Files
tycho-execution/src/encoding/evm/swap_encoder/swap_encoders.rs
2025-08-08 11:41:00 -03:00

2350 lines
92 KiB
Rust

use std::{collections::HashMap, str::FromStr};
use alloy::{
primitives::{Address, Bytes as AlloyBytes, U256, U8},
sol_types::SolValue,
};
use serde_json::from_str;
use tycho_common::{models::Chain, Bytes};
use crate::encoding::{
errors::EncodingError,
evm::{
approvals::protocol_approvals_manager::ProtocolApprovalsManager,
utils::{bytes_to_address, get_static_attribute, pad_to_fixed_size},
},
models::{EncodingContext, Swap},
swap_encoder::SwapEncoder,
};
/// Encodes a swap on a Uniswap V2 pool through the given executor address.
///
/// # Fields
/// * `executor_address` - The address of the executor contract that will perform the swap.
#[derive(Clone)]
pub struct UniswapV2SwapEncoder {
executor_address: String,
}
impl UniswapV2SwapEncoder {
fn get_zero_to_one(sell_token_address: Address, buy_token_address: Address) -> bool {
sell_token_address < buy_token_address
}
}
impl SwapEncoder for UniswapV2SwapEncoder {
fn new(
executor_address: String,
_chain: Chain,
_config: Option<HashMap<String, String>>,
) -> Result<Self, EncodingError> {
Ok(Self { executor_address })
}
fn encode_swap(
&self,
swap: &Swap,
encoding_context: &EncodingContext,
) -> Result<Vec<u8>, EncodingError> {
let token_in_address = bytes_to_address(&swap.token_in)?;
let token_out_address = bytes_to_address(&swap.token_out)?;
let zero_to_one = Self::get_zero_to_one(token_in_address, token_out_address);
let component_id = Address::from_str(&swap.component.id)
.map_err(|_| EncodingError::FatalError("Invalid USV2 component id".to_string()))?;
// Token in address is always needed to perform a manual transfer from the router,
// since no optimizations are performed that send from one pool to the next
let args = (
token_in_address,
component_id,
bytes_to_address(&encoding_context.receiver)?,
zero_to_one,
(encoding_context.transfer_type as u8).to_be_bytes(),
);
Ok(args.abi_encode_packed())
}
fn executor_address(&self) -> &str {
&self.executor_address
}
fn clone_box(&self) -> Box<dyn SwapEncoder> {
Box::new(self.clone())
}
}
/// Encodes a swap on a Uniswap V3 pool through the given executor address.
///
/// # Fields
/// * `executor_address` - The address of the executor contract that will perform the swap.
#[derive(Clone)]
pub struct UniswapV3SwapEncoder {
executor_address: String,
}
impl UniswapV3SwapEncoder {
fn get_zero_to_one(sell_token_address: Address, buy_token_address: Address) -> bool {
sell_token_address < buy_token_address
}
}
impl SwapEncoder for UniswapV3SwapEncoder {
fn new(
executor_address: String,
_chain: Chain,
_config: Option<HashMap<String, String>>,
) -> Result<Self, EncodingError> {
Ok(Self { executor_address })
}
fn encode_swap(
&self,
swap: &Swap,
encoding_context: &EncodingContext,
) -> Result<Vec<u8>, EncodingError> {
let token_in_address = bytes_to_address(&swap.token_in)?;
let token_out_address = bytes_to_address(&swap.token_out)?;
let zero_to_one = Self::get_zero_to_one(token_in_address, token_out_address);
let component_id = Address::from_str(&swap.component.id)
.map_err(|_| EncodingError::FatalError("Invalid USV3 component id".to_string()))?;
let pool_fee_bytes = get_static_attribute(swap, "fee")?;
let pool_fee_u24 = pad_to_fixed_size::<3>(&pool_fee_bytes)
.map_err(|_| EncodingError::FatalError("Failed to extract fee bytes".to_string()))?;
let args = (
token_in_address,
token_out_address,
pool_fee_u24,
bytes_to_address(&encoding_context.receiver)?,
component_id,
zero_to_one,
(encoding_context.transfer_type as u8).to_be_bytes(),
);
Ok(args.abi_encode_packed())
}
fn executor_address(&self) -> &str {
&self.executor_address
}
fn clone_box(&self) -> Box<dyn SwapEncoder> {
Box::new(self.clone())
}
}
/// Encodes a swap on a Uniswap V4 pool through the given executor address.
///
/// # Fields
/// * `executor_address` - The address of the executor contract that will perform the swap.
#[derive(Clone)]
pub struct UniswapV4SwapEncoder {
executor_address: String,
}
impl UniswapV4SwapEncoder {
fn get_zero_to_one(sell_token_address: Address, buy_token_address: Address) -> bool {
sell_token_address < buy_token_address
}
}
impl SwapEncoder for UniswapV4SwapEncoder {
fn new(
executor_address: String,
_chain: Chain,
_config: Option<HashMap<String, String>>,
) -> Result<Self, EncodingError> {
Ok(Self { executor_address })
}
fn encode_swap(
&self,
swap: &Swap,
encoding_context: &EncodingContext,
) -> Result<Vec<u8>, EncodingError> {
let fee = get_static_attribute(swap, "key_lp_fee")?;
let pool_fee_u24 = pad_to_fixed_size::<3>(&fee)
.map_err(|_| EncodingError::FatalError("Failed to pad fee bytes".to_string()))?;
let tick_spacing = get_static_attribute(swap, "tick_spacing")?;
let pool_tick_spacing_u24 = pad_to_fixed_size::<3>(&tick_spacing).map_err(|_| {
EncodingError::FatalError("Failed to pad tick spacing bytes".to_string())
})?;
// Early check if this is not the first swap
if encoding_context.group_token_in != swap.token_in {
return Ok((bytes_to_address(&swap.token_out)?, pool_fee_u24, pool_tick_spacing_u24)
.abi_encode_packed());
}
// This is the first swap, compute all necessary values
let token_in_address = bytes_to_address(&swap.token_in)?;
let token_out_address = bytes_to_address(&swap.token_out)?;
let group_token_in_address = bytes_to_address(&encoding_context.group_token_in)?;
let group_token_out_address = bytes_to_address(&encoding_context.group_token_out)?;
let zero_to_one = Self::get_zero_to_one(token_in_address, token_out_address);
let pool_params =
(token_out_address, pool_fee_u24, pool_tick_spacing_u24).abi_encode_packed();
let args = (
group_token_in_address,
group_token_out_address,
zero_to_one,
(encoding_context.transfer_type as u8).to_be_bytes(),
bytes_to_address(&encoding_context.receiver)?,
pool_params,
);
Ok(args.abi_encode_packed())
}
fn executor_address(&self) -> &str {
&self.executor_address
}
fn clone_box(&self) -> Box<dyn SwapEncoder> {
Box::new(self.clone())
}
}
/// Encodes a swap on a Balancer V2 pool through the given executor address.
///
/// # Fields
/// * `executor_address` - The address of the executor contract that will perform the swap.
/// * `vault_address` - The address of the vault contract that will perform the swap.
#[derive(Clone)]
pub struct BalancerV2SwapEncoder {
executor_address: String,
vault_address: String,
}
impl SwapEncoder for BalancerV2SwapEncoder {
fn new(
executor_address: String,
_chain: Chain,
config: Option<HashMap<String, String>>,
) -> Result<Self, EncodingError> {
let config = config.ok_or(EncodingError::FatalError(
"Missing balancer v2 specific addresses in config".to_string(),
))?;
let vault_address = config
.get("vault_address")
.ok_or(EncodingError::FatalError(
"Missing balancer v2 vault address in config".to_string(),
))?
.to_string();
Ok(Self { executor_address, vault_address })
}
fn encode_swap(
&self,
swap: &Swap,
encoding_context: &EncodingContext,
) -> Result<Vec<u8>, EncodingError> {
let token_approvals_manager = ProtocolApprovalsManager::new()?;
let token = bytes_to_address(&swap.token_in)?;
let approval_needed: bool;
if let Some(router_address) = &encoding_context.router_address {
let tycho_router_address = bytes_to_address(router_address)?;
approval_needed = token_approvals_manager.approval_needed(
token,
tycho_router_address,
Address::from_str(&self.vault_address)
.map_err(|_| EncodingError::FatalError("Invalid vault address".to_string()))?,
)?;
} else {
approval_needed = true;
}
let component_id = AlloyBytes::from_str(&swap.component.id)
.map_err(|_| EncodingError::FatalError("Invalid component ID".to_string()))?;
let args = (
bytes_to_address(&swap.token_in)?,
bytes_to_address(&swap.token_out)?,
component_id,
bytes_to_address(&encoding_context.receiver)?,
approval_needed,
(encoding_context.transfer_type as u8).to_be_bytes(),
);
Ok(args.abi_encode_packed())
}
fn executor_address(&self) -> &str {
&self.executor_address
}
fn clone_box(&self) -> Box<dyn SwapEncoder> {
Box::new(self.clone())
}
}
/// Encodes a swap on an Ekubo pool through the given executor address.
///
/// # Fields
/// * `executor_address` - The address of the executor contract that will perform the swap.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct EkuboSwapEncoder {
executor_address: String,
}
impl SwapEncoder for EkuboSwapEncoder {
fn new(
executor_address: String,
_chain: Chain,
_config: Option<HashMap<String, String>>,
) -> Result<Self, EncodingError> {
Ok(Self { executor_address })
}
fn encode_swap(
&self,
swap: &Swap,
encoding_context: &EncodingContext,
) -> Result<Vec<u8>, EncodingError> {
if encoding_context.exact_out {
return Err(EncodingError::InvalidInput("exact out swaps not implemented".to_string()));
}
let fee = u64::from_be_bytes(
get_static_attribute(swap, "fee")?
