Files
tycho-execution/src/encoding/evm/strategy_encoder/strategy_encoders.rs
Diana Carvalho 5eb9973dbd feat: Add estimated_amount_in to Swap. Add SwapBuilder
Use SwapBuilder everywhere inside crate
Integration tests will be done later

--- don't change below this line ---
ENG-4696 Took 1 hour 56 minutes

Took 4 minutes
2025-08-13 18:05:17 +01:00

1062 lines
45 KiB
Rust

use std::{collections::HashSet, str::FromStr};
use alloy::primitives::{aliases::U24, U8};
use tycho_common::{models::Chain, Bytes};
use crate::encoding::{
errors::EncodingError,
evm::{
group_swaps::group_swaps,
strategy_encoder::{
strategy_validators::{SequentialSwapValidator, SplitSwapValidator, SwapValidator},
transfer_optimizations::TransferOptimization,
},
swap_encoder::swap_encoder_registry::SwapEncoderRegistry,
utils::{get_token_position, percentage_to_uint24, ple_encode},
},
models::{EncodedSolution, EncodingContext, NativeAction, Solution, UserTransferType},
strategy_encoder::StrategyEncoder,
swap_encoder::SwapEncoder,
};
/// Represents the encoder for a swap strategy which supports single swaps.
///
/// # Fields
/// * `swap_encoder_registry`: SwapEncoderRegistry, containing all possible swap encoders
/// * `function_signature`: String, the signature for the swap function in the router contract
/// * `router_address`: Address of the router to be used to execute swaps
/// * `transfer_optimization`: TransferOptimization, responsible for optimizing the token transfers
#[derive(Clone)]
pub struct SingleSwapStrategyEncoder {
swap_encoder_registry: SwapEncoderRegistry,
function_signature: String,
router_address: Bytes,
transfer_optimization: TransferOptimization,
}
impl SingleSwapStrategyEncoder {
pub fn new(
chain: Chain,
swap_encoder_registry: SwapEncoderRegistry,
user_transfer_type: UserTransferType,
router_address: Bytes,
) -> Result<Self, EncodingError> {
let function_signature = if user_transfer_type == UserTransferType::TransferFromPermit2 {
"singleSwapPermit2(uint256,address,address,uint256,bool,bool,address,((address,uint160,uint48,uint48),address,uint256),bytes,bytes)"
} else {
"singleSwap(uint256,address,address,uint256,bool,bool,address,bool,bytes)"
}.to_string();
Ok(Self {
function_signature,
swap_encoder_registry,
router_address: router_address.clone(),
transfer_optimization: TransferOptimization::new(
chain.native_token().address,
chain.wrapped_native_token().address,
user_transfer_type,
router_address,
),
})
}
/// Encodes information necessary for performing a single hop against a given executor for
/// a protocol.
