Files
tycho-execution/src/encoding/evm/swap_encoder/swap_encoders.rs
2025-12-10 14:47:04 -04:00

2413 lines
92 KiB
Rust

use std::{collections::HashMap, str::FromStr, sync::Arc};
use alloy::{
primitives::{Address, Bytes as AlloyBytes, U8},
sol_types::SolValue,
};
use serde_json::from_str;
use tokio::{
runtime::{Handle, Runtime},
task::block_in_place,
};
use tycho_common::{
models::{protocol::GetAmountOutParams, Chain},
Bytes,
};
use crate::encoding::{
errors::EncodingError,
evm::{
approvals::protocol_approvals_manager::ProtocolApprovalsManager,
utils::{
biguint_to_u256, bytes_to_address, get_runtime, get_static_attribute, pad_to_fixed_size,
},
},
models::{EncodingContext, Swap},
swap_encoder::SwapEncoder,
};
/// Encodes a swap on a Uniswap V2 pool through the given executor address.
///
/// # Fields
/// * `executor_address` - The address of the executor contract that will perform the swap.
#[derive(Clone)]
pub struct UniswapV2SwapEncoder {
executor_address: Bytes,
}
impl UniswapV2SwapEncoder {
fn get_zero_to_one(sell_token_address: Address, buy_token_address: Address) -> bool {
sell_token_address < buy_token_address
}
}
impl SwapEncoder for UniswapV2SwapEncoder {
fn new(
executor_address: Bytes,
_chain: Chain,
_config: Option<HashMap<String, String>>,
) -> Result<Self, EncodingError> {
Ok(Self { executor_address })
}
fn encode_swap(
&self,
swap: &Swap,
encoding_context: &EncodingContext,
) -> Result<Vec<u8>, EncodingError> {
let token_in_address = bytes_to_address(&swap.token_in)?;
let token_out_address = bytes_to_address(&swap.token_out)?;
let zero_to_one = Self::get_zero_to_one(token_in_address, token_out_address);
let component_id = Address::from_str(&swap.component.id)
.map_err(|_| EncodingError::FatalError("Invalid USV2 component id".to_string()))?;
// Token in address is always needed to perform a manual transfer from the router,
// since no optimizations are performed that send from one pool to the next
let args = (
token_in_address,
component_id,
bytes_to_address(&encoding_context.receiver)?,
zero_to_one,
(encoding_context.transfer_type as u8).to_be_bytes(),
);
Ok(args.abi_encode_packed())
}
fn executor_address(&self) -> &Bytes {
&self.executor_address
}
fn clone_box(&self) -> Box<dyn SwapEncoder> {
Box::new(self.clone())
}
}
/// Encodes a swap on a Uniswap V3 pool through the given executor address.
///
/// # Fields
/// * `executor_address` - The address of the executor contract that will perform the swap.
#[derive(Clone)]
pub struct UniswapV3SwapEncoder {
executor_address: Bytes,
}
impl UniswapV3SwapEncoder {
fn get_zero_to_one(sell_token_address: Address, buy_token_address: Address) -> bool {
sell_token_address < buy_token_address
}
}
impl SwapEncoder for UniswapV3SwapEncoder {
fn new(
executor_address: Bytes,
_chain: Chain,
_config: Option<HashMap<String, String>>,
) -> Result<Self, EncodingError> {
Ok(Self { executor_address })
}
fn encode_swap(
&self,
swap: &Swap,
encoding_context: &EncodingContext,
) -> Result<Vec<u8>, EncodingError> {
let token_in_address = bytes_to_address(&swap.token_in)?;
let token_out_address = bytes_to_address(&swap.token_out)?;
let zero_to_one = Self::get_zero_to_one(token_in_address, token_out_address);
let component_id = Address::from_str(&swap.component.id)
.map_err(|_| EncodingError::FatalError("Invalid USV3 component id".to_string()))?;
let pool_fee_bytes = get_static_attribute(swap, "fee")?;
let pool_fee_u24 = pad_to_fixed_size::<3>(&pool_fee_bytes)
.map_err(|_| EncodingError::FatalError("Failed to extract fee bytes".to_string()))?;
let args = (
token_in_address,
token_out_address,
pool_fee_u24,
bytes_to_address(&encoding_context.receiver)?,
component_id,
zero_to_one,
(encoding_context.transfer_type as u8).to_be_bytes(),
);
Ok(args.abi_encode_packed())
}
fn executor_address(&self) -> &Bytes {
&self.executor_address
}
fn clone_box(&self) -> Box<dyn SwapEncoder> {
Box::new(self.clone())
}
}
/// Encodes a swap on a Uniswap V4 pool through the given executor address.
///
/// # Fields
/// * `executor_address` - The address of the executor contract that will perform the swap.