.try_into()
.map_err(|_| EncodingError::FatalError("fee should be an u64".to_string()))?,
);
let tick_spacing = u32::from_be_bytes(
get_static_attribute(swap, "tick_spacing")?
.try_into()
.map_err(|_| {
EncodingError::FatalError("tick_spacing should be an u32".to_string())
})?,
);
let extension: Address = get_static_attribute(swap, "extension")?
.as_slice()
.try_into()
.map_err(|_| EncodingError::FatalError("extension should be an address".to_string()))?;
let mut encoded = vec![];
if encoding_context.group_token_in == swap.token_in {
encoded.extend((encoding_context.transfer_type as u8).to_be_bytes());
encoded.extend(bytes_to_address(&encoding_context.receiver)?);
encoded.extend(bytes_to_address(&swap.token_in)?);
}
encoded.extend(bytes_to_address(&swap.token_out)?);
encoded.extend((extension, fee, tick_spacing).abi_encode_packed());
Ok(encoded)
}
fn executor_address(&self) -> &str {
&self.executor_address
}
fn clone_box(&self) -> Box<dyn SwapEncoder> {
Box::new(self.clone())
}
}
/// Encodes a swap on a Curve pool through the given executor address.
///
/// # Fields
/// * `executor_address` - The address of the executor contract that will perform the swap.
/// * `meta_registry_address` - The address of the Curve meta registry contract. Used to get coin
/// indexes.
/// * `native_token_curve_address` - The address used as native token in curve pools.
/// * `native_token_address` - The address of the native token.
#[derive(Clone)]
pub struct CurveSwapEncoder {
executor_address: String,
native_token_curve_address: String,
native_token_address: Bytes,
wrapped_native_token_address: Bytes,
}
impl CurveSwapEncoder {
fn get_pool_type(&self, pool_id: &str, factory_address: &str) -> Result<U8, EncodingError> {
match pool_id {
// TriPool
"0xbEbc44782C7dB0a1A60Cb6fe97d0b483032FF1C7" => Ok(U8::from(1)),
// STETHPool
"0xDC24316b9AE028F1497c275EB9192a3Ea0f67022" => Ok(U8::from(1)),
// TriCryptoPool
"0xD51a44d3FaE010294C616388b506AcdA1bfAAE46" => Ok(U8::from(3)),
// SUSDPool
"0xA5407eAE9Ba41422680e2e00537571bcC53efBfD" => Ok(U8::from(1)),
// FRAXUSDCPool
"0xDcEF968d416a41Cdac0ED8702fAC8128A64241A2" => Ok(U8::from(1)),
_ => match factory_address {
// CryptoSwapNG factory
"0x6A8cbed756804B16E05E741eDaBd5cB544AE21bf" => Ok(U8::from(1)),
// Metapool factory
"0xB9fC157394Af804a3578134A6585C0dc9cc990d4" => Ok(U8::from(1)),
// CryptoPool factory
"0xF18056Bbd320E96A48e3Fbf8bC061322531aac99" => Ok(U8::from(2)),
// Tricrypto factory
"0x0c0e5f2fF0ff18a3be9b835635039256dC4B4963" => Ok(U8::from(3)),
// Twocrypto factory
"0x98EE851a00abeE0d95D08cF4CA2BdCE32aeaAF7F" => Ok(U8::from(2)),
// StableSwap factory
"0x4F8846Ae9380B90d2E71D5e3D042dff3E7ebb40d" => Ok(U8::from(1)),
_ => Err(EncodingError::FatalError(format!(
"Unsupported curve factory address: {factory_address}"
))),
},
}
}
// Some curve pools support both ETH and WETH as tokens.
// They do the wrapping/unwrapping inside the pool
fn normalize_token(&self, token: Address, coins: &[Address]) -> Result<Address, EncodingError> {
let native_token_address =
Address::from_str(&self.native_token_curve_address).map_err(|_| {
EncodingError::FatalError("Invalid native token curve address".to_string())
})?;
let wrapped_native_token_address = bytes_to_address(&self.wrapped_native_token_address)?;
if token == native_token_address && !coins.contains(&token) {
Ok(wrapped_native_token_address)
} else if token == wrapped_native_token_address && !coins.contains(&token) {
Ok(native_token_address)
} else {
Ok(token)
}
}
fn get_coin_indexes(
&self,
swap: &Swap,
token_in: Address,
token_out: Address,
) -> Result<(U8, U8), EncodingError> {
let coins_bytes = get_static_attribute(swap, "coins")?;
let coins: Vec<Address> = from_str(std::str::from_utf8(&coins_bytes)?)?;
let token_in = self.normalize_token(token_in, &coins)?;
let token_out = self.normalize_token(token_out, &coins)?;
let i = coins
.iter()
.position(|&addr| addr == token_in)
.ok_or(EncodingError::FatalError(format!(
"Token in address {token_in} not found in curve pool coins"
)))?;
let j = coins
.iter()
.position(|&addr| addr == token_out)
.ok_or(EncodingError::FatalError(format!(
"Token in address {token_out} not found in curve pool coins"
)))?;
Ok((U8::from(i), U8::from(j)))
}
}
impl SwapEncoder for CurveSwapEncoder {
fn new(
executor_address: String,
chain: Chain,
config: Option<HashMap<String, String>>,
) -> Result<Self, EncodingError> {
let config = config.ok_or(EncodingError::FatalError(
"Missing curve specific addresses in config".to_string(),
))?;
let native_token_curve_address = config
.get("native_token_address")
.ok_or(EncodingError::FatalError(
"Missing native token curve address in config".to_string(),
))?
.to_string();
Ok(Self {
executor_address,
native_token_address: chain.native_token().address,
native_token_curve_address,
wrapped_native_token_address: chain.wrapped_native_token().address,
})
}
fn encode_swap(
&self,
swap: &Swap,
encoding_context: &EncodingContext,
) -> Result<Vec<u8>, EncodingError> {
let token_approvals_manager = ProtocolApprovalsManager::new()?;
let native_token_curve_address = Address::from_str(&self.native_token_curve_address)
.map_err(|_| {
EncodingError::FatalError("Invalid Curve native token curve address".to_string())
})?;
let token_in = if swap.token_in == self.native_token_address {
native_token_curve_address
} else {
bytes_to_address(&swap.token_in)?
};
let token_out = if swap.token_out == self.native_token_address {
native_token_curve_address
} else {
bytes_to_address(&swap.token_out)?
};
let approval_needed: bool;
let component_address = Address::from_str(&swap.component.id)
.map_err(|_| EncodingError::FatalError("Invalid curve pool address".to_string()))?;
if let Some(router_address) = &encoding_context.router_address {
if token_in != native_token_curve_address {
let tycho_router_address = bytes_to_address(router_address)?;
approval_needed = token_approvals_manager.approval_needed(
token_in,
tycho_router_address,
component_address,
)?;
} else {
approval_needed = false;
}
} else {
approval_needed = true;
}
let factory_bytes = get_static_attribute(swap, "factory")?.to_vec();
// the conversion to Address is necessary to checksum the address
let factory_address =
Address::from_str(std::str::from_utf8(&factory_bytes).map_err(|_| {
EncodingError::FatalError(
"Failed to convert curve factory address to string".to_string(),
)
})?)
.map_err(|_| EncodingError::FatalError("Invalid curve factory address".to_string()))?;
let pool_address = Address::from_str(&swap.component.id)
.map_err(|_| EncodingError::FatalError("Invalid curve pool address".to_string()))?;
let pool_type =
self.get_pool_type(&pool_address.to_string(), &factory_address.to_string())?;
let (i, j) = self.get_coin_indexes(swap, token_in, token_out)?;
let args = (
token_in,
token_out,
component_address,
pool_type.to_be_bytes::<1>(),
i.to_be_bytes::<1>(),
j.to_be_bytes::<1>(),
approval_needed,
(encoding_context.transfer_type as u8).to_be_bytes(),
bytes_to_address(&encoding_context.receiver)?,
);
Ok(args.abi_encode_packed())
}
fn executor_address(&self) -> &str {
&self.executor_address
}
fn clone_box(&self) -> Box<dyn SwapEncoder> {
Box::new(self.clone())
}
}
/// Encodes a swap on a Maverick V2 pool through the given executor address.
///
/// # Fields
/// * `executor_address` - The address of the executor contract that will perform the swap.
#[derive(Clone)]
pub struct MaverickV2SwapEncoder {
executor_address: String,
}
impl SwapEncoder for MaverickV2SwapEncoder {
fn new(
executor_address: String,
_chain: Chain,
_config: Option<HashMap<String, String>>,
) -> Result<Self, EncodingError> {
Ok(Self { executor_address })
}
fn encode_swap(
&self,
swap: &Swap,
encoding_context: &EncodingContext,
) -> Result<Vec<u8>, EncodingError> {
let component_id = AlloyBytes::from_str(&swap.component.id)
.map_err(|_| EncodingError::FatalError("Invalid component ID".to_string()))?;
let args = (
bytes_to_address(&swap.token_in)?,
component_id,
bytes_to_address(&encoding_context.receiver)?,
(encoding_context.transfer_type as u8).to_be_bytes(),
);
Ok(args.abi_encode_packed())
}
fn executor_address(&self) -> &str {
&self.executor_address
}
fn clone_box(&self) -> Box<dyn SwapEncoder> {
Box::new(self.clone())
}
}
/// Encodes a swap on a Balancer V3 pool through the given executor address.
///
/// # Fields
/// * `executor_address` - The address of the executor contract that will perform the swap.