fn encode_swap_header(&self, executor_address: Bytes, protocol_data: Vec<u8>) -> Vec<u8> {
let mut encoded = Vec::new();
encoded.extend(executor_address.to_vec());
encoded.extend(protocol_data);
encoded
}
}
impl StrategyEncoder for SingleSwapStrategyEncoder {
fn encode_strategy(&self, solution: &Solution) -> Result<EncodedSolution, EncodingError> {
let grouped_swaps = group_swaps(&solution.swaps);
let number_of_groups = grouped_swaps.len();
if number_of_groups != 1 {
return Err(EncodingError::InvalidInput(format!(
"Single strategy only supports exactly one swap for non-groupable protocols. Found {number_of_groups}",
)))
}
let grouped_swap = grouped_swaps
.first()
.ok_or_else(|| EncodingError::FatalError("Swap grouping failed".to_string()))?;
if grouped_swap.split != 0f64 {
return Err(EncodingError::InvalidInput(
"Splits not supported for single swaps.".to_string(),
))
}
let (mut unwrap, mut wrap) = (false, false);
if let Some(action) = &solution.native_action {
match *action {
NativeAction::Wrap => wrap = true,
NativeAction::Unwrap => unwrap = true,
}
}
let protocol = &grouped_swap.protocol_system;
let swap_encoder = self
.get_swap_encoder(protocol)
.ok_or_else(|| {
EncodingError::InvalidInput(format!(
"Swap encoder not found for protocol: {protocol}"
))
})?;
let swap_receiver =
if !unwrap { solution.receiver.clone() } else { self.router_address.clone() };
let transfer = self
.transfer_optimization
.get_transfers(grouped_swap, &solution.given_token, wrap, false);
let encoding_context = EncodingContext {
receiver: swap_receiver,
exact_out: solution.exact_out,
router_address: Some(self.router_address.clone()),
group_token_in: grouped_swap.token_in.clone(),
group_token_out: grouped_swap.token_out.clone(),
transfer_type: transfer,
};
let mut grouped_protocol_data: Vec<u8> = vec![];
for swap in grouped_swap.swaps.iter() {
let protocol_data = swap_encoder.encode_swap(swap, &encoding_context)?;
grouped_protocol_data.extend(protocol_data);
}
let swap_data = self.encode_swap_header(
Bytes::from_str(swap_encoder.executor_address())
.map_err(|_| EncodingError::FatalError("Invalid executor address".to_string()))?,
grouped_protocol_data,
);
Ok(EncodedSolution {
function_signature: self.function_signature.clone(),
interacting_with: self.router_address.clone(),
swaps: swap_data,
permit: None,
n_tokens: 0,
})
}
fn get_swap_encoder(&self, protocol_system: &str) -> Option<&Box<dyn SwapEncoder>> {
self.swap_encoder_registry
.get_encoder(protocol_system)
}
fn clone_box(&self) -> Box<dyn StrategyEncoder> {
Box::new(self.clone())
}
}
/// Represents the encoder for a swap strategy which supports sequential swaps.
///
/// # Fields
/// * `swap_encoder_registry`: SwapEncoderRegistry, containing all possible swap encoders
/// * `function_signature`: String, the signature for the swap function in the router contract
/// * `native_address`: Address of the chain's native token
/// * `wrapped_address`: Address of the chain's wrapped token
/// * `router_address`: Address of the router to be used to execute swaps
/// * `sequential_swap_validator`: SequentialSwapValidator, responsible for checking validity of
/// sequential swap solutions
/// * `transfer_optimization`: TransferOptimization, responsible for optimizing the token transfers
#[derive(Clone)]
pub struct SequentialSwapStrategyEncoder {
swap_encoder_registry: SwapEncoderRegistry,
function_signature: String,
router_address: Bytes,
native_address: Bytes,
wrapped_address: Bytes,
sequential_swap_validator: SequentialSwapValidator,
transfer_optimization: TransferOptimization,
}
impl SequentialSwapStrategyEncoder {
pub fn new(
chain: Chain,
swap_encoder_registry: SwapEncoderRegistry,
user_transfer_type: UserTransferType,
router_address: Bytes,
) -> Result<Self, EncodingError> {
let function_signature = if user_transfer_type == UserTransferType::TransferFromPermit2 {
"sequentialSwapPermit2(uint256,address,address,uint256,bool,bool,address,((address,uint160,uint48,uint48),address,uint256),bytes,bytes)"
} else {
"sequentialSwap(uint256,address,address,uint256,bool,bool,address,bool,bytes)"
}.to_string();
let native_token_address = chain.native_token().address;
let wrapped_token_address = chain.wrapped_native_token().address;
Ok(Self {
function_signature,
swap_encoder_registry,
router_address: router_address.clone(),
native_address: native_token_address.clone(),
wrapped_address: wrapped_token_address.clone(),
sequential_swap_validator: SequentialSwapValidator,
transfer_optimization: TransferOptimization::new(
native_token_address,
wrapped_token_address,
user_transfer_type,
router_address,
),
})
}
/// Encodes information necessary for performing a single hop against a given executor for
/// a protocol.