#[derive(Clone)]
pub struct UniswapV4SwapEncoder {
executor_address: Bytes,
}
impl UniswapV4SwapEncoder {
fn get_zero_to_one(sell_token_address: Address, buy_token_address: Address) -> bool {
sell_token_address < buy_token_address
}
}
impl SwapEncoder for UniswapV4SwapEncoder {
fn new(
executor_address: Bytes,
_chain: Chain,
_config: Option<HashMap<String, String>>,
) -> Result<Self, EncodingError> {
Ok(Self { executor_address })
}
fn encode_swap(
&self,
swap: &Swap,
encoding_context: &EncodingContext,
) -> Result<Vec<u8>, EncodingError> {
let fee = get_static_attribute(swap, "key_lp_fee")?;
let pool_fee_u24 = pad_to_fixed_size::<3>(&fee)
.map_err(|_| EncodingError::FatalError("Failed to pad fee bytes".to_string()))?;
let tick_spacing = get_static_attribute(swap, "tick_spacing")?;
let pool_tick_spacing_u24 = pad_to_fixed_size::<3>(&tick_spacing).map_err(|_| {
EncodingError::FatalError("Failed to pad tick spacing bytes".to_string())
})?;
let hook_address = match get_static_attribute(swap, "hooks") {
Ok(hook) => Address::from_slice(&hook),
Err(_) => Address::ZERO,
};
let hook_data = swap
.user_data
.clone()
.unwrap_or_default()
.to_vec();
let hook_data_length = (hook_data.len() as u16).to_be_bytes();
// Early check if this is not the first swap
if encoding_context.group_token_in != swap.token_in {
return Ok((
bytes_to_address(&swap.token_out)?,
pool_fee_u24,
pool_tick_spacing_u24,
hook_address,
hook_data_length,
AlloyBytes::from(hook_data),
)
.abi_encode_packed());
}
// This is the first swap, compute all necessary values
let token_in_address = bytes_to_address(&swap.token_in)?;
let token_out_address = bytes_to_address(&swap.token_out)?;
let group_token_in_address = bytes_to_address(&encoding_context.group_token_in)?;
let group_token_out_address = bytes_to_address(&encoding_context.group_token_out)?;
let zero_to_one = Self::get_zero_to_one(token_in_address, token_out_address);
let pool_params = (
token_out_address,
pool_fee_u24,
pool_tick_spacing_u24,
hook_address,
hook_data_length,
AlloyBytes::from(hook_data),
)
.abi_encode_packed();
let args = (
group_token_in_address,
group_token_out_address,
zero_to_one,
(encoding_context.transfer_type as u8).to_be_bytes(),
bytes_to_address(&encoding_context.receiver)?,
pool_params,
);
Ok(args.abi_encode_packed())
}
fn executor_address(&self) -> &Bytes {
&self.executor_address
}
fn clone_box(&self) -> Box<dyn SwapEncoder> {
Box::new(self.clone())
}
}
/// Encodes a swap on a Balancer V2 pool through the given executor address.
///
/// # Fields
/// * `executor_address` - The address of the executor contract that will perform the swap.
/// * `vault_address` - The address of the vault contract that will perform the swap.
#[derive(Clone)]
pub struct BalancerV2SwapEncoder {
executor_address: Bytes,
vault_address: Bytes,
}
impl SwapEncoder for BalancerV2SwapEncoder {
fn new(
executor_address: Bytes,
_chain: Chain,
config: Option<HashMap<String, String>>,
) -> Result<Self, EncodingError> {
let config = config.ok_or(EncodingError::FatalError(
"Missing balancer v2 specific addresses in config".to_string(),
))?;
let vault_address = config
.get("vault_address")
.map(|s| {
Bytes::from_str(s).map_err(|_| {
EncodingError::FatalError("Invalid balancer v2 vault address".to_string())
})
})
.ok_or(EncodingError::FatalError(
"Missing balancer v2 vault address in config".to_string(),
))
.flatten()?;
Ok(Self { executor_address, vault_address })
}
fn encode_swap(
&self,
swap: &Swap,
encoding_context: &EncodingContext,
) -> Result<Vec<u8>, EncodingError> {
let token_approvals_manager = ProtocolApprovalsManager::new()?;
let token = bytes_to_address(&swap.token_in)?;
let mut approval_needed: bool = true;
if let Some(router_address) = &encoding_context.router_address {
if !encoding_context.historical_trade {
let tycho_router_address = bytes_to_address(router_address)?;
approval_needed = token_approvals_manager.approval_needed(
token,
tycho_router_address,
Address::from_slice(&self.vault_address),
)?;
}
};
let component_id = AlloyBytes::from_str(&swap.component.id)
.map_err(|_| EncodingError::FatalError("Invalid component ID".to_string()))?;
let args = (
bytes_to_address(&swap.token_in)?,
bytes_to_address(&swap.token_out)?,
component_id,
bytes_to_address(&encoding_context.receiver)?,
approval_needed,
(encoding_context.transfer_type as u8).to_be_bytes(),
);
Ok(args.abi_encode_packed())
}
fn executor_address(&self) -> &Bytes {
&self.executor_address
}
fn clone_box(&self) -> Box<dyn SwapEncoder> {
Box::new(self.clone())
}
}
/// Encodes a swap on an Ekubo pool through the given executor address.