#[derive(Clone)]
pub struct BalancerV3SwapEncoder {
executor_address: String,
}
impl SwapEncoder for BalancerV3SwapEncoder {
fn new(
executor_address: String,
_chain: Chain,
_config: Option<HashMap<String, String>>,
) -> Result<Self, EncodingError> {
Ok(Self { executor_address })
}
fn encode_swap(
&self,
swap: &Swap,
encoding_context: &EncodingContext,
) -> Result<Vec<u8>, EncodingError> {
let pool = Address::from_str(&swap.component.id).map_err(|_| {
EncodingError::FatalError("Invalid pool address for Balancer v3".to_string())
})?;
let args = (
bytes_to_address(&swap.token_in)?,
bytes_to_address(&swap.token_out)?,
pool,
(encoding_context.transfer_type as u8).to_be_bytes(),
bytes_to_address(&encoding_context.receiver)?,
);
Ok(args.abi_encode_packed())
}
fn executor_address(&self) -> &str {
&self.executor_address
}
fn clone_box(&self) -> Box<dyn SwapEncoder> {
Box::new(self.clone())
}
}
/// Encodes a swap on Bebop (PMM RFQ) through the given executor address.
///
/// Bebop uses a Request-for-Quote model where quotes are obtained off-chain
/// and settled on-chain. This encoder supports PMM RFQ execution.
///
/// # Signature Encoding
/// Bebop aggregate orders use concatenated 65-byte ECDSA signatures without length prefixes.
/// Each signature is exactly 65 bytes: r (32) + s (32) + v (1).
///
/// # Fields
/// * `executor_address` - The address of the executor contract that will perform the swap.
/// * `settlement_address` - The address of the Bebop settlement contract.
#[derive(Clone)]
pub struct BebopSwapEncoder {
executor_address: String,
settlement_address: String,
}
impl BebopSwapEncoder {
/// Validates the component ID format
/// Component format: "bebop-rfq"
fn validate_component_id(component_id: &str) -> Result<(), EncodingError> {
if component_id != "bebop-rfq" {
return Err(EncodingError::FatalError(
"Invalid Bebop component ID format. Expected 'bebop-rfq'".to_string(),
));
}
Ok(())
}
}
/// Extract the total taker amount from a Bebop aggregate order calldata
/// This is required because BebopExecutor needs a non-zero filledTakerAmount
fn extract_aggregate_taker_amount(bebop_calldata: &[u8]) -> Option<U256> {
// Minimum size check: 4 (selector) + 32 (order offset) + 32 (signatures offset) + 32
// (filledTakerAmount) = 100 bytes
if bebop_calldata.len() < 100 {
return None;
}
// Read the offset to the order struct (first parameter)
// The order offset is at bytes 4-36 (after selector)
let order_offset_value = U256::from_be_slice(&bebop_calldata[4..36]);
// Add 4 to account for the selector when calculating absolute position
let order_offset = order_offset_value.to::<usize>() + 4;
// The Aggregate struct has 11 fields:
// 0: expiry (U256) - at order_offset + 0
// 1: taker_address (address) - at order_offset + 32
// 2: maker_addresses (address[]) - offset at order_offset + 64
// 3: maker_nonces (uint256[]) - offset at order_offset + 96
// 4: taker_tokens (address[][]) - offset at order_offset + 128
// 5: maker_tokens (address[][]) - offset at order_offset + 160
// 6: taker_amounts (uint256[][]) - offset at order_offset + 192 <- we need this
// 7: maker_amounts (uint256[][]) - offset at order_offset + 224
// 8: receiver (address) - at order_offset + 256
// 9: commands (bytes) - offset at order_offset + 288
// 10: flags (uint256) - at order_offset + 320
// Make sure we can read the taker_amounts offset
if bebop_calldata.len() <= order_offset + 224 {
return None;
}
// Read the offset to taker_amounts (relative to the start of the order struct)
let taker_amounts_offset =
U256::from_be_slice(&bebop_calldata[order_offset + 192..order_offset + 224]).to::<usize>();
// Calculate absolute position of taker_amounts data
let taker_amounts_data_offset = order_offset + taker_amounts_offset;
// Make sure we can read the array length
if bebop_calldata.len() <= taker_amounts_data_offset + 32 {
return None;
}
// Read the number of makers (outer array length)
let num_makers = U256::from_be_slice(
&bebop_calldata[taker_amounts_data_offset..taker_amounts_data_offset + 32],
);
// Sanity check
if num_makers == U256::ZERO || num_makers > U256::from(100) {
return None;
}
let num_makers = num_makers.to::<usize>();
// Now we need to read the 2D array structure
// After the array length, we have num_makers offsets (each 32 bytes)
// Each offset points to that maker's taker_amounts array
let mut total = U256::ZERO;
for maker_idx in 0..num_makers {
// Read the offset to this maker's taker_amounts array
let offset_position = taker_amounts_data_offset + 32 + (maker_idx * 32);
if bebop_calldata.len() <= offset_position + 32 {
return None;
}
// This offset is relative to the start of the taker_amounts array
let maker_array_offset =
U256::from_be_slice(&bebop_calldata[offset_position..offset_position + 32])
.to::<usize>();
// Calculate absolute position of this maker's array
let maker_array_position = taker_amounts_data_offset + maker_array_offset;
// Read the length of this maker's taker_amounts array
if bebop_calldata.len() <= maker_array_position + 32 {
return None;
}
let num_amounts =
U256::from_be_slice(&bebop_calldata[maker_array_position..maker_array_position + 32])
.to::<usize>();
// Sanity check
if num_amounts > 100 {
return None;
}
// Sum all amounts for this maker
for amount_idx in 0..num_amounts {
let amount_position = maker_array_position + 32 + (amount_idx * 32);
if bebop_calldata.len() <= amount_position + 32 {
return None;
}
let amount =
U256::from_be_slice(&bebop_calldata[amount_position..amount_position + 32]);
total = total.saturating_add(amount);
}
}
if total > U256::ZERO {
Some(total)
} else {
None
}
}
impl SwapEncoder for BebopSwapEncoder {
fn new(
executor_address: String,
_chain: Chain,
config: Option<HashMap<String, String>>,
) -> Result<Self, EncodingError> {
let config = config.ok_or(EncodingError::FatalError(
"Missing bebop specific addresses in config".to_string(),
))?;
let settlement_address = config
.get("bebop_settlement_address")
.ok_or(EncodingError::FatalError(
"Missing bebop settlement address in config".to_string(),
))?
.to_string();
Ok(Self { executor_address, settlement_address })
}
fn encode_swap(
&self,
swap: &Swap,
encoding_context: &EncodingContext,
) -> Result<Vec<u8>, EncodingError> {
let token_in = bytes_to_address(&swap.token_in)?;
let token_out = bytes_to_address(&swap.token_out)?;
let token_approvals_manager = ProtocolApprovalsManager::new()?;
let approval_needed: bool;
if let Some(router_address) = &encoding_context.router_address {
let tycho_router_address = bytes_to_address(router_address)?;
let token_to_approve = token_in.clone();
let settlement_address = Address::from_str(&self.settlement_address)
.map_err(|_| EncodingError::FatalError("Invalid settlement address".to_string()))?;
// Native ETH doesn't need approval, only ERC20 tokens do
if token_to_approve == Address::ZERO {
approval_needed = false;
} else {
approval_needed = token_approvals_manager.approval_needed(
token_to_approve,
tycho_router_address,
settlement_address,
)?;
}
} else {
approval_needed = true;
}
// Validate component ID
Self::validate_component_id(&swap.component.id)?;
// Extract bebop calldata from user_data (required for Bebop)
let user_data = swap.user_data.clone().ok_or_else(|| {
EncodingError::InvalidInput("Bebop swaps require user_data with calldata".to_string())
})?;
// User data format: partialFillOffset (1 byte) + bebop_calldata
if user_data.len() < 5 {
return Err(EncodingError::InvalidInput(
"User data too short to contain offset and Bebop calldata".to_string(),
));
}
// Extract the partialFillOffset from the first byte
let partial_fill_offset = user_data[0];
// The calldata should be for either swapSingle or swapAggregate
let bebop_calldata = user_data[1..].to_vec();
// Extract the original filledTakerAmount from the calldata using partialFillOffset
// The actual byte position is 4 (selector) + partialFillOffset * 32
let filled_taker_amount_pos = 4 + (partial_fill_offset as usize) * 32;
// Ensure the calldata is long enough to contain filledTakerAmount at the calculated
// position
if bebop_calldata.len() < filled_taker_amount_pos + 32 {
return Err(EncodingError::InvalidInput(format!(
"Bebop calldata too short to contain filledTakerAmount at offset {}",
partial_fill_offset
)));
}
// Extract the original filledTakerAmount from the order and use the context receiver
let (original_filled_taker_amount, receiver) = {
let filled_taker_amount = U256::from_be_slice(
&bebop_calldata[filled_taker_amount_pos..filled_taker_amount_pos + 32],
);
// Extract receiver and taker_amount from the order based on the function selector
let selector = &bebop_calldata[0..4];
// swapSingle selector: 0x4dcebcba
// swapAggregate selector: 0xa2f74893
const SWAP_SINGLE_SELECTOR: [u8; 4] = [0x4d, 0xce, 0xbc, 0xba];
const SWAP_AGGREGATE_SELECTOR: [u8; 4] = [0xa2, 0xf7, 0x48, 0x93];
if selector == SWAP_SINGLE_SELECTOR {
// For swapSingle, only care about taker_amount; receiver comes from context
// Single struct layout indicates taker_amount at bytes 292..324
let taker_amount = if filled_taker_amount != U256::ZERO {
filled_taker_amount
} else if bebop_calldata.len() >= 324 {
U256::from_be_slice(&bebop_calldata[292..324])
} else {
U256::ZERO
};
(taker_amount, bytes_to_address(&encoding_context.receiver)?)