fn encode_swap_header(&self, executor_address: Bytes, protocol_data: Vec<u8>) -> Vec<u8> {
let mut encoded = Vec::new();
encoded.extend(executor_address.to_vec());
encoded.extend(protocol_data);
encoded
}
}
impl StrategyEncoder for SequentialSwapStrategyEncoder {
fn encode_strategy(&self, solution: &Solution) -> Result<EncodedSolution, EncodingError> {
self.sequential_swap_validator
.validate_swap_path(
&solution.swaps,
&solution.given_token,
&solution.checked_token,
&solution.native_action,
&self.native_address,
&self.wrapped_address,
)?;
let grouped_swaps = group_swaps(&solution.swaps);
let (mut wrap, mut unwrap) = (false, false);
if let Some(action) = &solution.native_action {
match *action {
NativeAction::Wrap => wrap = true,
NativeAction::Unwrap => unwrap = true,
}
}
let mut swaps = vec![];
let mut next_in_between_swap_optimization_allowed = true;
for (i, grouped_swap) in grouped_swaps.iter().enumerate() {
let protocol = &grouped_swap.protocol_system;
let swap_encoder = self
.get_swap_encoder(protocol)
.ok_or_else(|| {
EncodingError::InvalidInput(format!(
"Swap encoder not found for protocol: {protocol}",
))
})?;
let in_between_swap_optimization_allowed = next_in_between_swap_optimization_allowed;
let next_swap = grouped_swaps.get(i + 1);
let (swap_receiver, next_swap_optimization) = self
.transfer_optimization
.get_receiver(&solution.receiver, next_swap, unwrap)?;
next_in_between_swap_optimization_allowed = next_swap_optimization;
let transfer = self
.transfer_optimization
.get_transfers(
grouped_swap,
&solution.given_token,
wrap,
in_between_swap_optimization_allowed,
);
let encoding_context = EncodingContext {
receiver: swap_receiver,
exact_out: solution.exact_out,
router_address: Some(self.router_address.clone()),
group_token_in: grouped_swap.token_in.clone(),
group_token_out: grouped_swap.token_out.clone(),
transfer_type: transfer,
};
let mut grouped_protocol_data: Vec<u8> = vec![];
for swap in grouped_swap.swaps.iter() {
let protocol_data = swap_encoder.encode_swap(swap, &encoding_context)?;
grouped_protocol_data.extend(protocol_data);
}
let swap_data = self.encode_swap_header(
Bytes::from_str(swap_encoder.executor_address()).map_err(|_| {
EncodingError::FatalError("Invalid executor address".to_string())
})?,
grouped_protocol_data,
);
swaps.push(swap_data);
}
let encoded_swaps = ple_encode(swaps);
Ok(EncodedSolution {
interacting_with: self.router_address.clone(),
function_signature: self.function_signature.clone(),
swaps: encoded_swaps,
permit: None,
n_tokens: 0,
})
}
fn get_swap_encoder(&self, protocol_system: &str) -> Option<&Box<dyn SwapEncoder>> {
self.swap_encoder_registry
.get_encoder(protocol_system)
}
fn clone_box(&self) -> Box<dyn StrategyEncoder> {
Box::new(self.clone())
}
}
/// Represents the encoder for a swap strategy which supports split swaps.