///
/// # Fields
/// * `executor_address` - The address of the executor contract that will perform the swap.
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct EkuboSwapEncoder {
executor_address: Bytes,
}
impl SwapEncoder for EkuboSwapEncoder {
fn new(
executor_address: Bytes,
_chain: Chain,
_config: Option<HashMap<String, String>>,
) -> Result<Self, EncodingError> {
Ok(Self { executor_address })
}
fn encode_swap(
&self,
swap: &Swap,
encoding_context: &EncodingContext,
) -> Result<Vec<u8>, EncodingError> {
if encoding_context.exact_out {
return Err(EncodingError::InvalidInput("exact out swaps not implemented".to_string()));
}
let fee = u64::from_be_bytes(
get_static_attribute(swap, "fee")?
.try_into()
.map_err(|_| EncodingError::FatalError("fee should be an u64".to_string()))?,
);
let tick_spacing = u32::from_be_bytes(
get_static_attribute(swap, "tick_spacing")?
.try_into()
.map_err(|_| {
EncodingError::FatalError("tick_spacing should be an u32".to_string())
})?,
);
let extension: Address = get_static_attribute(swap, "extension")?
.as_slice()
.try_into()
.map_err(|_| EncodingError::FatalError("extension should be an address".to_string()))?;
let mut encoded = vec![];
if encoding_context.group_token_in == swap.token_in {
encoded.extend((encoding_context.transfer_type as u8).to_be_bytes());
encoded.extend(bytes_to_address(&encoding_context.receiver)?);
encoded.extend(bytes_to_address(&swap.token_in)?);
}
encoded.extend(bytes_to_address(&swap.token_out)?);
encoded.extend((extension, fee, tick_spacing).abi_encode_packed());
Ok(encoded)
}
fn executor_address(&self) -> &Bytes {
&self.executor_address
}
fn clone_box(&self) -> Box<dyn SwapEncoder> {
Box::new(self.clone())
}
}
/// Encodes a swap on a Curve pool through the given executor address.
///
/// # Fields
/// * `executor_address` - The address of the executor contract that will perform the swap.
/// * `meta_registry_address` - The address of the Curve meta registry contract. Used to get coin
/// indexes.
/// * `native_token_curve_address` - The address used as native token in curve pools.
/// * `native_token_address` - The address of the native token.
#[derive(Clone)]
pub struct CurveSwapEncoder {
executor_address: Bytes,
native_token_curve_address: Bytes,
native_token_address: Bytes,
wrapped_native_token_address: Bytes,
}
impl CurveSwapEncoder {
fn get_pool_type(&self, pool_id: &str, factory_address: &str) -> Result<U8, EncodingError> {
match pool_id {
// TriPool
"0xbEbc44782C7dB0a1A60Cb6fe97d0b483032FF1C7" => Ok(U8::from(1)),
// STETHPool
"0xDC24316b9AE028F1497c275EB9192a3Ea0f67022" => Ok(U8::from(1)),
// TriCryptoPool
"0xD51a44d3FaE010294C616388b506AcdA1bfAAE46" => Ok(U8::from(3)),
// SUSDPool
"0xA5407eAE9Ba41422680e2e00537571bcC53efBfD" => Ok(U8::from(1)),
// FRAXUSDCPool
"0xDcEF968d416a41Cdac0ED8702fAC8128A64241A2" => Ok(U8::from(1)),
_ => match factory_address {
// CryptoSwapNG factory
"0x6A8cbed756804B16E05E741eDaBd5cB544AE21bf" => Ok(U8::from(1)),
// Metapool factory
"0xB9fC157394Af804a3578134A6585C0dc9cc990d4" => Ok(U8::from(1)),
// CryptoPool factory
"0xF18056Bbd320E96A48e3Fbf8bC061322531aac99" => Ok(U8::from(2)),
// Tricrypto factory
"0x0c0e5f2fF0ff18a3be9b835635039256dC4B4963" => Ok(U8::from(3)),
// Twocrypto factory
"0x98EE851a00abeE0d95D08cF4CA2BdCE32aeaAF7F" => Ok(U8::from(2)),
// StableSwap factory
"0x4F8846Ae9380B90d2E71D5e3D042dff3E7ebb40d" => Ok(U8::from(1)),
_ => Err(EncodingError::FatalError(format!(
"Unsupported curve factory address: {factory_address}"
))),
},
}
}
// Some curve pools support both ETH and WETH as tokens.