} else if selector == SWAP_AGGREGATE_SELECTOR {
// For swapAggregate, compute taker_amount from calldata if needed; receiver from
// context
let taker_amount = if filled_taker_amount != U256::ZERO {
filled_taker_amount
} else {
extract_aggregate_taker_amount(&bebop_calldata).unwrap_or(U256::ZERO)
};
(taker_amount, bytes_to_address(&encoding_context.receiver)?)
} else {
(U256::ZERO, bytes_to_address(&encoding_context.receiver)?)
}
};
// Encode packed data for the executor
// Format: token_in | token_out | transfer_type | bebop_calldata_length |
// bebop_calldata | partial_fill_offset | original_filled_taker_amount |
// approval_needed | receiver
let args = (
token_in,
token_out,
(encoding_context.transfer_type as u8).to_be_bytes(),
(bebop_calldata.len() as u32).to_be_bytes(),
&bebop_calldata[..],
partial_fill_offset.to_be_bytes(),
original_filled_taker_amount.to_be_bytes::<32>(),
(approval_needed as u8).to_be_bytes(),
receiver,
);
Ok(args.abi_encode_packed())
}
fn executor_address(&self) -> &str {
&self.executor_address
}
fn clone_box(&self) -> Box<dyn SwapEncoder> {
Box::new(self.clone())
}
}
#[cfg(test)]
mod tests {
use std::collections::HashMap;
use alloy::hex::encode;
use num_bigint::BigInt;
use tycho_common::{
models::{protocol::ProtocolComponent, Chain},
Bytes,
};
use super::*;
use crate::encoding::{evm::utils::write_calldata_to_file, models::TransferType};
mod uniswap_v2 {
use super::*;
#[test]
fn test_encode_uniswap_v2() {
let usv2_pool = ProtocolComponent {
id: String::from("0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11"),
..Default::default()
};
let token_in = Bytes::from("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2");
let token_out = Bytes::from("0x6b175474e89094c44da98b954eedeac495271d0f");
let swap = Swap {
component: usv2_pool,
token_in: token_in.clone(),
token_out: token_out.clone(),
split: 0f64,
user_data: None,
protocol_state: None,
};
let encoding_context = EncodingContext {
receiver: Bytes::from("0x1D96F2f6BeF1202E4Ce1Ff6Dad0c2CB002861d3e"), // BOB
exact_out: false,
router_address: Some(Bytes::zero(20)),
group_token_in: token_in.clone(),
group_token_out: token_out.clone(),
transfer_type: TransferType::Transfer,
};
let encoder = UniswapV2SwapEncoder::new(
String::from("0x543778987b293C7E8Cf0722BB2e935ba6f4068D4"),
Chain::Ethereum,
None,
)
.unwrap();
let encoded_swap = encoder
.encode_swap(&swap, &encoding_context)
.unwrap();
let hex_swap = encode(&encoded_swap);
assert_eq!(
hex_swap,
String::from(concat!(
// in token
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2",
// component id
"a478c2975ab1ea89e8196811f51a7b7ade33eb11",
// receiver
"1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e",
// zero for one
"00",
// transfer type Transfer
"01",
))
);
write_calldata_to_file("test_encode_uniswap_v2", hex_swap.as_str());
}
}
mod uniswap_v3 {
use super::*;
#[test]
fn test_encode_uniswap_v3() {
let fee = BigInt::from(500);
let encoded_pool_fee = Bytes::from(fee.to_signed_bytes_be());
let mut static_attributes: HashMap<String, Bytes> = HashMap::new();
static_attributes.insert("fee".into(), Bytes::from(encoded_pool_fee.to_vec()));
let usv3_pool = ProtocolComponent {
id: String::from("0x88e6A0c2dDD26FEEb64F039a2c41296FcB3f5640"),
static_attributes,
..Default::default()
};
let token_in = Bytes::from("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2");
let token_out = Bytes::from("0x6b175474e89094c44da98b954eedeac495271d0f");
let swap = Swap {
component: usv3_pool,
token_in: token_in.clone(),
token_out: token_out.clone(),
split: 0f64,
user_data: None,
protocol_state: None,
};
let encoding_context = EncodingContext {
receiver: Bytes::from("0x0000000000000000000000000000000000000001"),
exact_out: false,
router_address: Some(Bytes::zero(20)),
group_token_in: token_in.clone(),
group_token_out: token_out.clone(),
transfer_type: TransferType::Transfer,
};
let encoder = UniswapV3SwapEncoder::new(
String::from("0x543778987b293C7E8Cf0722BB2e935ba6f4068D4"),
Chain::Ethereum,
None,
)
.unwrap();
let encoded_swap = encoder
.encode_swap(&swap, &encoding_context)
.unwrap();
let hex_swap = encode(&encoded_swap);
assert_eq!(
hex_swap,
String::from(concat!(
// in token
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2",
// out token
"6b175474e89094c44da98b954eedeac495271d0f",
// fee
"0001f4",
// receiver
"0000000000000000000000000000000000000001",
// pool id
"88e6a0c2ddd26feeb64f039a2c41296fcb3f5640",
// zero for one
"00",
// transfer type Transfer
"01",
))
);
}
}
mod balancer_v2 {
use super::*;
#[test]
fn test_encode_balancer_v2() {
let balancer_pool = ProtocolComponent {
id: String::from(
"0x5c6ee304399dbdb9c8ef030ab642b10820db8f56000200000000000000000014",
),
protocol_system: String::from("vm:balancer_v2"),
..Default::default()
};
let token_in = Bytes::from("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2");
let token_out = Bytes::from("0xba100000625a3754423978a60c9317c58a424e3D");
let swap = Swap {
component: balancer_pool,
token_in: token_in.clone(),
token_out: token_out.clone(),
split: 0f64,
user_data: None,
protocol_state: None,
};
let encoding_context = EncodingContext {
// The receiver was generated with `makeAddr("bob") using forge`
receiver: Bytes::from("0x1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e"),
exact_out: false,
router_address: Some(Bytes::zero(20)),
group_token_in: token_in.clone(),
group_token_out: token_out.clone(),
transfer_type: TransferType::None,
};
let encoder = BalancerV2SwapEncoder::new(
String::from("0x543778987b293C7E8Cf0722BB2e935ba6f4068D4"),
Chain::Ethereum,
Some(HashMap::from([(
"vault_address".to_string(),
"0xba12222222228d8ba445958a75a0704d566bf2c8".to_string(),
)])),
)
.unwrap();
let encoded_swap = encoder
.encode_swap(&swap, &encoding_context)
.unwrap();
let hex_swap = encode(&encoded_swap);
assert_eq!(
hex_swap,
String::from(concat!(
// token in
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2",
// token out
"ba100000625a3754423978a60c9317c58a424e3d",
// pool id
"5c6ee304399dbdb9c8ef030ab642b10820db8f56000200000000000000000014",
// receiver
"1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e",
// approval needed
"01",
// transfer type None
"02"
))
);
write_calldata_to_file("test_encode_balancer_v2", hex_swap.as_str());
}
}
mod uniswap_v4 {
use super::*;
use crate::encoding::evm::utils::write_calldata_to_file;
#[test]
fn test_encode_uniswap_v4_simple_swap() {
let fee = BigInt::from(100);
let tick_spacing = BigInt::from(1);
let token_in = Bytes::from("0x4c9EDD5852cd905f086C759E8383e09bff1E68B3"); // USDE
let token_out = Bytes::from("0xdAC17F958D2ee523a2206206994597C13D831ec7"); // USDT
let mut static_attributes: HashMap<String, Bytes> = HashMap::new();
static_attributes.insert("key_lp_fee".into(), Bytes::from(fee.to_signed_bytes_be()));
static_attributes
.insert("tick_spacing".into(), Bytes::from(tick_spacing.to_signed_bytes_be()));
let usv4_pool = ProtocolComponent {
// Pool manager
id: String::from("0x000000000004444c5dc75cB358380D2e3dE08A90"),
static_attributes,
..Default::default()
};
let swap = Swap {
component: usv4_pool,
token_in: token_in.clone(),
token_out: token_out.clone(),
split: 0f64,
user_data: None,
protocol_state: None,
};
let encoding_context = EncodingContext {
// The receiver is ALICE to match the solidity tests
receiver: Bytes::from("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2"),
exact_out: false,
// Same as the executor address
router_address: Some(Bytes::from("0x5615deb798bb3e4dfa0139dfa1b3d433cc23b72f")),
group_token_in: token_in.clone(),
group_token_out: token_out.clone(),
transfer_type: TransferType::Transfer,
};
let encoder = UniswapV4SwapEncoder::new(
String::from("0xF62849F9A0B5Bf2913b396098F7c7019b51A820a"),
Chain::Ethereum,
None,
)
.unwrap();
let encoded_swap = encoder
.encode_swap(&swap, &encoding_context)
.unwrap();
let hex_swap = encode(&encoded_swap);
assert_eq!(
hex_swap,
String::from(concat!(
// group token in
"4c9edd5852cd905f086c759e8383e09bff1e68b3",
// group token out
"dac17f958d2ee523a2206206994597c13d831ec7",
// zero for one
"01",
// transfer type Transfer
"01",
// receiver
"cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2",
// pool params:
// - intermediary token
"dac17f958d2ee523a2206206994597c13d831ec7",
// - fee
"000064",
// - tick spacing
"000001"
))
);
write_calldata_to_file("test_encode_uniswap_v4_simple_swap", hex_swap.as_str());
}
#[test]
fn test_encode_uniswap_v4_second_swap() {
let fee = BigInt::from(3000);
let tick_spacing = BigInt::from(60);
let group_token_in = Bytes::from("0x4c9EDD5852cd905f086C759E8383e09bff1E68B3"); // USDE
