Files
tycho-execution/src/encoding/evm/strategy_encoder/strategy_encoders.rs
Diana Carvalho 20e6419a20 feat: Adapt SplitSwapStrategyEncoder to have optional permit2 logic
- If the signer_pk is not passed -> use the swap method that expects the tokens to be already in the Router
- If it is passed -> compute permit2 and use swap method that does the token in transfer
- Extend builder to have another shortcut
- Add integration test with contract
- Update bin (and simplified it) and quickstart

--- don't change below this line ---
ENG-4255 Took 1 hour 51 minutes

Took 2 minutes

Took 7 seconds
2025-02-20 18:29:11 +00:00

1122 lines
48 KiB
Rust

use std::{collections::HashSet, str::FromStr};
use alloy_primitives::{aliases::U24, FixedBytes, U256, U8};
use alloy_sol_types::SolValue;
use tycho_core::{keccak256, Bytes};
use crate::encoding::{
errors::EncodingError,
evm::{
approvals::permit2::Permit2,
strategy_encoder::{group_swaps::group_swaps, strategy_validators::SplitSwapValidator},
swap_encoder::swap_encoder_registry::SwapEncoderRegistry,
utils::{
biguint_to_u256, bytes_to_address, encode_input, get_min_amount_for_solution,
get_token_position, percentage_to_uint24,
},
},
models::{Chain, EncodingContext, NativeAction, Solution},
strategy_encoder::StrategyEncoder,
swap_encoder::SwapEncoder,
};
/// Encodes a solution using a specific strategy for execution on the EVM-compatible network.
pub trait EVMStrategyEncoder: StrategyEncoder {
/// Encodes information necessary for performing a single swap against a given executor for
/// a protocol.
fn encode_swap_header(
&self,
token_in: U8,
token_out: U8,
split: U24,
executor_address: Bytes,
executor_selector: FixedBytes<4>,
protocol_data: Vec<u8>,
) -> Vec<u8> {
let mut encoded = Vec::new();
encoded.push(token_in.to_be_bytes_vec()[0]);
encoded.push(token_out.to_be_bytes_vec()[0]);
encoded.extend_from_slice(&split.to_be_bytes_vec());
encoded.extend(executor_address.to_vec());
encoded.extend(executor_selector);
encoded.extend(protocol_data);
encoded
}
/// Encodes a selector string into its 4-byte representation.
fn encode_executor_selector(&self, selector: &str) -> FixedBytes<4> {
let hash = keccak256(selector.as_bytes());
FixedBytes::<4>::from([hash[0], hash[1], hash[2], hash[3]])
}
/// Uses prefix-length encoding to efficient encode action data.
///
/// Prefix-length encoding is a data encoding method where the beginning of a data segment
/// (the "prefix") contains information about the length of the following data.
fn ple_encode(&self, action_data_array: Vec<Vec<u8>>) -> Vec<u8> {
let mut encoded_action_data: Vec<u8> = Vec::new();
for action_data in action_data_array {
let args = (encoded_action_data, action_data.len() as u16, action_data);
encoded_action_data = args.abi_encode_packed();
}
encoded_action_data
}
}
/// Represents the encoder for a swap strategy which supports single, sequential and split swaps.
///
/// # Fields
/// * `swap_encoder_registry`: SwapEncoderRegistry, containing all possible swap encoders
/// * `permit2`: Permit2, responsible for managing permit2 operations and providing necessary
/// signatures and permit2 objects for calling the router
/// * `selector`: String, the selector for the swap function in the router contract
/// * `native_address`: Address of the chain's native token
/// * `wrapped_address`: Address of the chain's wrapped token
/// * `split_swap_validator`: SplitSwapValidator, responsible for checking validity of split swap
/// solutions
#[derive(Clone)]
pub struct SplitSwapStrategyEncoder {
swap_encoder_registry: SwapEncoderRegistry,
permit2: Option<Permit2>,
selector: String,
native_address: Bytes,
wrapped_address: Bytes,
split_swap_validator: SplitSwapValidator,
}
impl SplitSwapStrategyEncoder {
pub fn new(
blockchain: tycho_core::models::Chain,
swap_encoder_registry: SwapEncoderRegistry,
swapper_pk: Option<String>,
) -> Result<Self, EncodingError> {
let chain = Chain::from(blockchain);
let (permit2, selector) = if let Some(swapper_pk) = swapper_pk {
(Some(Permit2::new(swapper_pk, chain.clone())?), "swapPermit2(uint256,address,address,uint256,bool,bool,uint256,address,((address,uint160,uint48,uint48),address,uint256),bytes,bytes)".to_string())
} else {
(
None,
"swap(uint256,address,address,uint256,bool,bool,uint256,address,bytes)".to_string(),
)
};
Ok(Self {
permit2,
selector,
swap_encoder_registry,
native_address: chain.native_token()?,
wrapped_address: chain.wrapped_token()?,
split_swap_validator: SplitSwapValidator,
})
}
}
impl EVMStrategyEncoder for SplitSwapStrategyEncoder {}
impl StrategyEncoder for SplitSwapStrategyEncoder {
fn encode_strategy(
&self,
solution: Solution,
) -> Result<(Vec<u8>, Bytes, Option<String>), EncodingError> {
self.split_swap_validator
.validate_split_percentages(&solution.swaps)?;
self.split_swap_validator
.validate_swap_path(
&solution.swaps,
&solution.given_token,
&solution.checked_token,
&solution.native_action,
&self.native_address,
&self.wrapped_address,
)?;
let min_amount_out = get_min_amount_for_solution(solution.clone());
// The tokens array is composed of the given token, the checked token and all the
// intermediary tokens in between. The contract expects the tokens to be in this order.
