without padding
"006e", // ple encoded swaps
"00", // token in index
"01", // token out index
"999999", // split
"2e234dae75c793f67a35089c9d99245e1c58470b", // executor address
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token in
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token out
"0001f4", // pool fee
"3ede3eca2a72b3aecc820e955b36f38437d01395", // receiver
"88e6a0c2ddd26feeb64f039a2c41296fcb3f5640", // component id
"01", // zero2one
"00", // transfer type TransferFrom
"006e", // ple encoded swaps
"00", // token in index
"01", // token out index
"000000", // split
"2e234dae75c793f67a35089c9d99245e1c58470b", // executor address
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token in
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token out
"000bb8", // pool fee
"3ede3eca2a72b3aecc820e955b36f38437d01395", // receiver
"8ad599c3a0ff1de082011efddc58f1908eb6e6d8", // component id
"01", // zero2one
"00", // transfer type TransferFrom
"0057", // ple encoded swaps
"01", // token in index
"00", // token out index
"000000", // split
"5615deb798bb3e4dfa0139dfa1b3d433cc23b72f", // executor address,
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"b4e16d0168e52d35cacd2c6185b44281ec28c9dc", // component id,
"cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
"00", // zero2one
"01", // transfer type Transfer
"00000000000000" // padding
]
.join("");
assert_eq!(hex_calldata[..520], expected_input);
assert_eq!(hex_calldata[1288..], expected_swaps);
write_calldata_to_file("test_split_input_cyclic_swap", hex_calldata.as_str());
}
#[test]
fn test_split_output_cyclic_swap() {
// This test has start and end tokens that are the same
// The flow is:
// ┌─── (USV3, 60% split) ───┐
// │ │
// USDC ──(USV2) ── WETH──| ├─> USDC
// │ │
// └─── (USV3, 40% split) ───┘
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let swap_usdc_weth_v2 = Swap {
component: ProtocolComponent {
id: "0xB4e16d0168e52d35CaCD2c6185b44281Ec28C9Dc".to_string(), // USDC-WETH USV2
protocol_system: "uniswap_v2".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(500).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: usdc.clone(),
token_out: weth.clone(),
split: 0.0f64,
};
let swap_weth_usdc_v3_pool1 = Swap {
component: ProtocolComponent {
id: "0x88e6A0c2dDD26FEEb64F039a2c41296FcB3f5640".to_string(), /* USDC-WETH USV3
* Pool 1 */
protocol_system: "uniswap_v3".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(500).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: weth.clone(),
token_out: usdc.clone(),
split: 0.6f64,
};
let swap_weth_usdc_v3_pool2 = Swap {
component: ProtocolComponent {
id: "0x8ad599c3A0ff1De082011EFDDc58f1908eb6e6D8".to_string(), /* USDC-WETH USV3
* Pool 2 */
protocol_system: "uniswap_v3".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(3000).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: weth.clone(),
token_out: usdc.clone(),
split: 0.0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SplitSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
UserTransferType::TransferFromPermit2,
Bytes::from("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395"),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: usdc.clone(),
given_amount: BigUint::from_str("100000000").unwrap(), // 100 USDC (6 decimals)
checked_token: usdc.clone(),
checked_amount: BigUint::from_str("99025908").unwrap(), /* Expected output
* from
* test */
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap_usdc_weth_v2, swap_weth_usdc_v3_pool1, swap_weth_usdc_v3_pool2],
..Default::default()
};
let mut encoded_solution = encoder
.encode_strategy(solution.clone())
.unwrap();
let permit = get_permit(router_address(), &solution);
encoded_solution.permit = Some(permit);
let calldata = encode_tycho_router_call(
eth_chain().id,
encoded_solution,
&solution,
UserTransferType::TransferFromPermit2,
eth(),
Some(get_signer()),
)
.unwrap()
.data;
let hex_calldata = hex::encode(&calldata);
let expected_input = [
"7c553846", // selector
"0000000000000000000000000000000000000000000000000000000005f5e100", // given amount
"000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // given token
"000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // checked token
"0000000000000000000000000000000000000000000000000000000005e703f4", // min amount out
"0000000000000000000000000000000000000000000000000000000000000000", // wrap action
"0000000000000000000000000000000000000000000000000000000000000000", // unwrap action
"0000000000000000000000000000000000000000000000000000000000000002", // tokens length
"000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
]
.join("");
let expected_swaps = [
"0000000000000000000000000000000000000000000000000000000000000139", // length of ple encoded swaps without padding
"0057", // ple encoded swaps