// They do the wrapping/unwrapping inside the pool
fn normalize_token(&self, token: Address, coins: &[Address]) -> Result<Address, EncodingError> {
let native_token_address = Address::from_slice(&self.native_token_curve_address);
let wrapped_native_token_address = bytes_to_address(&self.wrapped_native_token_address)?;
if token == native_token_address && !coins.contains(&token) {
Ok(wrapped_native_token_address)
} else if token == wrapped_native_token_address && !coins.contains(&token) {
Ok(native_token_address)
} else {
Ok(token)
}
}
fn get_coin_indexes(
&self,
swap: &Swap,
token_in: Address,
token_out: Address,
) -> Result<(U8, U8), EncodingError> {
let coins_bytes = get_static_attribute(swap, "coins")?;
let coins: Vec<Address> = from_str(std::str::from_utf8(&coins_bytes)?)?;
let token_in = self.normalize_token(token_in, &coins)?;
let token_out = self.normalize_token(token_out, &coins)?;
let i = coins
.iter()
.position(|&addr| addr == token_in)
.ok_or(EncodingError::FatalError(format!(
"Token in address {token_in} not found in curve pool coins"
)))?;
let j = coins
.iter()
.position(|&addr| addr == token_out)
.ok_or(EncodingError::FatalError(format!(
"Token in address {token_out} not found in curve pool coins"
)))?;
Ok((U8::from(i), U8::from(j)))
}
}
impl SwapEncoder for CurveSwapEncoder {
fn new(
executor_address: Bytes,
chain: Chain,
config: Option<HashMap<String, String>>,
) -> Result<Self, EncodingError> {
let config = config.ok_or(EncodingError::FatalError(
"Missing curve specific addresses in config".to_string(),
))?;
let native_token_curve_address = config
.get("native_token_address")
.map(|s| {
Bytes::from_str(s).map_err(|_| {
EncodingError::FatalError("Invalid native token curve address".to_string())
})
})
.ok_or(EncodingError::FatalError(
"Missing native token curve address in config".to_string(),
))
.flatten()?;
Ok(Self {
executor_address,
native_token_address: chain.native_token().address,
native_token_curve_address,
wrapped_native_token_address: chain.wrapped_native_token().address,
})
}
fn encode_swap(
&self,
swap: &Swap,
encoding_context: &EncodingContext,
) -> Result<Vec<u8>, EncodingError> {
let token_approvals_manager = ProtocolApprovalsManager::new()?;
let native_token_curve_address = Address::from_slice(&self.native_token_curve_address);
let token_in = if swap.token_in == self.native_token_address {
native_token_curve_address
} else {
bytes_to_address(&swap.token_in)?
};
let token_out = if swap.token_out == self.native_token_address {
native_token_curve_address
} else {
bytes_to_address(&swap.token_out)?
};
let approval_needed: bool;
let component_address = Address::from_str(&swap.component.id)
.map_err(|_| EncodingError::FatalError("Invalid curve pool address".to_string()))?;
if let Some(router_address) = &encoding_context.router_address {
if token_in != native_token_curve_address {
let tycho_router_address = bytes_to_address(router_address)?;
approval_needed = token_approvals_manager.approval_needed(
token_in,
tycho_router_address,
component_address,
)?;
} else {
approval_needed = false;
}
} else {
approval_needed = true;
}
let factory_bytes = get_static_attribute(swap, "factory")?.to_vec();
// the conversion to Address is necessary to checksum the address
let factory_address =
Address::from_str(std::str::from_utf8(&factory_bytes).map_err(|_| {
EncodingError::FatalError(
"Failed to convert curve factory address to string".to_string(),
)
})?)
.map_err(|_| EncodingError::FatalError("Invalid curve factory address".to_string()))?;
let pool_address = Address::from_str(&swap.component.id)
.map_err(|_| EncodingError::FatalError("Invalid curve pool address".to_string()))?;
let pool_type =
self.get_pool_type(&pool_address.to_string(), &factory_address.to_string())?;
let (i, j) = self.get_coin_indexes(swap, token_in, token_out)?;
let args = (
token_in,
token_out,
component_address,
pool_type.to_be_bytes::<1>(),
i.to_be_bytes::<1>(),
j.to_be_bytes::<1>(),
approval_needed,
(encoding_context.transfer_type as u8).to_be_bytes(),
bytes_to_address(&encoding_context.receiver)?,
);
Ok(args.abi_encode_packed())
}
fn executor_address(&self) -> &Bytes {
&self.executor_address
}
fn clone_box(&self) -> Box<dyn SwapEncoder> {
Box::new(self.clone())
}
}
/// Encodes a swap on a Maverick V2 pool through the given executor address.
///
/// # Fields
/// * `executor_address` - The address of the executor contract that will perform the swap.