let solution_tokens: HashSet<Bytes> =
vec![solution.given_token.clone(), solution.checked_token.clone()]
.into_iter()
.collect();
let grouped_swaps = group_swaps(solution.swaps);
let intermediary_tokens: HashSet<Bytes> = grouped_swaps
.iter()
.flat_map(|grouped_swap| {
vec![grouped_swap.input_token.clone(), grouped_swap.output_token.clone()]
})
.collect();
let mut intermediary_tokens: Vec<Bytes> = intermediary_tokens
.difference(&solution_tokens)
.cloned()
.collect();
// this is only to make the test deterministic (same index for the same token for different
// runs)
intermediary_tokens.sort();
let (mut unwrap, mut wrap) = (false, false);
if let Some(action) = solution.native_action.clone() {
match action {
NativeAction::Wrap => wrap = true,
NativeAction::Unwrap => unwrap = true,
}
}
let mut tokens = Vec::with_capacity(2 + intermediary_tokens.len());
if wrap {
tokens.push(self.wrapped_address.clone());
} else {
tokens.push(solution.given_token.clone());
}
tokens.extend(intermediary_tokens);
if unwrap {
tokens.push(self.wrapped_address.clone());
} else {
tokens.push(solution.checked_token.clone());
}
let mut swaps = vec![];
for grouped_swap in grouped_swaps.iter() {
let swap_encoder = self
.get_swap_encoder(&grouped_swap.protocol_system)
.ok_or_else(|| {
EncodingError::InvalidInput(format!(
"Swap encoder not found for protocol: {}",
grouped_swap.protocol_system
))
})?;
let mut grouped_protocol_data: Vec<u8> = vec![];
for swap in grouped_swap.swaps.iter() {
let encoding_context = EncodingContext {
receiver: solution.router_address.clone(),
exact_out: solution.exact_out,
router_address: solution.router_address.clone(),
group_token_in: grouped_swap.input_token.clone(),
group_token_out: grouped_swap.output_token.clone(),
};
let protocol_data =
swap_encoder.encode_swap(swap.clone(), encoding_context.clone())?;
grouped_protocol_data.extend(protocol_data);
}
let swap_data = self.encode_swap_header(
get_token_position(tokens.clone(), grouped_swap.input_token.clone())?,
get_token_position(tokens.clone(), grouped_swap.output_token.clone())?,
percentage_to_uint24(grouped_swap.split),
Bytes::from_str(swap_encoder.executor_address()).map_err(|_| {
EncodingError::FatalError("Invalid executor address".to_string())
})?,
self.encode_executor_selector(swap_encoder.swap_selector()),
grouped_protocol_data,
);
swaps.push(swap_data);
}
let encoded_swaps = self.ple_encode(swaps);
let method_calldata = if let Some(permit2) = self.permit2.clone() {
let (permit, signature) = permit2.get_permit(
&solution.router_address,
&solution.sender,
&solution.given_token,
&solution.given_amount,
)?;
(
biguint_to_u256(&solution.given_amount),
bytes_to_address(&solution.given_token)?,
bytes_to_address(&solution.checked_token)?,
biguint_to_u256(&min_amount_out),
wrap,
unwrap,
U256::from(tokens.len()),
bytes_to_address(&solution.receiver)?,
permit,
signature.as_bytes().to_vec(),
encoded_swaps,
)
.abi_encode()
} else {
(
biguint_to_u256(&solution.given_amount),
bytes_to_address(&solution.given_token)?,
bytes_to_address(&solution.checked_token)?,
biguint_to_u256(&min_amount_out),
wrap,
unwrap,
U256::from(tokens.len()),
bytes_to_address(&solution.receiver)?,
encoded_swaps,
)
.abi_encode()
};
let contract_interaction = encode_input(&self.selector, method_calldata);
Ok((contract_interaction, solution.router_address, None))
}
fn get_swap_encoder(&self, protocol_system: &str) -> Option<&Box<dyn SwapEncoder>> {
self.swap_encoder_registry
.get_encoder(protocol_system)
}
fn clone_box(&self) -> Box<dyn StrategyEncoder> {
Box::new(self.clone())
}
}
/// This strategy encoder is used for solutions that are sent directly to the executor, bypassing
/// the router. Only one solution with one swap is supported.