let token_in = Bytes::from("0xdAC17F958D2ee523a2206206994597C13D831ec7"); // USDT
let token_out = Bytes::from("0x2260FAC5E5542a773Aa44fBCfeDf7C193bc2C599"); // WBTC
let mut static_attributes: HashMap<String, Bytes> = HashMap::new();
static_attributes.insert("key_lp_fee".into(), Bytes::from(fee.to_signed_bytes_be()));
static_attributes
.insert("tick_spacing".into(), Bytes::from(tick_spacing.to_signed_bytes_be()));
let usv4_pool = ProtocolComponent {
id: String::from("0x000000000004444c5dc75cB358380D2e3dE08A90"),
static_attributes,
..Default::default()
};
let swap = Swap {
component: usv4_pool,
token_in: token_in.clone(),
token_out: token_out.clone(),
split: 0f64,
user_data: None,
protocol_state: None,
};
let encoding_context = EncodingContext {
receiver: Bytes::from("0x0000000000000000000000000000000000000001"),
exact_out: false,
router_address: Some(Bytes::zero(20)),
group_token_in: group_token_in.clone(),
// Token out is the same as the group token out
group_token_out: token_out.clone(),
transfer_type: TransferType::Transfer,
};
let encoder = UniswapV4SwapEncoder::new(
String::from("0x543778987b293C7E8Cf0722BB2e935ba6f4068D4"),
Chain::Ethereum,
None,
)
.unwrap();
let encoded_swap = encoder
.encode_swap(&swap, &encoding_context)
.unwrap();
let hex_swap = encode(&encoded_swap);
assert_eq!(
hex_swap,
String::from(concat!(
// pool params:
// - intermediary token (20 bytes)
"2260fac5e5542a773aa44fbcfedf7c193bc2c599",
// - fee (3 bytes)
"000bb8",
// - tick spacing (3 bytes)
"00003c"
))
);
}
#[test]
fn test_encode_uniswap_v4_sequential_swap() {
let usde_address = Bytes::from("0x4c9EDD5852cd905f086C759E8383e09bff1E68B3");
let usdt_address = Bytes::from("0xdAC17F958D2ee523a2206206994597C13D831ec7");
let wbtc_address = Bytes::from("0x2260FAC5E5542a773Aa44fBCfeDf7C193bc2C599");
let router_address = Bytes::from("0x5615deb798bb3e4dfa0139dfa1b3d433cc23b72f");
// The context is the same for both swaps, since the group token in and out are the same
let context = EncodingContext {
// The receiver is ALICE to match the solidity tests
receiver: Bytes::from("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2"),
exact_out: false,
router_address: Some(router_address.clone()),
group_token_in: usde_address.clone(),
group_token_out: wbtc_address.clone(),
transfer_type: TransferType::Transfer,
};
// Setup - First sequence: USDE -> USDT
let usde_usdt_fee = BigInt::from(100);
let usde_usdt_tick_spacing = BigInt::from(1);
let mut usde_usdt_static_attributes: HashMap<String, Bytes> = HashMap::new();
usde_usdt_static_attributes
.insert("key_lp_fee".into(), Bytes::from(usde_usdt_fee.to_signed_bytes_be()));
usde_usdt_static_attributes.insert(
"tick_spacing".into(),
Bytes::from(usde_usdt_tick_spacing.to_signed_bytes_be()),
);
let usde_usdt_component = ProtocolComponent {
id: String::from("0x000000000004444c5dc75cB358380D2e3dE08A90"),
static_attributes: usde_usdt_static_attributes,
..Default::default()
};
// Setup - Second sequence: USDT -> WBTC
let usdt_wbtc_fee = BigInt::from(3000);
let usdt_wbtc_tick_spacing = BigInt::from(60);
let mut usdt_wbtc_static_attributes: HashMap<String, Bytes> = HashMap::new();
usdt_wbtc_static_attributes
.insert("key_lp_fee".into(), Bytes::from(usdt_wbtc_fee.to_signed_bytes_be()));
usdt_wbtc_static_attributes.insert(
"tick_spacing".into(),
Bytes::from(usdt_wbtc_tick_spacing.to_signed_bytes_be()),
);
let usdt_wbtc_component = ProtocolComponent {
id: String::from("0x000000000004444c5dc75cB358380D2e3dE08A90"),
static_attributes: usdt_wbtc_static_attributes,
..Default::default()
};
let initial_swap = Swap {
component: usde_usdt_component,
token_in: usde_address.clone(),
token_out: usdt_address.clone(),
split: 0f64,
user_data: None,
protocol_state: None,
};
let second_swap = Swap {
component: usdt_wbtc_component,
token_in: usdt_address,
token_out: wbtc_address.clone(),
split: 0f64,
user_data: None,
protocol_state: None,
};
let encoder = UniswapV4SwapEncoder::new(
String::from("0xF62849F9A0B5Bf2913b396098F7c7019b51A820a"),
Chain::Ethereum,
None,
)
.unwrap();
let initial_encoded_swap = encoder
.encode_swap(&initial_swap, &context)
.unwrap();
let second_encoded_swap = encoder
.encode_swap(&second_swap, &context)
.unwrap();
let combined_hex =
format!("{}{}", encode(&initial_encoded_swap), encode(&second_encoded_swap));
assert_eq!(
combined_hex,
String::from(concat!(
// group_token in
"4c9edd5852cd905f086c759e8383e09bff1e68b3",
// group_token out
"2260fac5e5542a773aa44fbcfedf7c193bc2c599",
// zero for one
"01",
// transfer type Transfer
"01",
// receiver
"cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2",
// pool params:
// - intermediary token USDT
"dac17f958d2ee523a2206206994597c13d831ec7",
// - fee
"000064",
// - tick spacing
"000001",
// - intermediary token WBTC
"2260fac5e5542a773aa44fbcfedf7c193bc2c599",
// - fee
"000bb8",
// - tick spacing
"00003c"
))
);
write_calldata_to_file("test_encode_uniswap_v4_sequential_swap", combined_hex.as_str());
}
}
mod ekubo {
use super::*;
use crate::encoding::evm::utils::write_calldata_to_file;
const RECEIVER: &str = "ca4f73fe97d0b987a0d12b39bbd562c779bab6f6"; // Random address
#[test]
fn test_encode_swap_simple() {
let token_in = Bytes::from(Address::ZERO.as_slice());
let token_out = Bytes::from("0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48"); // USDC
let static_attributes = HashMap::from([
("fee".to_string(), Bytes::from(0_u64)),
("tick_spacing".to_string(), Bytes::from(0_u32)),
(
"extension".to_string(),
Bytes::from("0x51d02a5948496a67827242eabc5725531342527c"),
), // Oracle
]);
let component = ProtocolComponent { static_attributes, ..Default::default() };
let swap = Swap {
component,
token_in: token_in.clone(),
token_out: token_out.clone(),
split: 0f64,
user_data: None,
protocol_state: None,
};
let encoding_context = EncodingContext {
receiver: RECEIVER.into(),
group_token_in: token_in.clone(),
group_token_out: token_out.clone(),
exact_out: false,
router_address: Some(Bytes::default()),
transfer_type: TransferType::Transfer,
};
let encoder = EkuboSwapEncoder::new(String::default(), Chain::Ethereum, None).unwrap();
let encoded_swap = encoder
.encode_swap(&swap, &encoding_context)
.unwrap();
let hex_swap = encode(&encoded_swap);
assert_eq!(
hex_swap,
concat!(
// transfer type Transfer
"01",
// receiver
"ca4f73fe97d0b987a0d12b39bbd562c779bab6f6",
// group token in
"0000000000000000000000000000000000000000",
// token out 1st swap
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48",
// pool config 1st swap
"51d02a5948496a67827242eabc5725531342527c000000000000000000000000",
),
);
}
#[test]
fn test_encode_swap_multi() {
let group_token_in = Bytes::from(Address::ZERO.as_slice());
let group_token_out = Bytes::from("0xdAC17F958D2ee523a2206206994597C13D831ec7"); // USDT
let intermediary_token = Bytes::from("0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48"); // USDC
let encoder = EkuboSwapEncoder::new(String::default(), Chain::Ethereum, None).unwrap();
let encoding_context = EncodingContext {
receiver: RECEIVER.into(),
group_token_in: group_token_in.clone(),
group_token_out: group_token_out.clone(),
exact_out: false,
router_address: Some(Bytes::default()),
transfer_type: TransferType::Transfer,
};
let first_swap = Swap {
component: ProtocolComponent {
static_attributes: HashMap::from([
("fee".to_string(), Bytes::from(0_u64)),
("tick_spacing".to_string(), Bytes::from(0_u32)),
(
"extension".to_string(),
Bytes::from("0x51d02a5948496a67827242eabc5725531342527c"),
), // Oracle
]),
..Default::default()
},
token_in: group_token_in.clone(),
token_out: intermediary_token.clone(),
split: 0f64,
user_data: None,
protocol_state: None,
};
let second_swap = Swap {
component: ProtocolComponent {
// 0.0025% fee & 0.005% base pool
static_attributes: HashMap::from([
("fee".to_string(), Bytes::from(461168601842738_u64)),
("tick_spacing".to_string(), Bytes::from(50_u32)),
("extension".to_string(), Bytes::zero(20)),
]),
..Default::default()
},
token_in: intermediary_token.clone(),
token_out: group_token_out.clone(),
split: 0f64,
user_data: None,
protocol_state: None,
};
let first_encoded_swap = encoder
.encode_swap(&first_swap, &encoding_context)
.unwrap();
let second_encoded_swap = encoder
.encode_swap(&second_swap, &encoding_context)
.unwrap();
let combined_hex =
format!("{}{}", encode(first_encoded_swap), encode(second_encoded_swap));
assert_eq!(
combined_hex,
// transfer type
concat!(
// transfer type Transfer
"01",
// receiver
"ca4f73fe97d0b987a0d12b39bbd562c779bab6f6",