#[derive(Clone)]
pub struct MaverickV2SwapEncoder {
executor_address: Bytes,
}
impl SwapEncoder for MaverickV2SwapEncoder {
fn new(
executor_address: Bytes,
_chain: Chain,
_config: Option<HashMap<String, String>>,
) -> Result<Self, EncodingError> {
Ok(Self { executor_address })
}
fn encode_swap(
&self,
swap: &Swap,
encoding_context: &EncodingContext,
) -> Result<Vec<u8>, EncodingError> {
let component_id = AlloyBytes::from_str(&swap.component.id)
.map_err(|_| EncodingError::FatalError("Invalid component ID".to_string()))?;
let args = (
bytes_to_address(&swap.token_in)?,
component_id,
bytes_to_address(&encoding_context.receiver)?,
(encoding_context.transfer_type as u8).to_be_bytes(),
);
Ok(args.abi_encode_packed())
}
fn executor_address(&self) -> &Bytes {
&self.executor_address
}
fn clone_box(&self) -> Box<dyn SwapEncoder> {
Box::new(self.clone())
}
}
/// Encodes a swap on a Balancer V3 pool through the given executor address.
///
/// # Fields
/// * `executor_address` - The address of the executor contract that will perform the swap.
#[derive(Clone)]
pub struct BalancerV3SwapEncoder {
executor_address: Bytes,
}
impl SwapEncoder for BalancerV3SwapEncoder {
fn new(
executor_address: Bytes,
_chain: Chain,
_config: Option<HashMap<String, String>>,
) -> Result<Self, EncodingError> {
Ok(Self { executor_address })
}
fn encode_swap(
&self,
swap: &Swap,
encoding_context: &EncodingContext,
) -> Result<Vec<u8>, EncodingError> {
let pool = Address::from_str(&swap.component.id).map_err(|_| {
EncodingError::FatalError("Invalid pool address for Balancer v3".to_string())
})?;
let args = (
bytes_to_address(&swap.token_in)?,
bytes_to_address(&swap.token_out)?,
pool,
(encoding_context.transfer_type as u8).to_be_bytes(),
bytes_to_address(&encoding_context.receiver)?,
);
Ok(args.abi_encode_packed())
}
fn executor_address(&self) -> &Bytes {
&self.executor_address
}
fn clone_box(&self) -> Box<dyn SwapEncoder> {
Box::new(self.clone())
}
}
/// Encodes a swap on Bebop (PMM RFQ) through the given executor address.
///
/// Bebop uses a Request-for-Quote model where quotes are obtained off-chain
/// and settled on-chain. This encoder supports PMM RFQ execution.
///
/// # Fields
/// * `executor_address` - The address of the executor contract that will perform the swap.
/// * `settlement_address` - The address of the Bebop settlement contract.
#[derive(Clone)]
pub struct BebopSwapEncoder {
executor_address: Bytes,
settlement_address: Bytes,
native_token_bebop_address: Bytes,
native_token_address: Bytes,
runtime_handle: Handle,
#[allow(dead_code)]
runtime: Option<Arc<Runtime>>,
}
impl SwapEncoder for BebopSwapEncoder {
fn new(
executor_address: Bytes,
chain: Chain,
config: Option<HashMap<String, String>>,
) -> Result<Self, EncodingError> {
let config = config.ok_or(EncodingError::FatalError(
"Missing bebop specific addresses in config".to_string(),
))?;
let settlement_address = config
.get("bebop_settlement_address")
.map(|s| {
Bytes::from_str(s).map_err(|_| {
EncodingError::FatalError("Invalid bebop settlement address".to_string())
})
})
.ok_or(EncodingError::FatalError(
"Missing bebop settlement address in config".to_string(),
))
.flatten()?;
let native_token_bebop_address = config
.get("native_token_address")
.map(|s| {
Bytes::from_str(s).map_err(|_| {
EncodingError::FatalError("Invalid native token bebop address".to_string())
})
})
.ok_or(EncodingError::FatalError(
"Missing native token bebop address in config".to_string(),
))
.flatten()?;
let (runtime_handle, runtime) = get_runtime()?;
Ok(Self {
executor_address,
settlement_address,
runtime_handle,
runtime,
native_token_bebop_address,
native_token_address: chain.native_token().address,
})
}
fn encode_swap(
&self,
swap: &Swap,
encoding_context: &EncodingContext,
) -> Result<Vec<u8>, EncodingError> {
let token_in = bytes_to_address(&swap.token_in)?;
let token_out = bytes_to_address(&swap.token_out)?;
let sender = encoding_context
.router_address
.clone()
.ok_or(EncodingError::FatalError(
"The router address is needed to perform a Hashflow swap".to_string(),
))?;
let approval_needed = if swap.token_in == self.native_token_address {
false
} else {
let tycho_router_address = bytes_to_address(&sender)?;
let settlement_address = Address::from_str(&self.settlement_address.to_string())
.map_err(|_| {
EncodingError::FatalError("Invalid bebop settlement address".to_string())
})?;
ProtocolApprovalsManager::new()?.approval_needed(
token_in,
tycho_router_address,
settlement_address,
)?