///
/// # Fields
/// * `swap_encoder_registry`: SwapEncoderRegistry, containing all possible swap encoders
#[derive(Clone)]
pub struct ExecutorStrategyEncoder {
swap_encoder_registry: SwapEncoderRegistry,
}
impl ExecutorStrategyEncoder {
pub fn new(swap_encoder_registry: SwapEncoderRegistry) -> Self {
Self { swap_encoder_registry }
}
}
impl EVMStrategyEncoder for ExecutorStrategyEncoder {}
impl StrategyEncoder for ExecutorStrategyEncoder {
fn encode_strategy(
&self,
solution: Solution,
) -> Result<(Vec<u8>, Bytes, Option<String>), EncodingError> {
let grouped_swaps = group_swaps(solution.clone().swaps);
let number_of_groups = grouped_swaps.len();
if number_of_groups > 1 {
return Err(EncodingError::InvalidInput(format!(
"Executor strategy only supports one swap for non-groupable protocols. Found {}",
number_of_groups
)))
}
let grouped_swap = grouped_swaps
.first()
.ok_or_else(|| EncodingError::FatalError("Swap grouping failed".to_string()))?;
let receiver = solution.receiver;
let router_address = solution.router_address;
let swap_encoder = self
.get_swap_encoder(&grouped_swap.protocol_system)
.ok_or_else(|| {
EncodingError::InvalidInput(format!(
"Swap encoder not found for protocol: {}",
grouped_swap.protocol_system
))
})?;
let mut grouped_protocol_data: Vec<u8> = vec![];
for swap in grouped_swap.swaps.iter() {
let encoding_context = EncodingContext {
receiver: receiver.clone(),
exact_out: solution.exact_out,
router_address: router_address.clone(),
group_token_in: grouped_swap.input_token.clone(),
group_token_out: grouped_swap.output_token.clone(),
};
let protocol_data = swap_encoder.encode_swap(swap.clone(), encoding_context.clone())?;
grouped_protocol_data.extend(protocol_data);
}
let executor_address = Bytes::from_str(swap_encoder.executor_address())
.map_err(|_| EncodingError::FatalError("Invalid executor address".to_string()))?;
Ok((
grouped_protocol_data,
executor_address,
Some(swap_encoder.swap_selector().to_string()),
))
}
fn get_swap_encoder(&self, protocol_system: &str) -> Option<&Box<dyn SwapEncoder>> {
self.swap_encoder_registry
.get_encoder(protocol_system)
}
fn clone_box(&self) -> Box<dyn StrategyEncoder> {
Box::new(self.clone())
}
}
#[cfg(test)]
mod tests {
use std::{collections::HashMap, str::FromStr};
use alloy::hex::encode;
use alloy_primitives::hex;
use num_bigint::{BigInt, BigUint};
use rstest::rstest;
use tycho_core::{
models::{protocol::ProtocolComponent, Chain as TychoCoreChain},
Bytes,
};
use super::*;
use crate::encoding::models::Swap;
fn eth_chain() -> TychoCoreChain {
TychoCoreChain::Ethereum
}
fn eth() -> Bytes {
Bytes::from(hex!("0000000000000000000000000000000000000000").to_vec())
}
fn weth() -> Bytes {
Bytes::from(hex!("c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").to_vec())
}
fn get_swap_encoder_registry() -> SwapEncoderRegistry {
let eth_chain = eth_chain();
SwapEncoderRegistry::new(None, eth_chain).unwrap()
}
#[test]
fn test_executor_strategy_encode() {
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = ExecutorStrategyEncoder::new(swap_encoder_registry);
let token_in = weth();
let token_out = Bytes::from("0x6b175474e89094c44da98b954eedeac495271d0f");
let swap = Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: token_in.clone(),
token_out: token_out.clone(),
split: 0f64,
};
let solution = Solution {
exact_out: false,
given_token: token_in,
given_amount: BigUint::from(1000000000000000000u64),
expected_amount: Some(BigUint::from(1000000000000000000u64)),
checked_token: token_out,
checked_amount: None,
sender: Bytes::from_str("0x0000000000000000000000000000000000000000").unwrap(),
// The receiver was generated with `makeAddr("bob") using forge`
receiver: Bytes::from_str("0x1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e").unwrap(),
swaps: vec![swap],
router_address: Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(),
slippage: None,
native_action: None,
};
let (protocol_data, executor_address, selector) = encoder
.encode_strategy(solution)
.unwrap();
let hex_protocol_data = encode(&protocol_data);
assert_eq!(
executor_address,
Bytes::from_str("0x5c2f5a71f67c01775180adc06909288b4c329308").unwrap()
);
assert_eq!(
hex_protocol_data,
String::from(concat!(
// in token
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2",
// component id
"a478c2975ab1ea89e8196811f51a7b7ade33eb11",
// receiver
"1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e",
// zero for one
"00",
))
);
assert_eq!(selector, Some("swap(uint256,bytes)".to_string()));
}
#[test]
fn test_executor_strategy_encode_too_many_swaps() {