"00", // token in index
"01", // token out index
"000000", // split
"5615deb798bb3e4dfa0139dfa1b3d433cc23b72f", // executor address
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token in
"b4e16d0168e52d35cacd2c6185b44281ec28c9dc", // component id
"3ede3eca2a72b3aecc820e955b36f38437d01395", // receiver
"01", // zero2one
"00", // transfer type TransferFrom
"006e", // ple encoded swaps
"01", // token in index
"00", // token out index
"999999", // split
"2e234dae75c793f67a35089c9d99245e1c58470b", // executor address
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token out
"0001f4", // pool fee
"cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
"88e6a0c2ddd26feeb64f039a2c41296fcb3f5640", // component id
"00", // zero2one
"01", // transfer type Transfer
"006e", // ple encoded swaps
"01", // token in index
"00", // token out index
"000000", // split
"2e234dae75c793f67a35089c9d99245e1c58470b", // executor address
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token out
"000bb8", // pool fee
"cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
"8ad599c3a0ff1de082011efddc58f1908eb6e6d8", // component id
"00", // zero2one
"01", // transfer type Transfer
"00000000000000" // padding
]
.join("");
assert_eq!(hex_calldata[..520], expected_input);
assert_eq!(hex_calldata[1288..], expected_swaps);
write_calldata_to_file("test_split_output_cyclic_swap", hex_calldata.as_str());
}
}
mod protocol_integration {
// in this module we test protocol specific logic by creating the calldata that then is
// used in the solidity tests
use super::*;
#[test]
fn test_single_encoding_strategy_ekubo() {
// ETH ──(EKUBO)──> USDC
let token_in = Bytes::from(Address::ZERO.as_slice());
let token_out = Bytes::from("0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48"); // USDC
let static_attributes = HashMap::from([
("fee".to_string(), Bytes::from(0_u64)),
("tick_spacing".to_string(), Bytes::from(0_u32)),
(
"extension".to_string(),
Bytes::from("0x51d02a5948496a67827242eabc5725531342527c"),
), /* Oracle */
]);
let component = ProtocolComponent {
// All Ekubo swaps go through the core contract - not necessary to specify pool id
// for test
protocol_system: "ekubo_v2".to_string(),
static_attributes,
..Default::default()
};
let swap = Swap {
component,
token_in: token_in.clone(),
token_out: token_out.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SingleSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
UserTransferType::TransferFrom,
Bytes::from_str("0xA4AD4f68d0b91CFD19687c881e50f3A00242828c").unwrap(),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: token_in,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: token_out,
checked_amount: BigUint::from_str("1000").unwrap(),
// Alice
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap],
..Default::default()
};
let encoded_solution = encoder
.encode_strategy(solution.clone())
.unwrap();
let calldata = encode_tycho_router_call(
eth_chain().id,
encoded_solution,
&solution,
UserTransferType::TransferFrom,
eth(),
None,
)
.unwrap()
.data;
let hex_calldata = encode(&calldata);
write_calldata_to_file("test_single_encoding_strategy_ekubo", hex_calldata.as_str());
}
#[test]
fn test_single_encoding_strategy_maverick() {
// GHO -> (maverick) -> USDC
let maverick_pool = ProtocolComponent {
id: String::from("0x14Cf6D2Fe3E1B326114b07d22A6F6bb59e346c67"),
protocol_system: String::from("vm:maverick_v2"),
..Default::default()
};
let token_in = Bytes::from("0x40D16FC0246aD3160Ccc09B8D0D3A2cD28aE6C2f");
let token_out = Bytes::from("0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48");
let swap = Swap {
component: maverick_pool,
token_in: token_in.clone(),
token_out: token_out.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SingleSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
UserTransferType::TransferFrom,
Bytes::from_str("0xA4AD4f68d0b91CFD19687c881e50f3A00242828c").unwrap(),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: token_in,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: token_out,
checked_amount: BigUint::from_str("1000").unwrap(),
// Alice
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap],
..Default::default()
};
let encoded_solution = encoder
.encode_strategy(solution.clone())
.unwrap();
let calldata = encode_tycho_router_call(
eth_chain().id,
encoded_solution,
&solution,
UserTransferType::TransferFrom,
eth(),
None,
)
.unwrap()
.data;
let hex_calldata = encode(&calldata);
write_calldata_to_file("test_single_encoding_strategy_maverick", hex_calldata.as_str());
}
#[test]
fn test_single_encoding_strategy_usv4_eth_in() {
// Performs a single swap from ETH to PEPE using a USV4 pool
// Note: This test does not assert anything. It is only used to obtain integration test
// data for our router solidity test.