// group token in
"0000000000000000000000000000000000000000",
// token out 1st swap
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48",
// pool config 1st swap
"51d02a5948496a67827242eabc5725531342527c000000000000000000000000",
// token out 2nd swap
"dac17f958d2ee523a2206206994597c13d831ec7",
// pool config 2nd swap
"00000000000000000000000000000000000000000001a36e2eb1c43200000032",
),
);
write_calldata_to_file("test_ekubo_encode_swap_multi", combined_hex.as_str());
}
}
mod curve {
use rstest::rstest;
use super::*;
fn curve_config() -> Option<HashMap<String, String>> {
Some(HashMap::from([
(
"native_token_address".to_string(),
"0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE".to_string(),
),
(
"meta_registry_address".to_string(),
"0xF98B45FA17DE75FB1aD0e7aFD971b0ca00e379fC".to_string(),
),
]))
}
#[rstest]
#[case(
"0x5b22307838363533373733363730353435313665313730313463636465643165376438313465646339636534222c22307861353538386637636466353630383131373130613264383264336339633939373639646231646362225d",
"0x865377367054516e17014CcdED1e7d814EDC9ce4",
"0xA5588F7cdf560811710A2D82D3C9c99769DB1Dcb",
0,
1
)]
#[case(
"0x5b22307836623137353437346538393039346334346461393862393534656564656163343935323731643066222c22307861306238363939316336323138623336633164313964346132653965623063653336303665623438222c22307864616331376639353864326565353233613232303632303639393435393763313364383331656337222c22307835376162316563323864313239373037303532646634646634313864353861326434366435663531225d",
"0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48",
"0x57Ab1ec28D129707052df4dF418D58a2D46d5f51",
1,
3
)]
#[case(
"0x5b22307864616331376639353864326565353233613232303632303639393435393763313364383331656337222c22307832323630666163356535353432613737336161343466626366656466376331393362633263353939222c22307863303261616133396232323366653864306130653563346632376561643930383363373536636332225d",
"0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2",
"0x2260FAC5E5542a773Aa44fBCfeDf7C193bc2C599",
2,
1
)]
#[case(
"0x5b22307861306238363939316336323138623336633164313964346132653965623063653336303665623438222c22307832323630666163356535353432613737336161343466626366656466376331393362633263353939222c22307865656565656565656565656565656565656565656565656565656565656565656565656565656565225d",
"0xeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee",
"0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48",
2,
0
)]
// Pool that holds ETH but coin is WETH
#[case(
"0x5b22307861306238363939316336323138623336633164313964346132653965623063653336303665623438222c22307832323630666163356535353432613737336161343466626366656466376331393362633263353939222c22307865656565656565656565656565656565656565656565656565656565656565656565656565656565225d",
"0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE",
"0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48",
2,
0
)]
// Pool that holds ETH but coin is WETH
#[case(
"0x5b22307861306238363939316336323138623336633164313964346132653965623063653336303665623438222c22307832323630666163356535353432613737336161343466626366656466376331393362633263353939222c22307865656565656565656565656565656565656565656565656565656565656565656565656565656565225d",
"0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48",
"0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE",
0,
2
)]
fn test_curve_get_coin_indexes(
#[case] coins: &str,
#[case] token_in: &str,
#[case] token_out: &str,
#[case] expected_i: u64,
#[case] expected_j: u64,
) {
let mut static_attributes: HashMap<String, Bytes> = HashMap::new();
static_attributes.insert("coins".into(), Bytes::from_str(coins).unwrap());
let swap = Swap {
component: ProtocolComponent {
id: "pool-id".into(),
protocol_system: String::from("vm:curve"),
static_attributes,
..Default::default()
},
token_in: Bytes::from(token_in),
token_out: Bytes::from(token_out),
split: 0f64,
user_data: None,
protocol_state: None,
};
let encoder =
CurveSwapEncoder::new(String::default(), Chain::Ethereum, curve_config()).unwrap();
let (i, j) = encoder
.get_coin_indexes(
&swap,
Address::from_str(token_in).unwrap(),
Address::from_str(token_out).unwrap(),
)
.unwrap();
assert_eq!(i, U8::from(expected_i));
assert_eq!(j, U8::from(expected_j));
}
#[test]
fn test_curve_encode_tripool() {
let mut static_attributes: HashMap<String, Bytes> = HashMap::new();
static_attributes.insert(
"factory".into(),
Bytes::from(
"0x0000000000000000000000000000000000000000"
.as_bytes()
.to_vec(),
),
);
static_attributes.insert("coins".into(), Bytes::from_str("0x5b22307836623137353437346538393039346334346461393862393534656564656163343935323731643066222c22307861306238363939316336323138623336633164313964346132653965623063653336303665623438222c22307864616331376639353864326565353233613232303632303639393435393763313364383331656337225d").unwrap());
let curve_tri_pool = ProtocolComponent {
id: String::from("0xbEbc44782C7dB0a1A60Cb6fe97d0b483032FF1C7"),
protocol_system: String::from("vm:curve"),
static_attributes,
..Default::default()
};
let token_in = Bytes::from("0x6B175474E89094C44Da98b954EedeAC495271d0F");
let token_out = Bytes::from("0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48");
let swap = Swap {
component: curve_tri_pool,
token_in: token_in.clone(),
token_out: token_out.clone(),
split: 0f64,
user_data: None,
protocol_state: None,
};
let encoding_context = EncodingContext {
// The receiver was generated with `makeAddr("bob") using forge`
receiver: Bytes::from("0x1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e"),
exact_out: false,
router_address: None,
group_token_in: token_in.clone(),
group_token_out: token_out.clone(),
transfer_type: TransferType::None,
};
let encoder = CurveSwapEncoder::new(
String::from("0x5615dEB798BB3E4dFa0139dFa1b3D433Cc23b72f"),
Chain::Ethereum,
curve_config(),
)
.unwrap();
let encoded_swap = encoder
.encode_swap(&swap, &encoding_context)
.unwrap();
let hex_swap = encode(&encoded_swap);
assert_eq!(
hex_swap,
String::from(concat!(
// token in
"6b175474e89094c44da98b954eedeac495271d0f",
// token out
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48",
// pool address
"bebc44782c7db0a1a60cb6fe97d0b483032ff1c7",
// pool type 1
"01",
// i index
"00",
// j index
"01",
// approval needed
"01",
// transfer type None
"02",
// receiver,
"1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e",
))
);
}
#[test]
fn test_curve_encode_factory() {
let mut static_attributes: HashMap<String, Bytes> = HashMap::new();
static_attributes.insert(
"factory".into(),
Bytes::from(
"0x6A8cbed756804B16E05E741eDaBd5cB544AE21bf"
.as_bytes()
.to_vec(),
),
);
static_attributes.insert("coins".into(), Bytes::from_str("0x5b22307834633965646435383532636439303566303836633735396538333833653039626666316536386233222c22307861306238363939316336323138623336633164313964346132653965623063653336303665623438225d").unwrap());
let curve_pool = ProtocolComponent {
id: String::from("0x02950460E2b9529D0E00284A5fA2d7bDF3fA4d72"),
protocol_system: String::from("vm:curve"),
static_attributes,
..Default::default()
};
let token_in = Bytes::from("0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48");
let token_out = Bytes::from("0x4c9EDD5852cd905f086C759E8383e09bff1E68B3");
let swap = Swap {
component: curve_pool,
token_in: token_in.clone(),
token_out: token_out.clone(),
split: 0f64,
user_data: None,
protocol_state: None,
};
let encoding_context = EncodingContext {
// The receiver was generated with `makeAddr("bob") using forge`
receiver: Bytes::from("0x1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e"),
exact_out: false,
router_address: None,
group_token_in: token_in.clone(),
group_token_out: token_out.clone(),
transfer_type: TransferType::None,
};
let encoder = CurveSwapEncoder::new(
String::from("0x5615dEB798BB3E4dFa0139dFa1b3D433Cc23b72f"),
Chain::Ethereum,
curve_config(),
)
.unwrap();
let encoded_swap = encoder
.encode_swap(&swap, &encoding_context)
.unwrap();
let hex_swap = encode(&encoded_swap);
assert_eq!(
hex_swap,
String::from(concat!(
// token in
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48",
// token out
"4c9edd5852cd905f086c759e8383e09bff1e68b3",
// pool address
"02950460e2b9529d0e00284a5fa2d7bdf3fa4d72",
// pool type 1
"01",
// i index
"01",
// j index
"00",
// approval needed
"01",
// transfer type None
"02",
// receiver
"1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e",
))
);
}
#[test]
fn test_curve_encode_st_eth() {
// This test is for the stETH pool, which is a special case in Curve
// where the token in is ETH but not as the zero address.