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = ExecutorStrategyEncoder::new(swap_encoder_registry);
let token_in = weth();
let token_out = Bytes::from("0x6b175474e89094c44da98b954eedeac495271d0f");
let swap = Swap {
component: ProtocolComponent {
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: token_in.clone(),
token_out: token_out.clone(),
split: 0f64,
};
let solution = Solution {
exact_out: false,
given_token: token_in,
given_amount: BigUint::from(1000000000000000000u64),
expected_amount: Some(BigUint::from(1000000000000000000u64)),
checked_token: token_out,
checked_amount: None,
sender: Bytes::from_str("0x0000000000000000000000000000000000000000").unwrap(),
receiver: Bytes::from_str("0x1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e").unwrap(),
swaps: vec![swap.clone(), swap],
router_address: Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(),
slippage: None,
native_action: None,
};
let result = encoder.encode_strategy(solution);
assert!(result.is_err());
}
#[test]
fn test_executor_strategy_encode_grouped_swaps() {
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = ExecutorStrategyEncoder::new(swap_encoder_registry);
let eth = eth();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let pepe = Bytes::from_str("0x6982508145454Ce325dDbE47a25d4ec3d2311933").unwrap();
// Fee and tick spacing information for this test is obtained by querying the
// USV4 Position Manager contract: 0xbd216513d74c8cf14cf4747e6aaa6420ff64ee9e
// Using the poolKeys function with the first 25 bytes of the pool id
let pool_fee_usdc_eth = Bytes::from(BigInt::from(3000).to_signed_bytes_be());
let tick_spacing_usdc_eth = Bytes::from(BigInt::from(60).to_signed_bytes_be());
let mut static_attributes_usdc_eth: HashMap<String, Bytes> = HashMap::new();
static_attributes_usdc_eth.insert("fee".into(), pool_fee_usdc_eth);
static_attributes_usdc_eth.insert("tick_spacing".into(), tick_spacing_usdc_eth);
let pool_fee_eth_pepe = Bytes::from(BigInt::from(25000).to_signed_bytes_be());
let tick_spacing_eth_pepe = Bytes::from(BigInt::from(500).to_signed_bytes_be());
let mut static_attributes_eth_pepe: HashMap<String, Bytes> = HashMap::new();
static_attributes_eth_pepe.insert("fee".into(), pool_fee_eth_pepe);
static_attributes_eth_pepe.insert("tick_spacing".into(), tick_spacing_eth_pepe);
let swap_usdc_eth = Swap {
component: ProtocolComponent {
id: "0xdce6394339af00981949f5f3baf27e3610c76326a700af57e4b3e3ae4977f78d"
.to_string(),
protocol_system: "uniswap_v4".to_string(),
static_attributes: static_attributes_usdc_eth,
..Default::default()
},
token_in: usdc.clone(),
token_out: eth.clone(),
split: 0f64,
};
let swap_eth_pepe = Swap {
component: ProtocolComponent {
id: "0xecd73ecbf77219f21f129c8836d5d686bbc27d264742ddad620500e3e548e2c9"
.to_string(),
protocol_system: "uniswap_v4".to_string(),
static_attributes: static_attributes_eth_pepe,
..Default::default()
},
token_in: eth.clone(),
token_out: pepe.clone(),
split: 0f64,
};
let solution = Solution {
exact_out: false,
given_token: usdc,
given_amount: BigUint::from_str("1000_000000").unwrap(),
checked_token: pepe,
expected_amount: Some(BigUint::from_str("105_152_000000000000000000").unwrap()),
checked_amount: None,
slippage: None,
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
router_address: Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(),
swaps: vec![swap_usdc_eth, swap_eth_pepe],
..Default::default()
};
let (protocol_data, executor_address, selector) = encoder
.encode_strategy(solution)
.unwrap();
let hex_protocol_data = encode(&protocol_data);
assert_eq!(
executor_address,
Bytes::from_str("0xF62849F9A0B5Bf2913b396098F7c7019b51A820a").unwrap()
);
assert_eq!(
hex_protocol_data,
String::from(concat!(
// group in token
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48",
// group out token
"6982508145454ce325ddbe47a25d4ec3d2311933",
// zero for one
"00",
// executor address
"f62849f9a0b5bf2913b396098f7c7019b51a820a",
// callback selector
"91dd7346",
// first pool intermediary token (ETH)
"0000000000000000000000000000000000000000",
// fee
"000bb8",
// tick spacing
"00003c",
// second pool intermediary token (PEPE)
"6982508145454ce325ddbe47a25d4ec3d2311933",
// fee
"0061a8",
// tick spacing
"0001f4"
))
);
assert_eq!(selector, Some("swap(uint256,bytes)".to_string()));
}
#[rstest]
#[case::no_check_no_slippage(
None,
None,
None,
U256::from_str("0").unwrap(),
)]
#[case::with_check_no_slippage(
None,
None,
Some(BigUint::from_str("3_000_000000000000000000").unwrap()),