///
/// # Fields
/// * `swap_encoder_registry`: SwapEncoderRegistry, containing all possible swap encoders
/// * `function_signature`: String, the signature for the swap function in the router contract
/// * `native_address`: Address of the chain's native token
/// * `wrapped_address`: Address of the chain's wrapped token
/// * `split_swap_validator`: SplitSwapValidator, responsible for checking validity of split swap
/// solutions
/// * `router_address`: Address of the router to be used to execute swaps
/// * `transfer_optimization`: TransferOptimization, responsible for optimizing the token transfers
#[derive(Clone)]
pub struct SplitSwapStrategyEncoder {
swap_encoder_registry: SwapEncoderRegistry,
function_signature: String,
native_address: Bytes,
wrapped_address: Bytes,
split_swap_validator: SplitSwapValidator,
router_address: Bytes,
transfer_optimization: TransferOptimization,
}
impl SplitSwapStrategyEncoder {
pub fn new(
chain: Chain,
swap_encoder_registry: SwapEncoderRegistry,
user_transfer_type: UserTransferType,
router_address: Bytes,
) -> Result<Self, EncodingError> {
let function_signature = if user_transfer_type == UserTransferType::TransferFromPermit2 {
"splitSwapPermit2(uint256,address,address,uint256,bool,bool,uint256,address,((address,uint160,uint48,uint48),address,uint256),bytes,bytes)"
} else {
"splitSwap(uint256,address,address,uint256,bool,bool,uint256,address,bool,bytes)"
}.to_string();
let native_token_address = chain.native_token().address;
let wrapped_token_address = chain.wrapped_native_token().address;
Ok(Self {
function_signature,
swap_encoder_registry,
native_address: native_token_address.clone(),
wrapped_address: wrapped_token_address.clone(),
split_swap_validator: SplitSwapValidator,
router_address: router_address.clone(),
transfer_optimization: TransferOptimization::new(
native_token_address,
wrapped_token_address,
user_transfer_type,
router_address,
),
})
}
/// Encodes information necessary for performing a single hop against a given executor for
/// a protocol as part of a split swap solution.
fn encode_swap_header(
&self,
token_in: U8,
token_out: U8,
split: U24,
executor_address: Bytes,
protocol_data: Vec<u8>,
) -> Vec<u8> {
let mut encoded = Vec::new();
encoded.push(token_in.to_be_bytes_vec()[0]);
encoded.push(token_out.to_be_bytes_vec()[0]);
encoded.extend_from_slice(&split.to_be_bytes_vec());
encoded.extend(executor_address.to_vec());
encoded.extend(protocol_data);
encoded
}
}
impl StrategyEncoder for SplitSwapStrategyEncoder {
fn encode_strategy(&self, solution: &Solution) -> Result<EncodedSolution, EncodingError> {
self.split_swap_validator
.validate_split_percentages(&solution.swaps)?;
self.split_swap_validator
.validate_swap_path(
&solution.swaps,
&solution.given_token,
&solution.checked_token,
&solution.native_action,
&self.native_address,
&self.wrapped_address,
)?;
// The tokens array is composed of the given token, the checked token and all the
// intermediary tokens in between. The contract expects the tokens to be in this order.