};
let protocol_state = swap
.protocol_state
.as_ref()
.ok_or_else(|| {
EncodingError::FatalError("protocol_state is required for Bebop".to_string())
})?;
let (partial_fill_offset, original_filled_taker_amount, bebop_calldata) = {
let indicatively_priced_state = protocol_state
.as_indicatively_priced()
.map_err(|e| {
EncodingError::FatalError(format!("State is not indicatively priced {e}"))
})?;
let estimated_amount_in =
swap.estimated_amount_in
.clone()
.ok_or(EncodingError::FatalError(
"Estimated amount in is mandatory for a Bebop swap".to_string(),
))?;
// Bebop uses another address for the native token than the zero address
let mut token_in = swap.token_in.clone();
if swap.token_in == self.native_token_address {
token_in = self.native_token_bebop_address.clone()
}
let mut token_out = swap.token_out.clone();
if swap.token_out == self.native_token_address {
token_out = self.native_token_bebop_address.clone()
}
let params = GetAmountOutParams {
amount_in: estimated_amount_in,
token_in,
token_out,
sender: encoding_context
.router_address
.clone()
.ok_or(EncodingError::FatalError(
"The router address is needed to perform a Bebop swap".to_string(),
))?,
receiver: encoding_context.receiver.clone(),
};
let signed_quote = block_in_place(|| {
self.runtime_handle.block_on(async {
indicatively_priced_state
.request_signed_quote(params)
.await
})
})?;
let bebop_calldata = signed_quote
.quote_attributes
.get("calldata")
.ok_or(EncodingError::FatalError(
"Bebop quote must have a calldata attribute".to_string(),
))?;
let partial_fill_offset = signed_quote
.quote_attributes
.get("partial_fill_offset")
.ok_or(EncodingError::FatalError(
"Bebop quote must have a partial_fill_offset attribute".to_string(),
))?;
let original_filled_taker_amount = biguint_to_u256(&signed_quote.amount_out);
(
// we are only interested in the last byte to get a u8
partial_fill_offset[partial_fill_offset.len() - 1],
original_filled_taker_amount,
bebop_calldata.to_vec(),
)
};
let receiver = bytes_to_address(&encoding_context.receiver)?;
// Encode packed data for the executor
// Format: token_in | token_out | transfer_type | partial_fill_offset |
// original_filled_taker_amount | approval_needed | receiver | bebop_calldata
let args = (
token_in,
token_out,
(encoding_context.transfer_type as u8).to_be_bytes(),
partial_fill_offset.to_be_bytes(),
original_filled_taker_amount.to_be_bytes::<32>(),
(approval_needed as u8).to_be_bytes(),
receiver,
&bebop_calldata[..],
);
Ok(args.abi_encode_packed())
}
fn executor_address(&self) -> &Bytes {
&self.executor_address
}
fn clone_box(&self) -> Box<dyn SwapEncoder> {
Box::new(self.clone())
}
}
#[derive(Clone)]
pub struct HashflowSwapEncoder {
executor_address: Bytes,
hashflow_router_address: Bytes,
native_token_address: Bytes,
runtime_handle: Handle,
#[allow(dead_code)]
runtime: Option<Arc<Runtime>>,
}
impl SwapEncoder for HashflowSwapEncoder {
fn new(
executor_address: Bytes,
chain: Chain,
config: Option<HashMap<String, String>>,
) -> Result<Self, EncodingError> {
let config = config.ok_or(EncodingError::FatalError(
"Missing hashflow specific addresses in config".to_string(),
))?;
let hashflow_router_address = config
.get("hashflow_router_address")
.map(|s| {
Bytes::from_str(s).map_err(|_| {
EncodingError::FatalError("Invalid hashflow router address".to_string())
})
})
.ok_or(EncodingError::FatalError(
"Missing hashflow router address in config".to_string(),
))
.flatten()?;
let native_token_address = chain.native_token().address;
let (runtime_handle, runtime) = get_runtime()?;
Ok(Self {
executor_address,
hashflow_router_address,
native_token_address,
runtime_handle,
runtime,
})
}
fn encode_swap(
&self,
swap: &Swap,
encoding_context: &EncodingContext,
) -> Result<Vec<u8>, EncodingError> {
// Native tokens doesn't need approval, only ERC20 tokens do
let sender = encoding_context
.router_address
.clone()
.ok_or(EncodingError::FatalError(
"The router address is needed to perform a Hashflow swap".to_string(),
))?;
// Native ETH doesn't need approval, only ERC20 tokens do
let approval_needed = if swap.token_in == self.native_token_address {
false
} else {
let tycho_router_address = bytes_to_address(&sender)?;
let hashflow_router_address = Address::from_slice(&self.hashflow_router_address);
ProtocolApprovalsManager::new()?.approval_needed(
bytes_to_address(&swap.token_in)?,
tycho_router_address,
hashflow_router_address,
)?