U256::from_str("3_000_000000000000000000").unwrap(),
)]
#[case::no_check_with_slippage(
Some(BigUint::from_str("3_000_000000000000000000").unwrap()),
Some(0.01f64),
None,
U256::from_str("2_970_000000000000000000").unwrap(),
)]
#[case::with_check_and_slippage(
Some(BigUint::from_str("3_000_000000000000000000").unwrap()),
Some(0.01f64),
Some(BigUint::from_str("2_999_000000000000000000").unwrap()),
U256::from_str("2_999_000000000000000000").unwrap(),
)]
fn test_split_swap_strategy_encoder_simple_route(
#[case] expected_amount: Option<BigUint>,
#[case] slippage: Option<f64>,
#[case] checked_amount: Option<BigUint>,
#[case] expected_min_amount: U256,
) {
// Performs a single swap from WETH to DAI on a USV2 pool, with no grouping optimizations.
// Set up a mock private key for signing
let private_key =
"0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string();
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let swap = Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: dai.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder =
SplitSwapStrategyEncoder::new(eth_chain(), swap_encoder_registry, Some(private_key))
.unwrap();
let solution = Solution {
exact_out: false,
given_token: weth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: dai,
expected_amount,
slippage,
checked_amount,
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
router_address: Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(),
swaps: vec![swap],
..Default::default()
};
let (calldata, _, _) = encoder
.encode_strategy(solution)
.unwrap();
let expected_min_amount_encoded = hex::encode(U256::abi_encode(&expected_min_amount));
let expected_input = [
"d499aa88", // Function selector
"0000000000000000000000000000000000000000000000000de0b6b3a7640000", // amount out
"000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"0000000000000000000000006b175474e89094c44da98b954eedeac495271d0f", // token out
&expected_min_amount_encoded, // min amount out
"0000000000000000000000000000000000000000000000000000000000000000", // wrap
"0000000000000000000000000000000000000000000000000000000000000000", // unwrap
"0000000000000000000000000000000000000000000000000000000000000002", // tokens length
"000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
]
.join("");
// after this there is the permit and because of the deadlines (that depend on block time)
// it's hard to assert
// "000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
// "0000000000000000000000000000000000000000000000000de0b6b3a7640000", // amount in
// "0000000000000000000000000000000000000000000000000000000067c205fe", // expiration
// "0000000000000000000000000000000000000000000000000000000000000000", // nonce
// "0000000000000000000000002c6a3cd97c6283b95ac8c5a4459ebb0d5fd404f4", // spender
// "00000000000000000000000000000000000000000000000000000000679a8006", // deadline
// offset of signature (from start of call data to beginning of length indication)
// "0000000000000000000000000000000000000000000000000000000000000200",
// offset of ple encoded swaps (from start of call data to beginning of length indication)
// "0000000000000000000000000000000000000000000000000000000000000280",
// length of signature without padding
// "0000000000000000000000000000000000000000000000000000000000000041",
// signature + padding
// "a031b63a01ef5d25975663e5d6c420ef498e3a5968b593cdf846c6729a788186",
// "1ddaf79c51453cd501d321ee541d13593e3a266be44103eefdf6e76a032d2870",
// "1b00000000000000000000000000000000000000000000000000000000000000"
let expected_swaps = String::from(concat!(
// length of ple encoded swaps without padding
"000000000000000000000000000000000000000000000000000000000000005c",
// ple encoded swaps
"005a",
// Swap header
"00", // token in index
"01", // token out index
"000000", // split
// Swap data
"5c2f5a71f67c01775180adc06909288b4c329308", // executor address
"bd0625ab", // selector
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"a478c2975ab1ea89e8196811f51a7b7ade33eb11", // component id
"3ede3eca2a72b3aecc820e955b36f38437d01395", // receiver
"00", // zero2one
"00", // exact out
"000000", // padding
));
let hex_calldata = encode(&calldata);
assert_eq!(hex_calldata[..520], expected_input);
assert_eq!(hex_calldata[1288..], expected_swaps);
}
#[test]
fn test_split_swap_strategy_encoder_simple_route_wrap() {
// Performs a single swap from WETH to DAI on a USV2 pool, wrapping ETH
// Note: This test does not assert anything. It is only used to obtain integration test
// data for our router solidity test.