//
// ETH ───(USV4)──> PEPE
//
let eth = eth();
let pepe = Bytes::from_str("0x6982508145454Ce325dDbE47a25d4ec3d2311933").unwrap();
let pool_fee_eth_pepe = Bytes::from(BigInt::from(25000).to_signed_bytes_be());
let tick_spacing_eth_pepe = Bytes::from(BigInt::from(500).to_signed_bytes_be());
let mut static_attributes_eth_pepe: HashMap<String, Bytes> = HashMap::new();
static_attributes_eth_pepe.insert("key_lp_fee".into(), pool_fee_eth_pepe);
static_attributes_eth_pepe.insert("tick_spacing".into(), tick_spacing_eth_pepe);
let swap_eth_pepe = Swap {
component: ProtocolComponent {
id: "0xecd73ecbf77219f21f129c8836d5d686bbc27d264742ddad620500e3e548e2c9"
.to_string(),
protocol_system: "uniswap_v4".to_string(),
static_attributes: static_attributes_eth_pepe,
..Default::default()
},
token_in: eth.clone(),
token_out: pepe.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SingleSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
UserTransferType::TransferFromPermit2,
Bytes::from("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395"),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: eth.clone(),
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: pepe,
checked_amount: BigUint::from_str("152373460199848577067005852").unwrap(),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap_eth_pepe],
..Default::default()
};
let mut encoded_solution = encoder
.encode_strategy(solution.clone())
.unwrap();
let permit = get_permit(router_address(), &solution);
encoded_solution.permit = Some(permit);
let calldata = encode_tycho_router_call(
eth_chain().id,
encoded_solution,
&solution,
UserTransferType::TransferFromPermit2,
eth,
Some(get_signer()),
)
.unwrap()
.data;
let hex_calldata = encode(&calldata);
write_calldata_to_file(
"test_single_encoding_strategy_usv4_eth_in",
hex_calldata.as_str(),
);
}
#[test]
fn test_single_encoding_strategy_usv4_eth_out() {
// Performs a single swap from USDC to ETH using a USV4 pool
// Note: This test does not assert anything. It is only used to obtain integration test
// data for our router solidity test.
//
// USDC ───(USV4)──> ETH
//
let eth = eth();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
// Fee and tick spacing information for this test is obtained by querying the
// USV4 Position Manager contract: 0xbd216513d74c8cf14cf4747e6aaa6420ff64ee9e
// Using the poolKeys function with the first 25 bytes of the pool id
let pool_fee_usdc_eth = Bytes::from(BigInt::from(3000).to_signed_bytes_be());
let tick_spacing_usdc_eth = Bytes::from(BigInt::from(60).to_signed_bytes_be());
let mut static_attributes_usdc_eth: HashMap<String, Bytes> = HashMap::new();
static_attributes_usdc_eth.insert("key_lp_fee".into(), pool_fee_usdc_eth);
static_attributes_usdc_eth.insert("tick_spacing".into(), tick_spacing_usdc_eth);
let swap_usdc_eth = Swap {
component: ProtocolComponent {
id: "0xdce6394339af00981949f5f3baf27e3610c76326a700af57e4b3e3ae4977f78d"
.to_string(),
protocol_system: "uniswap_v4".to_string(),
static_attributes: static_attributes_usdc_eth,
..Default::default()
},
token_in: usdc.clone(),
token_out: eth.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SplitSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
UserTransferType::TransferFromPermit2,
Bytes::from("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395"),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: usdc,
given_amount: BigUint::from_str("3000_000000").unwrap(),
checked_token: eth.clone(),
checked_amount: BigUint::from_str("1117254495486192350").unwrap(),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap_usdc_eth],
..Default::default()
};
let mut encoded_solution = encoder
.encode_strategy(solution.clone())
.unwrap();
let permit = get_permit(router_address(), &solution);
encoded_solution.permit = Some(permit);
let calldata = encode_tycho_router_call(
eth_chain().id,
encoded_solution,
&solution,
UserTransferType::TransferFromPermit2,
eth,
Some(get_signer()),
)
.unwrap()
.data;
let hex_calldata = encode(&calldata);
write_calldata_to_file(
"test_single_encoding_strategy_usv4_eth_out",