let solution_tokens: HashSet<&Bytes> = vec![&solution.given_token, &solution.checked_token]
.into_iter()
.collect();
let grouped_swaps = group_swaps(&solution.swaps);
let intermediary_tokens: HashSet<&Bytes> = grouped_swaps
.iter()
.flat_map(|grouped_swap| vec![&grouped_swap.token_in, &grouped_swap.token_out])
.collect();
let mut intermediary_tokens: Vec<&Bytes> = intermediary_tokens
.difference(&solution_tokens)
.cloned()
.collect();
// this is only to make the test deterministic (same index for the same token for different
// runs)
intermediary_tokens.sort();
let (mut unwrap, mut wrap) = (false, false);
if let Some(action) = &solution.native_action {
match *action {
NativeAction::Wrap => wrap = true,
NativeAction::Unwrap => unwrap = true,
}
}
let mut tokens = Vec::with_capacity(2 + intermediary_tokens.len());
if wrap {
tokens.push(&self.wrapped_address);
} else {
tokens.push(&solution.given_token);
}
tokens.extend(intermediary_tokens);
if unwrap {
tokens.push(&self.wrapped_address);
} else {
tokens.push(&solution.checked_token);
}
let mut swaps = vec![];
for grouped_swap in grouped_swaps.iter() {
let protocol = &grouped_swap.protocol_system;
let swap_encoder = self
.get_swap_encoder(protocol)
.ok_or_else(|| {
EncodingError::InvalidInput(format!(
"Swap encoder not found for protocol: {protocol}",
))
})?;
let swap_receiver = if !unwrap && grouped_swap.token_out == solution.checked_token {
solution.receiver.clone()
} else {
self.router_address.clone()
};
let transfer = self
.transfer_optimization
.get_transfers(grouped_swap, &solution.given_token, wrap, false);
let encoding_context = EncodingContext {
receiver: swap_receiver,
exact_out: solution.exact_out,
router_address: Some(self.router_address.clone()),
group_token_in: grouped_swap.token_in.clone(),
group_token_out: grouped_swap.token_out.clone(),
transfer_type: transfer,
};
let mut grouped_protocol_data: Vec<u8> = vec![];
for swap in grouped_swap.swaps.iter() {
let protocol_data = swap_encoder.encode_swap(swap, &encoding_context)?;
grouped_protocol_data.extend(protocol_data);
}
let swap_data = self.encode_swap_header(
get_token_position(&tokens, &grouped_swap.token_in)?,
get_token_position(&tokens, &grouped_swap.token_out)?,
percentage_to_uint24(grouped_swap.split),
Bytes::from_str(swap_encoder.executor_address()).map_err(|_| {
EncodingError::FatalError("Invalid executor address".to_string())
})?,
grouped_protocol_data,
);
swaps.push(swap_data);
}
let encoded_swaps = ple_encode(swaps);
let tokens_len = if solution.given_token == solution.checked_token {
tokens.len() - 1
} else {
tokens.len()
};
Ok(EncodedSolution {
interacting_with: self.router_address.clone(),
function_signature: self.function_signature.clone(),
swaps: encoded_swaps,
permit: None,
n_tokens: tokens_len,
})
}
fn get_swap_encoder(&self, protocol_system: &str) -> Option<&Box<dyn SwapEncoder>> {
self.swap_encoder_registry
.get_encoder(protocol_system)
}
fn clone_box(&self) -> Box<dyn StrategyEncoder> {
Box::new(self.clone())
}
}
#[cfg(test)]
mod tests {
use std::{collections::HashMap, str::FromStr};
use alloy::{hex::encode, primitives::hex};
use num_bigint::{BigInt, BigUint};
use tycho_common::{
models::{protocol::ProtocolComponent, Chain},
Bytes,
};
use super::*;
fn eth_chain() -> Chain {
Chain::Ethereum
}
fn weth() -> Bytes {
Bytes::from(hex!("c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").to_vec())
}
fn get_swap_encoder_registry() -> SwapEncoderRegistry {
let eth_chain = eth_chain();
SwapEncoderRegistry::new(Some("config/test_executor_addresses.json".to_string()), eth_chain)
.unwrap()
}
fn router_address() -> Bytes {
Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap()
}
mod single {
use super::*;
use crate::encoding::models::SwapBuilder;
#[test]
fn test_single_swap_strategy_encoder() {
// Performs a single swap from WETH to DAI on a USV2 pool, with no grouping
// optimizations.