// Set up a mock private key for signing
let private_key =
"0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let swap = Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth(),
token_out: dai.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder =
SplitSwapStrategyEncoder::new(eth_chain(), swap_encoder_registry, Some(private_key))
.unwrap();
let solution = Solution {
exact_out: false,
given_token: eth(),
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: dai,
expected_amount: Some(BigUint::from_str("3_000_000000000000000000").unwrap()),
checked_amount: None,
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
router_address: Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(),
swaps: vec![swap],
native_action: Some(NativeAction::Wrap),
..Default::default()
};
let (calldata, _, _) = encoder
.encode_strategy(solution)
.unwrap();
let hex_calldata = encode(&calldata);
println!("{}", hex_calldata);
}
#[test]
fn test_split_swap_strategy_encoder_simple_route_unwrap() {
// Performs a single swap from DAI to WETH on a USV2 pool, unwrapping ETH at the end
// Note: This test does not assert anything. It is only used to obtain integration test
// data for our router solidity test.
// Set up a mock private key for signing
let private_key =
"0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let swap = Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: dai.clone(),
token_out: weth(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder =
SplitSwapStrategyEncoder::new(eth_chain(), swap_encoder_registry, Some(private_key))
.unwrap();
let solution = Solution {
exact_out: false,
given_token: dai,
given_amount: BigUint::from_str("3_000_000000000000000000").unwrap(),
checked_token: eth(),
expected_amount: Some(BigUint::from_str("1_000000000000000000").unwrap()),
checked_amount: None,
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
router_address: Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(),
swaps: vec![swap],
native_action: Some(NativeAction::Unwrap),
..Default::default()
};
let (calldata, _, _) = encoder
.encode_strategy(solution)
.unwrap();
let hex_calldata = encode(&calldata);
println!("{}", hex_calldata);
}
#[test]
fn test_split_swap_strategy_encoder_complex_route() {
// Note: This test does not assert anything. It is only used to obtain integration test
// data for our router solidity test.