};
// Get quote
let protocol_state = swap
.protocol_state
.as_ref()
.ok_or_else(|| {
EncodingError::FatalError("protocol_state is required for Hashflow".to_string())
})?;
let amount_in = swap
.estimated_amount_in
.as_ref()
.ok_or(EncodingError::FatalError(
"Estimated amount in is mandatory for a Hashflow swap".to_string(),
))?
.clone();
let sender = encoding_context
.router_address
.clone()
.ok_or(EncodingError::FatalError(
"The router address is needed to perform a Hashflow swap".to_string(),
))?;
let signed_quote = block_in_place(|| {
self.runtime_handle.block_on(async {
protocol_state
.as_indicatively_priced()?
.request_signed_quote(GetAmountOutParams {
amount_in,
token_in: swap.token_in.clone(),
token_out: swap.token_out.clone(),
sender,
receiver: encoding_context.receiver.clone(),
})
.await
})
})?;
// Encode packed data for the executor
// Format: approval_needed | transfer_type | hashflow_calldata[..]
let hashflow_fields = [
"pool",
"external_account",
"trader",
"base_token",
"quote_token",
"base_token_amount",
"quote_token_amount",
"quote_expiry",
"nonce",
"tx_id",
"signature",
];
let mut hashflow_calldata = vec![];
for field in &hashflow_fields {
let value = signed_quote
.quote_attributes
.get(*field)
.ok_or(EncodingError::FatalError(format!(
"Hashflow quote must have a {field} attribute"
)))?;
hashflow_calldata.extend_from_slice(value);
}
let args = (
(encoding_context.transfer_type as u8).to_be_bytes(),
(approval_needed as u8).to_be_bytes(),
&hashflow_calldata[..],
);
Ok(args.abi_encode_packed())
}
fn executor_address(&self) -> &Bytes {
&self.executor_address
}
fn clone_box(&self) -> Box<dyn SwapEncoder> {
Box::new(self.clone())
}
}
/// Encodes a swap on a Liquidity Party pool through the given executor address.
///
/// # Fields
/// * `executor_address` - The address of the executor contract that will perform the swap.
#[derive(Clone)]
pub struct LiquidityPartySwapEncoder {
executor_address: Bytes,
}
impl LiquidityPartySwapEncoder {
fn get_token_indexes(&self, swap: &Swap) -> Result<(Address, u8, u8), EncodingError> {
let token_in = bytes_to_address(&swap.token_in)?;
let token_out = bytes_to_address(&swap.token_out)?;
let token_addresses: Result<Vec<Address>, EncodingError> = swap.component.tokens
.iter()
.map(|t| bytes_to_address(t))
.collect();
let token_addresses = token_addresses?;
let token_in_idx = token_addresses
.iter()
.position(|&addr| addr == token_in)
.ok_or(EncodingError::FatalError(
"Token in not found in pool tokens".to_string(),
))?;
let token_out_idx = token_addresses
.iter()
.position(|&addr| addr == token_out)
.ok_or(EncodingError::FatalError(
"Token out not found in pool tokens".to_string(),
))?;
println!(
"LiqP swap encoder: token_in={}, token_in_idx={}, token_out_idx={}",
token_in,
token_in_idx,
token_out_idx
);
Ok((token_in, token_in_idx as u8, token_out_idx as u8))
}
}
impl SwapEncoder for LiquidityPartySwapEncoder {
fn new(
executor_address: Bytes,
_chain: Chain,
_config: Option<HashMap<String, String>>,
) -> Result<Self, EncodingError> {
Ok(Self { executor_address })
}
fn encode_swap(
&self,
swap: &Swap,
encoding_context: &EncodingContext,
) -> Result<Vec<u8>, EncodingError> {
let pool_addr = Address::from_str(&swap.component.id)
.map_err(|_| EncodingError::FatalError("LiqP swap encoder: invalid component id".to_string()))?;
let (token_in, token_in_idx, token_out_idx) = self.get_token_indexes(swap)?;
let args = (
pool_addr,
token_in,
token_in_idx.to_be_bytes(),
token_out_idx.to_be_bytes(),
bytes_to_address(&encoding_context.receiver)?,
(encoding_context.transfer_type as u8).to_be_bytes(),
);
Ok(args.abi_encode_packed())
}
fn executor_address(&self) -> &Bytes {
&self.executor_address
}
fn clone_box(&self) -> Box<dyn SwapEncoder> {
Box::new(self.clone())
}
}
#[cfg(test)]
mod tests {
use std::collections::HashMap;
use alloy::hex::encode;
use num_bigint::BigInt;
use tycho_common::{
models::{protocol::ProtocolComponent, Chain},
Bytes,
};
use super::*;
use crate::encoding::{
evm::utils::write_calldata_to_file,
models::{SwapBuilder, TransferType},
};
mod uniswap_v2 {
use super::*;
use crate::encoding::models::SwapBuilder;
#[test]