let checked_amount = BigUint::from_str("2018817438608734439720").unwrap();
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let swap = SwapBuilder::new(
ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
weth.clone(),
dai.clone(),
)
.build();
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SingleSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
UserTransferType::TransferFromPermit2,
router_address(),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: weth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: dai,
checked_amount: checked_amount.clone(),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap],
..Default::default()
};
let encoded_solution = encoder
.encode_strategy(&solution)
.unwrap();
let expected_swap = String::from(concat!(
// Swap data
"5615deb798bb3e4dfa0139dfa1b3d433cc23b72f", // executor address
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"a478c2975ab1ea89e8196811f51a7b7ade33eb11", // component id
"cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
"00", // zero2one
"00", // transfer type TransferFrom
));
let hex_calldata = encode(&encoded_solution.swaps);
assert_eq!(hex_calldata, expected_swap);
assert_eq!(encoded_solution.function_signature, "singleSwapPermit2(uint256,address,address,uint256,bool,bool,address,((address,uint160,uint48,uint48),address,uint256),bytes,bytes)".to_string());
assert_eq!(encoded_solution.interacting_with, router_address());
}
#[test]
fn test_single_swap_strategy_encoder_no_transfer_in() {
// Performs a single swap from WETH to DAI on a USV2 pool assuming that the tokens are
// already in the router
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let checked_amount = BigUint::from_str("1_640_000000000000000000").unwrap();
let swap = SwapBuilder::new(
ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
weth.clone(),
dai.clone(),
)
.build();
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SingleSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
UserTransferType::None,
router_address(),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: weth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: dai,
checked_amount,
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap],
..Default::default()
};
let encoded_solution = encoder
.encode_strategy(&solution)
.unwrap();
let expected_input = [
// Swap data
"5615deb798bb3e4dfa0139dfa1b3d433cc23b72f", // executor address
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"a478c2975ab1ea89e8196811f51a7b7ade33eb11", // component id
"cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
"00", // zero2one
"01", // transfer type Transfer
]
.join("");
let hex_calldata = encode(&encoded_solution.swaps);
assert_eq!(hex_calldata, expected_input);
assert_eq!(
encoded_solution.function_signature,
"singleSwap(uint256,address,address,uint256,bool,bool,address,bool,bytes)"
.to_string()
);
assert_eq!(encoded_solution.interacting_with, router_address());
}
}
mod sequential {
use super::*;
use crate::encoding::models::SwapBuilder;
#[test]
fn test_sequential_swap_strategy_encoder_no_permit2() {
// Performs a sequential swap from WETH to USDC though WBTC using USV2 pools
//
// WETH ───(USV2)──> WBTC ───(USV2)──> USDC
let weth = weth();
let wbtc = Bytes::from_str("0x2260fac5e5542a773aa44fbcfedf7c193bc2c599").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let swap_weth_wbtc = SwapBuilder::new(
ProtocolComponent {
id: "0xBb2b8038a1640196FbE3e38816F3e67Cba72D940".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
weth.clone(),
wbtc.clone(),
)
.build();
let swap_wbtc_usdc = SwapBuilder::new(
ProtocolComponent {
id: "0x004375Dff511095CC5A197A54140a24eFEF3A416".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
wbtc.clone(),
usdc.clone(),
)
.build();
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SequentialSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
UserTransferType::TransferFrom,
router_address(),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: weth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: usdc,
checked_amount: BigUint::from_str("26173932").unwrap(),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap_weth_wbtc, swap_wbtc_usdc],
..Default::default()
};
let encoded_solution = encoder
.encode_strategy(&solution)
.unwrap();