hex_calldata.as_str(),
);
}
#[test]
fn test_single_encoding_strategy_usv4_grouped_swap() {
// Performs a sequential swap from USDC to PEPE though ETH using two consecutive USV4
// pools
//
// USDC ──(USV4)──> ETH ───(USV4)──> PEPE
//
let eth = eth();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let pepe = Bytes::from_str("0x6982508145454Ce325dDbE47a25d4ec3d2311933").unwrap();
// Fee and tick spacing information for this test is obtained by querying the
// USV4 Position Manager contract: 0xbd216513d74c8cf14cf4747e6aaa6420ff64ee9e
// Using the poolKeys function with the first 25 bytes of the pool id
let pool_fee_usdc_eth = Bytes::from(BigInt::from(3000).to_signed_bytes_be());
let tick_spacing_usdc_eth = Bytes::from(BigInt::from(60).to_signed_bytes_be());
let mut static_attributes_usdc_eth: HashMap<String, Bytes> = HashMap::new();
static_attributes_usdc_eth.insert("key_lp_fee".into(), pool_fee_usdc_eth);
static_attributes_usdc_eth.insert("tick_spacing".into(), tick_spacing_usdc_eth);
let pool_fee_eth_pepe = Bytes::from(BigInt::from(25000).to_signed_bytes_be());
let tick_spacing_eth_pepe = Bytes::from(BigInt::from(500).to_signed_bytes_be());
let mut static_attributes_eth_pepe: HashMap<String, Bytes> = HashMap::new();
static_attributes_eth_pepe.insert("key_lp_fee".into(), pool_fee_eth_pepe);
static_attributes_eth_pepe.insert("tick_spacing".into(), tick_spacing_eth_pepe);
let swap_usdc_eth = Swap {
component: ProtocolComponent {
id: "0xdce6394339af00981949f5f3baf27e3610c76326a700af57e4b3e3ae4977f78d"
.to_string(),
protocol_system: "uniswap_v4".to_string(),
static_attributes: static_attributes_usdc_eth,
..Default::default()
},
token_in: usdc.clone(),
token_out: eth.clone(),
split: 0f64,
};
let swap_eth_pepe = Swap {
component: ProtocolComponent {
id: "0xecd73ecbf77219f21f129c8836d5d686bbc27d264742ddad620500e3e548e2c9"
.to_string(),
protocol_system: "uniswap_v4".to_string(),
static_attributes: static_attributes_eth_pepe,
..Default::default()
},
token_in: eth.clone(),
token_out: pepe.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SingleSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
UserTransferType::TransferFromPermit2,
Bytes::from("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395"),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: usdc,
given_amount: BigUint::from_str("1000_000000").unwrap(),
checked_token: pepe,
checked_amount: BigUint::from_str("97191013220606467325121599").unwrap(),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap_usdc_eth, swap_eth_pepe],
..Default::default()
};
let mut encoded_solution = encoder
.encode_strategy(solution.clone())
.unwrap();
let permit = get_permit(router_address(), &solution);
encoded_solution.permit = Some(permit);
let calldata = encode_tycho_router_call(
eth_chain().id,
encoded_solution,
&solution,
UserTransferType::TransferFromPermit2,
eth,
Some(get_signer()),
)
.unwrap()
.data;
let expected_input = [
"30ace1b1", // Function selector (single swap)
"000000000000000000000000000000000000000000000000000000003b9aca00", // amount in
"000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token in
"0000000000000000000000006982508145454ce325ddbe47a25d4ec3d2311933", // token out
"0000000000000000000000000000000000000000005064ff624d54346285543f", // min amount out
"0000000000000000000000000000000000000000000000000000000000000000", // wrap
"0000000000000000000000000000000000000000000000000000000000000000", // unwrap
"000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
]
.join("");
// after this there is the permit and because of the deadlines (that depend on block
// time) it's hard to assert
let expected_swaps = String::from(concat!(
// length of ple encoded swaps without padding
"0000000000000000000000000000000000000000000000000000000000000086",
// Swap data header
"f62849f9a0b5bf2913b396098f7c7019b51a820a", // executor address
// Protocol data
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // group token in
"6982508145454ce325ddbe47a25d4ec3d2311933", // group token in
"00", // zero2one
"00", // transfer type TransferFrom
"cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
// First pool params
"0000000000000000000000000000000000000000", // intermediary token (ETH)
"000bb8", // fee
"00003c", // tick spacing
// Second pool params
"6982508145454ce325ddbe47a25d4ec3d2311933", // intermediary token (PEPE)
"0061a8", // fee
"0001f4", // tick spacing
"0000000000000000000000000000000000000000000000000000" // padding
));
let hex_calldata = encode(&calldata);
assert_eq!(hex_calldata[..456], expected_input);
assert_eq!(hex_calldata[1224..], expected_swaps);
write_calldata_to_file(
"test_single_encoding_strategy_usv4_grouped_swap",
hex_calldata.as_str(),
);
}
#[test]
fn test_single_encoding_strategy_curve() {
// UWU ──(curve 2 crypto pool)──> WETH
let token_in = Bytes::from("0x55C08ca52497e2f1534B59E2917BF524D4765257"); // UWU
let token_out = Bytes::from("0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2"); // WETH
let static_attributes = HashMap::from([(
"factory".to_string(),
Bytes::from(
"0x98ee851a00abee0d95d08cf4ca2bdce32aeaaf7f"
.as_bytes()
.to_vec(),
)),
("coins".to_string(), Bytes::from_str("0x5b22307863303261616133396232323366653864306130653563346632376561643930383363373536636332222c22307835356330386361353234393765326631353334623539653239313762663532346434373635323537225d").unwrap()),
]);
let component = ProtocolComponent {
id: String::from("0x77146B0a1d08B6844376dF6d9da99bA7F1b19e71"),
protocol_system: String::from("vm:curve"),
static_attributes,
..Default::default()
};
let swap = Swap {
component,
token_in: token_in.clone(),
token_out: token_out.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SingleSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
UserTransferType::TransferFrom,
router_address(),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: token_in,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: token_out,
checked_amount: BigUint::from_str("1").unwrap(),
// Alice
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap],
..Default::default()
};
let encoded_solution = encoder
.encode_strategy(solution.clone())
.unwrap();
let calldata = encode_tycho_router_call(
eth_chain().id,
encoded_solution,
&solution,
UserTransferType::TransferFrom,
eth(),
None,
)
.unwrap()
.data;
let hex_calldata = encode(&calldata);
write_calldata_to_file("test_single_encoding_strategy_curve", hex_calldata.as_str());
}
#[test]
fn test_single_encoding_strategy_curve_st_eth() {
// ETH ──(curve stETH pool)──> STETH
let token_in = Bytes::from("0x0000000000000000000000000000000000000000"); // ETH
let token_out = Bytes::from("0xae7ab96520DE3A18E5e111B5EaAb095312D7fE84"); // STETH
let static_attributes = HashMap::from([(
"factory".to_string(),
Bytes::from(
"0x0000000000000000000000000000000000000000"
.as_bytes()
.to_vec(),
),
),
("coins".to_string(), Bytes::from_str("0x5b22307865656565656565656565656565656565656565656565656565656565656565656565656565656565222c22307861653761623936353230646533613138653565313131623565616162303935333132643766653834225d").unwrap()),]);
let component = ProtocolComponent {
id: String::from("0xDC24316b9AE028F1497c275EB9192a3Ea0f67022"),
protocol_system: String::from("vm:curve"),
static_attributes,
..Default::default()
};
let swap = Swap {
component,
token_in: token_in.clone(),
token_out: token_out.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SingleSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
UserTransferType::TransferFrom,
router_address(),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: token_in,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: token_out,
checked_amount: BigUint::from_str("1").unwrap(),
// Alice
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap],
..Default::default()
};
let encoded_solution = encoder
.encode_strategy(solution.clone())
.unwrap();
let calldata = encode_tycho_router_call(
eth_chain().id,
encoded_solution,
&solution,
UserTransferType::TransferFrom,
eth(),
None,
)
.unwrap()
.data;
let hex_calldata = encode(&calldata);
write_calldata_to_file(
"test_single_encoding_strategy_curve_st_eth",
hex_calldata.as_str(),
);
}
}
}