let mut static_attributes: HashMap<String, Bytes> = HashMap::new();
static_attributes.insert(
"factory".into(),
Bytes::from(
"0x0000000000000000000000000000000000000000"
.as_bytes()
.to_vec(),
),
);
static_attributes.insert("coins".into(), Bytes::from_str("0x5b22307865656565656565656565656565656565656565656565656565656565656565656565656565656565222c22307861653761623936353230646533613138653565313131623565616162303935333132643766653834225d").unwrap());
let curve_pool = ProtocolComponent {
id: String::from("0xDC24316b9AE028F1497c275EB9192a3Ea0f67022"),
protocol_system: String::from("vm:curve"),
static_attributes,
..Default::default()
};
let token_in = Bytes::from("0x0000000000000000000000000000000000000000");
let token_out = Bytes::from("0xae7ab96520DE3A18E5e111B5EaAb095312D7fE84");
let swap = Swap {
component: curve_pool,
token_in: token_in.clone(),
token_out: token_out.clone(),
split: 0f64,
user_data: None,
protocol_state: None,
};
let encoding_context = EncodingContext {
// The receiver was generated with `makeAddr("bob") using forge`
receiver: Bytes::from("0x1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e"),
exact_out: false,
router_address: None,
group_token_in: token_in.clone(),
group_token_out: token_out.clone(),
transfer_type: TransferType::None,
};
let encoder = CurveSwapEncoder::new(
String::from("0x5615dEB798BB3E4dFa0139dFa1b3D433Cc23b72f"),
Chain::Ethereum,
Some(HashMap::from([
(
"native_token_address".to_string(),
"0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE".to_string(),
),
(
"meta_registry_address".to_string(),
"0xF98B45FA17DE75FB1aD0e7aFD971b0ca00e379fC".to_string(),
),
])),
)
.unwrap();
let encoded_swap = encoder
.encode_swap(&swap, &encoding_context)
.unwrap();
let hex_swap = encode(&encoded_swap);
assert_eq!(
hex_swap,
String::from(concat!(
// token in
"eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee",
// token out
"ae7ab96520de3a18e5e111b5eaab095312d7fe84",
// pool address
"dc24316b9ae028f1497c275eb9192a3ea0f67022",
// pool type 1
"01",
// i index
"00",
// j index
"01",
// approval needed
"01",
// transfer type None
"02",
// receiver
"1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e",
))
);
}
}
mod balancer_v3 {
use super::*;
#[test]
fn test_encode_balancer_v3() {
let balancer_pool = ProtocolComponent {
id: String::from("0x85b2b559bc2d21104c4defdd6efca8a20343361d"),
protocol_system: String::from("vm:balancer_v3"),
..Default::default()
};
let token_in = Bytes::from("0x7bc3485026ac48b6cf9baf0a377477fff5703af8");
let token_out = Bytes::from("0xc71ea051a5f82c67adcf634c36ffe6334793d24c");
let swap = Swap {
component: balancer_pool,
token_in: token_in.clone(),
token_out: token_out.clone(),
split: 0f64,
user_data: None,
protocol_state: None,
};
let encoding_context = EncodingContext {
// The receiver was generated with `makeAddr("bob") using forge`
receiver: Bytes::from("0x1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e"),
exact_out: false,
router_address: Some(Bytes::zero(20)),
group_token_in: token_in.clone(),
group_token_out: token_out.clone(),
transfer_type: TransferType::Transfer,
};
let encoder = BalancerV3SwapEncoder::new(
String::from("0x543778987b293C7E8Cf0722BB2e935ba6f4068D4"),
Chain::Ethereum,
None,
)
.unwrap();
let encoded_swap = encoder
.encode_swap(&swap, &encoding_context)
.unwrap();
let hex_swap = encode(&encoded_swap);
assert_eq!(
hex_swap,
String::from(concat!(
// token in
"7bc3485026ac48b6cf9baf0a377477fff5703af8",
// token out
"c71ea051a5f82c67adcf634c36ffe6334793d24c",
// pool id
"85b2b559bc2d21104c4defdd6efca8a20343361d",
// transfer type None
"01",
// receiver
"1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e",
))
);
write_calldata_to_file("test_encode_balancer_v3", hex_swap.as_str());
}
}
mod maverick_v2 {
use super::*;
#[test]
fn test_encode_maverick_v2() {
// GHO -> (maverick) -> USDC
let maverick_pool = ProtocolComponent {
id: String::from("0x14Cf6D2Fe3E1B326114b07d22A6F6bb59e346c67"),
protocol_system: String::from("vm:maverick_v2"),
..Default::default()
};
let token_in = Bytes::from("0x40D16FC0246aD3160Ccc09B8D0D3A2cD28aE6C2f");
let token_out = Bytes::from("0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48");
let swap = Swap {
component: maverick_pool,
token_in: token_in.clone(),
token_out: token_out.clone(),
split: 0f64,
user_data: None,
protocol_state: None,
};
let encoding_context = EncodingContext {
// The receiver was generated with `makeAddr("bob") using forge`
receiver: Bytes::from("0x1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e"),
exact_out: false,
router_address: Some(Bytes::default()),
group_token_in: token_in.clone(),
group_token_out: token_out.clone(),
transfer_type: TransferType::Transfer,
};
let encoder = MaverickV2SwapEncoder::new(
String::from("0x543778987b293C7E8Cf0722BB2e935ba6f4068D4"),
Chain::Ethereum,
None,
)
.unwrap();
let encoded_swap = encoder
.encode_swap(&swap, &encoding_context)
.unwrap();
let hex_swap = encode(&encoded_swap);
assert_eq!(
hex_swap,
String::from(concat!(
// token in
"40D16FC0246aD3160Ccc09B8D0D3A2cD28aE6C2f",
// pool
"14Cf6D2Fe3E1B326114b07d22A6F6bb59e346c67",
// receiver
"1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e",
// transfer true
"01",
))
.to_lowercase()
);
write_calldata_to_file("test_encode_maverick_v2", hex_swap.as_str());
}
}
mod bebop {
use super::*;
use crate::encoding::{evm::utils::write_calldata_to_file, models::TransferType};
#[test]
fn test_encode_bebop_single() {
use alloy::{hex, primitives::Address, sol_types::SolValue};
// Transaction: https://etherscan.io/tx/0x6279bc970273b6e526e86d9b69133c2ca1277e697ba25375f5e6fc4df50c0c94
let expiry = 1749483840u64;
let taker_address = Address::from_slice(
&hex::decode("c5564C13A157E6240659fb81882A28091add8670").unwrap(),
);
let maker_address = Address::from_slice(
&hex::decode("Ce79b081c0c924cb67848723ed3057234d10FC6b").unwrap(),
);
let maker_nonce = 1749483765992417u64;
let taker_token = Address::from_slice(
&hex::decode("A0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48").unwrap(),
); // USDC
let maker_token = Address::from_slice(
&hex::decode("fAbA6f8e4a5E8Ab82F62fe7C39859FA577269BE3").unwrap(),
); // ONDO
let taker_amount = U256::from(200000000u64); // 200 USDC
let maker_amount = U256::from_str_radix("cd97e88ccc64d54000", 16).unwrap(); // 237.21 ONDO
let receiver = taker_address;
let packed_commands = U256::ZERO;
let flags = U256::from_str_radix(
"727220e0ad42bc02077c9bb3a3d60c41bfd3df1a80f5e97aa87e3ea6e93a0000",
16,
)
.unwrap();
// Encode the order struct using ABI encoding
let quote_data = (
expiry,
taker_address,
maker_address,
maker_nonce,
taker_token,
maker_token,
taker_amount,
maker_amount,
receiver,
packed_commands,
flags,
)
.abi_encode();
// Real signature from mainnet
let signature = hex::decode("eb5419631614978da217532a40f02a8f2ece37d8cfb94aaa602baabbdefb56b474f4c2048a0f56502caff4ea7411d99eed6027cd67dc1088aaf4181dcb0df7051c").unwrap();
// Build the complete swapSingle calldata
let mut bebop_calldata = Vec::new();
// swapSingle selector
bebop_calldata.extend_from_slice(&[0x4d, 0xce, 0xbc, 0xba]);
// Encode parameters: (Single order, MakerSignature signature, uint256
// filledTakerAmount) Calculate offsets (relative to start of params, not
// selector)
let order_offset = U256::from(96); // After 3 words (2 offsets + filledTakerAmount)
let signature_offset = U256::from(96 + quote_data.len());
// Write the three parameter slots
bebop_calldata.extend_from_slice(&order_offset.to_be_bytes::<32>());
bebop_calldata.extend_from_slice(&signature_offset.to_be_bytes::<32>());
bebop_calldata.extend_from_slice(&taker_amount.to_be_bytes::<32>()); // filledTakerAmount = taker_amount for full fill
// Append order data (already encoded)
bebop_calldata.extend_from_slice(&quote_data);
// Encode MakerSignature struct
// Offset to signatureBytes (always 64 for this struct layout)
bebop_calldata.extend_from_slice(&U256::from(64).to_be_bytes::<32>());
// Flags (0 for ETH_SIGN)
bebop_calldata.extend_from_slice(&U256::ZERO.to_be_bytes::<32>());
// SignatureBytes (length + data)
bebop_calldata.extend_from_slice(&U256::from(signature.len()).to_be_bytes::<32>());
bebop_calldata.extend_from_slice(&signature);
// Pad to 32-byte boundary
let padding = (32 - (signature.len() % 32)) % 32;
bebop_calldata.extend(vec![0u8; padding]);
// Prepend the partialFillOffset (12 for swapSingle)
let mut user_data = vec![12u8];
user_data.extend_from_slice(&bebop_calldata);
let bebop_component = ProtocolComponent {
id: String::from("bebop-rfq"),
protocol_system: String::from("rfq:bebop"),
static_attributes: HashMap::new(),
..Default::default()
};
let token_in = Bytes::from("0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48"); // USDC
let token_out = Bytes::from("0xfAbA6f8e4a5E8Ab82F62fe7C39859FA577269BE3"); // ONDO
let swap = Swap {
component: bebop_component,