let hex_calldata = encode(&encoded_solution.swaps);
let expected = String::from(concat!(
// swap 1
"0052", // swap length
"5615deb798bb3e4dfa0139dfa1b3d433cc23b72f", // executor address
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"bb2b8038a1640196fbe3e38816f3e67cba72d940", // component id
"004375dff511095cc5a197a54140a24efef3a416", // receiver (next pool)
"00", // zero to one
"00", // transfer type TransferFrom
// swap 2
"0052", // swap length
"5615deb798bb3e4dfa0139dfa1b3d433cc23b72f", // executor address
"2260fac5e5542a773aa44fbcfedf7c193bc2c599", // token in
"004375dff511095cc5a197a54140a24efef3a416", // component id
"cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver (final user)
"01", // zero to one
"02", // transfer type None
));
assert_eq!(hex_calldata, expected);
assert_eq!(
encoded_solution.function_signature,
"sequentialSwap(uint256,address,address,uint256,bool,bool,address,bool,bytes)"
.to_string()
);
assert_eq!(encoded_solution.interacting_with, router_address());
}
}
mod split {
use super::*;
use crate::encoding::models::SwapBuilder;
#[test]
fn test_split_input_cyclic_swap() {
// This test has start and end tokens that are the same
// The flow is:
// ┌─ (USV3, 60% split) ──> WETH ─┐
// │ │
// USDC ──────┤ ├──(USV2)──> USDC
// │ │
// └─ (USV3, 40% split) ──> WETH ─┘
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
// USDC -> WETH (Pool 1) - 60% of input
let swap_usdc_weth_pool1 = SwapBuilder::new(
ProtocolComponent {
id: "0x88e6A0c2dDD26FEEb64F039a2c41296FcB3f5640".to_string(), /* USDC-WETH USV3
* Pool 1 */
protocol_system: "uniswap_v3".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(500).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
usdc.clone(),
weth.clone(),
)
.split(0.6f64)
.build();
// USDC -> WETH (Pool 2) - 40% of input (remaining)
let swap_usdc_weth_pool2 = SwapBuilder::new(
ProtocolComponent {
id: "0x8ad599c3A0ff1De082011EFDDc58f1908eb6e6D8".to_string(), /* USDC-WETH USV3
* Pool 2 */
protocol_system: "uniswap_v3".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(3000).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
usdc.clone(),
weth.clone(),
)
.build();
// WETH -> USDC (Pool 2)
let swap_weth_usdc_pool2 = SwapBuilder::new(
ProtocolComponent {
id: "0xB4e16d0168e52d35CaCD2c6185b44281Ec28C9Dc".to_string(), /* USDC-WETH USV2
* Pool 2 */
protocol_system: "uniswap_v2".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(3000).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
weth.clone(),
usdc.clone(),
)
.build();
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SplitSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
UserTransferType::TransferFromPermit2,
Bytes::from("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395"),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: usdc.clone(),
given_amount: BigUint::from_str("100000000").unwrap(), // 100 USDC (6 decimals)
checked_token: usdc.clone(),
checked_amount: BigUint::from_str("99574171").unwrap(), /* Expected output
* from
* test */
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap_usdc_weth_pool1, swap_usdc_weth_pool2, swap_weth_usdc_pool2],
..Default::default()
};
let encoded_solution = encoder
.encode_strategy(&solution)
.unwrap();
let hex_calldata = hex::encode(&encoded_solution.swaps);
let expected_swaps = [
"006e", // ple encoded swaps
"00", // token in index
"01", // token out index
"999999", // split
"2e234dae75c793f67a35089c9d99245e1c58470b", // executor address
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token in
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token out
"0001f4", // pool fee
"3ede3eca2a72b3aecc820e955b36f38437d01395", // receiver
"88e6a0c2ddd26feeb64f039a2c41296fcb3f5640", // component id
"01", // zero2one
"00", // transfer type TransferFrom
"006e", // ple encoded swaps
"00", // token in index
"01", // token out index
"000000", // split
"2e234dae75c793f67a35089c9d99245e1c58470b", // executor address
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token in
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token out
"000bb8", // pool fee
"3ede3eca2a72b3aecc820e955b36f38437d01395", // receiver
"8ad599c3a0ff1de082011efddc58f1908eb6e6d8", // component id
"01", // zero2one
"00", // transfer type TransferFrom
"0057", // ple encoded swaps