//
// Performs a split swap from WETH to USDC though WBTC and DAI using USV2 pools
//
// ┌──(USV2)──> WBTC ───(USV2)──> USDC
// WETH ─┤
// └──(USV2)──> DAI ───(USV2)──> USDC
//
// Set up a mock private key for signing
let private_key =
"0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string();
let weth = weth();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let wbtc = Bytes::from_str("0x2260fac5e5542a773aa44fbcfedf7c193bc2c599").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let swap_weth_dai = Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: dai.clone(),
split: 0.5f64,
};
let swap_weth_wbtc = Swap {
component: ProtocolComponent {
id: "0xBb2b8038a1640196FbE3e38816F3e67Cba72D940".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: wbtc.clone(),
// This represents the remaining 50%, but to avoid any rounding errors we set this to
// 0 to signify "the remainder of the WETH value". It should still be very close to 50%
split: 0f64,
};
let swap_dai_usdc = Swap {
component: ProtocolComponent {
id: "0xAE461cA67B15dc8dc81CE7615e0320dA1A9aB8D5".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: dai.clone(),
token_out: usdc.clone(),
split: 0f64,
};
let swap_wbtc_usdc = Swap {
component: ProtocolComponent {
id: "0x004375Dff511095CC5A197A54140a24eFEF3A416".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: wbtc.clone(),
token_out: usdc.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder =
SplitSwapStrategyEncoder::new(eth_chain(), swap_encoder_registry, Some(private_key))
.unwrap();
let solution = Solution {
exact_out: false,
given_token: weth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: usdc,
expected_amount: Some(BigUint::from_str("3_000_000000").unwrap()),
checked_amount: None,
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
router_address: Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(),
swaps: vec![swap_weth_dai, swap_weth_wbtc, swap_dai_usdc, swap_wbtc_usdc],
..Default::default()
};
let (calldata, _, _) = encoder
.encode_strategy(solution)
.unwrap();
let _hex_calldata = encode(&calldata);
println!("{}", _hex_calldata);
}
#[test]
fn test_split_encoding_strategy_usv4() {
// Performs a sequential swap from USDC to PEPE though ETH using two consecutive USV4 pools
//
// USDC ──(USV4)──> ETH ───(USV4)──> PEPE
//
// Set up a mock private key for signing (Alice's pk in our router tests)
let private_key =
"0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string();
let eth = eth();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let pepe = Bytes::from_str("0x6982508145454Ce325dDbE47a25d4ec3d2311933").unwrap();
// Fee and tick spacing information for this test is obtained by querying the
// USV4 Position Manager contract: 0xbd216513d74c8cf14cf4747e6aaa6420ff64ee9e
// Using the poolKeys function with the first 25 bytes of the pool id
let pool_fee_usdc_eth = Bytes::from(BigInt::from(3000).to_signed_bytes_be());
let tick_spacing_usdc_eth = Bytes::from(BigInt::from(60).to_signed_bytes_be());
let mut static_attributes_usdc_eth: HashMap<String, Bytes> = HashMap::new();
static_attributes_usdc_eth.insert("fee".into(), pool_fee_usdc_eth);
static_attributes_usdc_eth.insert("tick_spacing".into(), tick_spacing_usdc_eth);
let pool_fee_eth_pepe = Bytes::from(BigInt::from(25000).to_signed_bytes_be());
let tick_spacing_eth_pepe = Bytes::from(BigInt::from(500).to_signed_bytes_be());
let mut static_attributes_eth_pepe: HashMap<String, Bytes> = HashMap::new();
static_attributes_eth_pepe.insert("fee".into(), pool_fee_eth_pepe);
static_attributes_eth_pepe.insert("tick_spacing".into(), tick_spacing_eth_pepe);
let swap_usdc_eth = Swap {
component: ProtocolComponent {
id: "0xdce6394339af00981949f5f3baf27e3610c76326a700af57e4b3e3ae4977f78d"
.to_string(),
protocol_system: "uniswap_v4".to_string(),
static_attributes: static_attributes_usdc_eth,
..Default::default()
},
token_in: usdc.clone(),
token_out: eth.clone(),
split: 0f64,
};
let swap_eth_pepe = Swap {
component: ProtocolComponent {
id: "0xecd73ecbf77219f21f129c8836d5d686bbc27d264742ddad620500e3e548e2c9"
.to_string(),
protocol_system: "uniswap_v4".to_string(),
static_attributes: static_attributes_eth_pepe,
..Default::default()
},
token_in: eth.clone(),
token_out: pepe.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder =
SplitSwapStrategyEncoder::new(eth_chain(), swap_encoder_registry, Some(private_key))
.unwrap();
let solution = Solution {
exact_out: false,
given_token: usdc,
given_amount: BigUint::from_str("1000_000000").unwrap(),
checked_token: pepe,
expected_amount: Some(BigUint::from_str("105_152_000000000000000000").unwrap()),
checked_amount: None,
slippage: None,
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
router_address: Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(),
swaps: vec![swap_usdc_eth, swap_eth_pepe],
..Default::default()
};
let (calldata, _, _) = encoder
.encode_strategy(solution)
.unwrap();
let expected_input = [
"d499aa88", // Function selector
"000000000000000000000000000000000000000000000000000000003b9aca00", // amount in
"000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token in
"0000000000000000000000006982508145454ce325ddbe47a25d4ec3d2311933", // token out
"0000000000000000000000000000000000000000000000000000000000000000", // min amount out
"0000000000000000000000000000000000000000000000000000000000000000", // wrap