token_in: token_in.clone(),
token_out: token_out.clone(),
split: 0f64,
user_data: Some(Bytes::from(user_data)),
protocol_state: None,
};
let encoding_context = EncodingContext {
receiver: Bytes::from("0xc5564C13A157E6240659fb81882A28091add8670"),
exact_out: false,
router_address: Some(Bytes::zero(20)),
group_token_in: token_in.clone(),
group_token_out: token_out.clone(),
transfer_type: TransferType::Transfer,
};
let encoder = BebopSwapEncoder::new(
String::from("0x543778987b293C7E8Cf0722BB2e935ba6f4068D4"),
Chain::Ethereum,
Some(HashMap::from([(
"bebop_settlement_address".to_string(),
"0xbbbbbBB520d69a9775E85b458C58c648259FAD5F".to_string(),
)])),
)
.unwrap();
let encoded_swap = encoder
.encode_swap(&swap, &encoding_context)
.unwrap();
let hex_swap = encode(&encoded_swap);
// Verify the encoding contains the expected tokens
assert!(hex_swap.contains("a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48")); // USDC
assert!(hex_swap.contains("faba6f8e4a5e8ab82f62fe7c39859fa577269be3")); // ONDO
// Verify it includes the bebop calldata
let calldata_hex = hex::encode(bebop_calldata);
assert!(hex_swap.contains(&calldata_hex));
// Verify the original amount matches the filledTakerAmount from calldata
assert!(
hex_swap.contains("0000000000000000000000000000000000000000000000000000000bebc200")
); // 200000000 in hex
// Verify the partialFillOffset byte (0c = 12) appears in the right place
// The packed data format is: tokens | transfer_type | bebop_calldata_length |
// bebop_calldata | partialFillOffset | original_filled_taker_amount | approval_needed |
// receiver Looking at the hex output, we can see that partialFillOffset
// (0c) is followed by the original filledTakerAmount
assert!(
hex_swap
.contains("0c000000000000000000000000000000000000000000000000000000000bebc200"),
"partialFillOffset byte (0c) should be followed by original filledTakerAmount"
);
write_calldata_to_file("test_encode_bebop_single", hex_swap.as_str());
}
#[test]
fn test_encode_bebop_aggregate() {
use alloy::{hex, primitives::Address, sol_types::SolValue};
// Transaction: https://etherscan.io/tx/0xec88410136c287280da87d0a37c1cb745f320406ca3ae55c678dec11996c1b1c
let expiry = 1746367285u64;
let taker_address = Address::from_slice(
&hex::decode("7078B12Ca5B294d95e9aC16D90B7D38238d8F4E6").unwrap(),
);
let receiver = taker_address;
// Set up makers
let maker_addresses = vec![
Address::from_slice(
&hex::decode("67336Cec42645F55059EfF241Cb02eA5cC52fF86").unwrap(),
),
Address::from_slice(
&hex::decode("BF19CbF0256f19f39A016a86Ff3551ecC6f2aAFE").unwrap(),
),
];
let maker_nonces = vec![U256::from(1746367197308u64), U256::from(15460096u64)];
// 2D arrays for tokens
let weth_address = Address::from_slice(
&hex::decode("C02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2").unwrap(),
);
let usdc_address = Address::from_slice(
&hex::decode("A0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48").unwrap(),
);
let taker_tokens = vec![vec![weth_address], vec![weth_address]];
let maker_tokens = vec![vec![usdc_address], vec![usdc_address]];
// 2D arrays for amounts
let taker_amounts =
vec![vec![U256::from(5812106401997138u64)], vec![U256::from(4037893598002862u64)]];
let maker_amounts = vec![vec![U256::from(10607211u64)], vec![U256::from(7362350u64)]];
// Commands and flags from the real transaction
let commands = hex::decode("00040004").unwrap();
let flags = U256::from_str_radix(
"d3fa5d891de82c082d5c51f03b47e826f86c96b88802b96a09bbae087e880000",
16,
)
.unwrap();
// Encode Aggregate order using ABI encoding
let quote_data = (
U256::from(expiry),
taker_address,
maker_addresses,
maker_nonces,
taker_tokens,
maker_tokens,
taker_amounts,
maker_amounts,
receiver,
commands,
flags,
)
.abi_encode();
// Real signatures from mainnet
let sig1 = hex::decode("d5abb425f9bac1f44d48705f41a8ab9cae207517be8553d2c03b06a88995f2f351ab8ce7627a87048178d539dd64fd2380245531a0c8e43fdc614652b1f32fc71c").unwrap();
let sig2 = hex::decode("f38c698e48a3eac48f184bc324fef0b135ee13705ab38cc0bbf5a792f21002f051e445b9e7d57cf24c35e17629ea35b3263591c4abf8ca87ffa44b41301b89c41b").unwrap();
// Build the complete swapAggregate calldata
let mut bebop_calldata = Vec::new();
// swapAggregate selector
bebop_calldata.extend_from_slice(&[0xa2, 0xf7, 0x48, 0x93]);
// Calculate filled taker amount (sum of both taker amounts)
let filled_taker_amount = U256::from(9850000000000000u64); // Total: 0.00985 WETH
// Encode parameters: (Aggregate order, MakerSignature[] signatures, uint256
// filledTakerAmount) Calculate offsets (relative to start of params, not
// selector)
let order_offset = U256::from(96); // After 3 words
let signatures_offset = U256::from(96 + quote_data.len());
// Write the three parameter slots
bebop_calldata.extend_from_slice(&order_offset.to_be_bytes::<32>());
bebop_calldata.extend_from_slice(&signatures_offset.to_be_bytes::<32>());
bebop_calldata.extend_from_slice(&filled_taker_amount.to_be_bytes::<32>());
// Append order data
bebop_calldata.extend_from_slice(&quote_data);
// Encode MakerSignature[] array
// Array length
bebop_calldata.extend_from_slice(&U256::from(2).to_be_bytes::<32>());
// Calculate offsets for each signature struct (relative to start of array data)
let sig1_data_size = 32 + 32 + 32 + sig1.len() + ((32 - (sig1.len() % 32)) % 32);
let sig1_offset = 64; // After 2 offset words
let sig2_offset = sig1_offset + sig1_data_size;
// Write offsets for each signature
bebop_calldata.extend_from_slice(&U256::from(sig1_offset).to_be_bytes::<32>());
bebop_calldata.extend_from_slice(&U256::from(sig2_offset).to_be_bytes::<32>());
// Encode first MakerSignature struct
bebop_calldata.extend_from_slice(&U256::from(64).to_be_bytes::<32>()); // offset to bytes
bebop_calldata.extend_from_slice(&U256::ZERO.to_be_bytes::<32>()); // flags = 0 (ETH_SIGN)
bebop_calldata.extend_from_slice(&U256::from(sig1.len()).to_be_bytes::<32>());
bebop_calldata.extend_from_slice(&sig1);
let padding1 = (32 - (sig1.len() % 32)) % 32;
bebop_calldata.extend(vec![0u8; padding1]);
// Encode second MakerSignature struct
bebop_calldata.extend_from_slice(&U256::from(64).to_be_bytes::<32>()); // offset to bytes
bebop_calldata.extend_from_slice(&U256::ZERO.to_be_bytes::<32>()); // flags = 0 (ETH_SIGN)
bebop_calldata.extend_from_slice(&U256::from(sig2.len()).to_be_bytes::<32>());
bebop_calldata.extend_from_slice(&sig2);
let padding2 = (32 - (sig2.len() % 32)) % 32;
bebop_calldata.extend(vec![0u8; padding2]);
// Prepend the partialFillOffset (2 for swapAggregate)
let mut user_data = vec![2u8];
user_data.extend_from_slice(&bebop_calldata);
// Extract bebop_calldata for verification (skip the first byte which is
// partialFillOffset)
let bebop_calldata = user_data[1..].to_vec();
let bebop_component = ProtocolComponent {
id: String::from("bebop-rfq"),
protocol_system: String::from("rfq:bebop"),
static_attributes: HashMap::new(),
..Default::default()
};
let token_in = Bytes::from("0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2"); // WETH
let token_out = Bytes::from("0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48"); // USDC
let swap = Swap {
component: bebop_component,
token_in: token_in.clone(),
token_out: token_out.clone(),
split: 0f64,
user_data: Some(Bytes::from(user_data)),
protocol_state: None,
};
let encoding_context = EncodingContext {
receiver: Bytes::from("0x7078B12Ca5B294d95e9aC16D90B7D38238d8F4E6"), /* Use actual receiver from order */
exact_out: false,
router_address: Some(Bytes::zero(20)),
group_token_in: token_in.clone(),
group_token_out: token_out.clone(),
transfer_type: TransferType::Transfer,
};
let encoder = BebopSwapEncoder::new(
String::from("0x543778987b293C7E8Cf0722BB2e935ba6f4068D4"),
Chain::Ethereum,
Some(HashMap::from([(
"bebop_settlement_address".to_string(),
"0xbbbbbBB520d69a9775E85b458C58c648259FAD5F".to_string(),
)])),
)
.unwrap();
let encoded_swap = encoder
.encode_swap(&swap, &encoding_context)
.unwrap();
let hex_swap = encode(&encoded_swap);
// Verify the encoding contains the expected tokens
assert!(hex_swap.contains("c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2")); // WETH
assert!(hex_swap.contains("a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48")); // USDC
// Verify it includes the bebop calldata
let calldata_hex = hex::encode(&bebop_calldata);
assert!(hex_swap.contains(&calldata_hex));
// Verify the original amount
let filled_amount_hex = format!("{:064x}", filled_taker_amount);
assert!(
hex_swap.contains(&filled_amount_hex),
"Should contain filled_taker_amount in hex"
);
// Verify the partialFillOffset byte (02 = 2) appears in the right place
let expected_pattern = format!("02{}", filled_amount_hex);
assert!(
hex_swap.contains(&expected_pattern),
"partialFillOffset byte (02) should be followed by original filledTakerAmount"
);
write_calldata_to_file("test_encode_bebop_aggregate", hex_swap.as_str());
}
}
}