"01", // token in index
"00", // token out index
"000000", // split
"5615deb798bb3e4dfa0139dfa1b3d433cc23b72f", // executor address,
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"b4e16d0168e52d35cacd2c6185b44281ec28c9dc", // component id,
"cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
"00", // zero2one
"01", // transfer type Transfer
]
.join("");
assert_eq!(hex_calldata, expected_swaps);
assert_eq!(
encoded_solution.function_signature,
"splitSwapPermit2(uint256,address,address,uint256,bool,bool,uint256,address,((address,uint160,uint48,uint48),address,uint256),bytes,bytes)"
.to_string()
);
assert_eq!(encoded_solution.interacting_with, router_address());
}
#[test]
fn test_split_output_cyclic_swap() {
// This test has start and end tokens that are the same
// The flow is:
// ┌─── (USV3, 60% split) ───┐
// │ │
// USDC ──(USV2) ── WETH──| ├─> USDC
// │ │
// └─── (USV3, 40% split) ───┘
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let swap_usdc_weth_v2 = SwapBuilder::new(
ProtocolComponent {
id: "0xB4e16d0168e52d35CaCD2c6185b44281Ec28C9Dc".to_string(), // USDC-WETH USV2
protocol_system: "uniswap_v2".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(500).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
usdc.clone(),
weth.clone(),
)
.build();
let swap_weth_usdc_v3_pool1 = SwapBuilder::new(
ProtocolComponent {
id: "0x88e6A0c2dDD26FEEb64F039a2c41296FcB3f5640".to_string(), /* USDC-WETH USV3
* Pool 1 */
protocol_system: "uniswap_v3".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(500).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
weth.clone(),
usdc.clone(),
)
.split(0.6f64)
.build();
let swap_weth_usdc_v3_pool2 = SwapBuilder::new(
ProtocolComponent {
id: "0x8ad599c3A0ff1De082011EFDDc58f1908eb6e6D8".to_string(), /* USDC-WETH USV3
* Pool 1 */
protocol_system: "uniswap_v3".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(3000).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
weth.clone(),
usdc.clone(),
)
.build();
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SplitSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
UserTransferType::TransferFrom,
Bytes::from("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395"),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: usdc.clone(),
given_amount: BigUint::from_str("100000000").unwrap(), // 100 USDC (6 decimals)
checked_token: usdc.clone(),
checked_amount: BigUint::from_str("99025908").unwrap(), /* Expected output
* from
* test */
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap_usdc_weth_v2, swap_weth_usdc_v3_pool1, swap_weth_usdc_v3_pool2],
..Default::default()
};
let encoded_solution = encoder
.encode_strategy(&solution)
.unwrap();
let hex_calldata = hex::encode(&encoded_solution.swaps);
let expected_swaps = [
"0057", // ple encoded swaps
"00", // token in index
"01", // token out index
"000000", // split
"5615deb798bb3e4dfa0139dfa1b3d433cc23b72f", // executor address
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token in
"b4e16d0168e52d35cacd2c6185b44281ec28c9dc", // component id
"3ede3eca2a72b3aecc820e955b36f38437d01395", // receiver
"01", // zero2one
"00", // transfer type TransferFrom
"006e", // ple encoded swaps
"01", // token in index
"00", // token out index
"999999", // split
"2e234dae75c793f67a35089c9d99245e1c58470b", // executor address
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token out
"0001f4", // pool fee
"cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
"88e6a0c2ddd26feeb64f039a2c41296fcb3f5640", // component id
"00", // zero2one
"01", // transfer type Transfer
"006e", // ple encoded swaps
"01", // token in index
"00", // token out index
"000000", // split
"2e234dae75c793f67a35089c9d99245e1c58470b", // executor address
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token out
"000bb8", // pool fee
"cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
"8ad599c3a0ff1de082011efddc58f1908eb6e6d8", // component id
"00", // zero2one
"01", // transfer type Transfer
]
.join("");
assert_eq!(hex_calldata, expected_swaps);
assert_eq!(
encoded_solution.function_signature,
"splitSwap(uint256,address,address,uint256,bool,bool,uint256,address,bool,bytes)"
.to_string()
);
assert_eq!(encoded_solution.interacting_with, router_address());
}
}
}