"0000000000000000000000000000000000000000000000000000000000000000", // unwrap
// tokens length (not including intermediary tokens of USV4-optimized swaps)
"0000000000000000000000000000000000000000000000000000000000000002",
"000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
]
.join("");
// after this there is the permit and because of the deadlines (that depend on block time)
// it's hard to assert
// "000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
// "0000000000000000000000000000000000000000000000000de0b6b3a7640000", // amount in
// "0000000000000000000000000000000000000000000000000000000067c205fe", // expiration
// "0000000000000000000000000000000000000000000000000000000000000000", // nonce
// "0000000000000000000000002c6a3cd97c6283b95ac8c5a4459ebb0d5fd404f4", // spender
// "00000000000000000000000000000000000000000000000000000000679a8006", // deadline
// offset of signature (from start of call data to beginning of length indication)
// "0000000000000000000000000000000000000000000000000000000000000200",
// offset of ple encoded swaps (from start of call data to beginning of length indication)
// "0000000000000000000000000000000000000000000000000000000000000280",
// length of signature without padding
// "0000000000000000000000000000000000000000000000000000000000000041",
// signature + padding
// "a031b63a01ef5d25975663e5d6c420ef498e3a5968b593cdf846c6729a788186",
// "1ddaf79c51453cd501d321ee541d13593e3a266be44103eefdf6e76a032d2870",
// "1b00000000000000000000000000000000000000000000000000000000000000"
let expected_swaps = String::from(concat!(
// length of ple encoded swaps without padding
"0000000000000000000000000000000000000000000000000000000000000094",
// ple encoded swaps
"0092", // Swap length
"00", // token in index
"01", // token out index
"000000", // split
// Swap data header
"f62849f9a0b5bf2913b396098f7c7019b51a820a", // executor address
"bd0625ab", // selector
// Protocol data
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // group token in
"6982508145454ce325ddbe47a25d4ec3d2311933", // group token in
"00", // zero2one
"f62849f9a0b5bf2913b396098f7c7019b51a820a", // executor address
"91dd7346", // callback selector
// First pool params
"0000000000000000000000000000000000000000", // intermediary token (ETH)
"000bb8", // fee
"00003c", // tick spacing
// Second pool params
"6982508145454ce325ddbe47a25d4ec3d2311933", // intermediary token (PEPE)
"0061a8", // fee
"0001f4", // tick spacing
"000000000000000000000000" // padding
));
let hex_calldata = encode(&calldata);
println!("{}", hex_calldata);
assert_eq!(hex_calldata[..520], expected_input);
assert_eq!(hex_calldata[1288..], expected_swaps);
}
#[test]
fn test_split_swap_strategy_encoder_simple_route_no_permit2() {
// Performs a single swap from WETH to DAI on a USV2 pool, without permit2 and no grouping
// optimizations.
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let expected_amount = Some(BigUint::from_str("2_650_000000000000000000").unwrap());
let slippage = Some(0.01f64);
let checked_amount = Some(BigUint::from_str("2_640_000000000000000000").unwrap());
let expected_min_amount = U256::from_str("2_640_000000000000000000").unwrap();
let swap = Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: dai.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder =
SplitSwapStrategyEncoder::new(eth_chain(), swap_encoder_registry, None).unwrap();
let solution = Solution {
exact_out: false,
given_token: weth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: dai,
expected_amount,
slippage,
checked_amount,
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
router_address: Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(),
swaps: vec![swap],
..Default::default()
};
let (calldata, _, _) = encoder
.encode_strategy(solution)
.unwrap();
let expected_min_amount_encoded = hex::encode(U256::abi_encode(&expected_min_amount));
let expected_input = [
"0a83cb08", // Function selector
"0000000000000000000000000000000000000000000000000de0b6b3a7640000", // amount out
"000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"0000000000000000000000006b175474e89094c44da98b954eedeac495271d0f", // token out
&expected_min_amount_encoded, // min amount out
"0000000000000000000000000000000000000000000000000000000000000000", // wrap
"0000000000000000000000000000000000000000000000000000000000000000", // unwrap
"0000000000000000000000000000000000000000000000000000000000000002", // tokens length
"000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
"0000000000000000000000000000000000000000000000000000000000000120", // offset of ple encoded swaps
"000000000000000000000000000000000000000000000000000000000000005c", // length of ple encoded swaps without padding
"005a", // ple encoded swaps
// Swap header
"00", // token in index
"01", // token out index
"000000", // split
// Swap data
"5c2f5a71f67c01775180adc06909288b4c329308", // executor address
"bd0625ab", // selector
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"a478c2975ab1ea89e8196811f51a7b7ade33eb11", // component id
"3ede3eca2a72b3aecc820e955b36f38437d01395", // receiver
"00", // zero2one
"00", // exact out
"000000", // padding
]
.join("");
let hex_calldata = encode(&calldata);
assert_eq!(hex_calldata, expected_input);
println!("{}", hex_calldata);
}
}