fn test_encode_uniswap_v2() {
let usv2_pool = ProtocolComponent {
id: String::from("0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11"),
..Default::default()
};
let token_in = Bytes::from("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2");
let token_out = Bytes::from("0x6b175474e89094c44da98b954eedeac495271d0f");
let swap = SwapBuilder::new(usv2_pool, token_in.clone(), token_out.clone()).build();
let encoding_context = EncodingContext {
receiver: Bytes::from("0x1D96F2f6BeF1202E4Ce1Ff6Dad0c2CB002861d3e"), // BOB
exact_out: false,
router_address: Some(Bytes::zero(20)),
group_token_in: token_in.clone(),
group_token_out: token_out.clone(),
transfer_type: TransferType::Transfer,
historical_trade: false,
};
let encoder = UniswapV2SwapEncoder::new(
Bytes::from("0x543778987b293C7E8Cf0722BB2e935ba6f4068D4"),
Chain::Ethereum,
None,
)
.unwrap();
let encoded_swap = encoder
.encode_swap(&swap, &encoding_context)
.unwrap();
let hex_swap = encode(&encoded_swap);
assert_eq!(
hex_swap,
String::from(concat!(
// in token
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2",
// component id
"a478c2975ab1ea89e8196811f51a7b7ade33eb11",
// receiver
"1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e",
// zero for one
"00",
// transfer type Transfer
"01",
))
);
write_calldata_to_file("test_encode_uniswap_v2", hex_swap.as_str());
}
}
mod uniswap_v3 {
use super::*;
use crate::encoding::models::SwapBuilder;
#[test]
fn test_encode_uniswap_v3() {
let fee = BigInt::from(500);
let encoded_pool_fee = Bytes::from(fee.to_signed_bytes_be());
let mut static_attributes: HashMap<String, Bytes> = HashMap::new();
static_attributes.insert("fee".into(), Bytes::from(encoded_pool_fee.to_vec()));
let usv3_pool = ProtocolComponent {
id: String::from("0x88e6A0c2dDD26FEEb64F039a2c41296FcB3f5640"),
static_attributes,
..Default::default()
};
let token_in = Bytes::from("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2");
let token_out = Bytes::from("0x6b175474e89094c44da98b954eedeac495271d0f");
let swap = SwapBuilder::new(usv3_pool, token_in.clone(), token_out.clone()).build();
let encoding_context = EncodingContext {
receiver: Bytes::from("0x0000000000000000000000000000000000000001"),
exact_out: false,
router_address: Some(Bytes::zero(20)),
group_token_in: token_in.clone(),
group_token_out: token_out.clone(),
transfer_type: TransferType::Transfer,
historical_trade: false,
};
let encoder = UniswapV3SwapEncoder::new(
Bytes::from("0x543778987b293C7E8Cf0722BB2e935ba6f4068D4"),
Chain::Ethereum,
None,
)
.unwrap();
let encoded_swap = encoder
.encode_swap(&swap, &encoding_context)
.unwrap();
let hex_swap = encode(&encoded_swap);
assert_eq!(
hex_swap,
String::from(concat!(
// in token
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2",
// out token
"6b175474e89094c44da98b954eedeac495271d0f",
// fee
"0001f4",
// receiver
"0000000000000000000000000000000000000001",
// pool id
"88e6a0c2ddd26feeb64f039a2c41296fcb3f5640",
// zero for one
"00",
// transfer type Transfer
"01",
))
);
}
}
mod balancer_v2 {
use super::*;
use crate::encoding::models::SwapBuilder;
#[test]
fn test_encode_balancer_v2() {
let balancer_pool = ProtocolComponent {
id: String::from(
"0x5c6ee304399dbdb9c8ef030ab642b10820db8f56000200000000000000000014",
),
protocol_system: String::from("vm:balancer_v2"),
..Default::default()
};
let token_in = Bytes::from("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2");
let token_out = Bytes::from("0xba100000625a3754423978a60c9317c58a424e3D");
let swap = SwapBuilder::new(balancer_pool, token_in.clone(), token_out.clone()).build();
let encoding_context = EncodingContext {
// The receiver was generated with `makeAddr("bob") using forge`
receiver: Bytes::from("0x1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e"),
exact_out: false,
router_address: Some(Bytes::zero(20)),
group_token_in: token_in.clone(),
group_token_out: token_out.clone(),
transfer_type: TransferType::None,
historical_trade: true,
};
let encoder = BalancerV2SwapEncoder::new(
Bytes::from("0x543778987b293C7E8Cf0722BB2e935ba6f4068D4"),
Chain::Ethereum,
Some(HashMap::from([(
"vault_address".to_string(),
"0xba12222222228d8ba445958a75a0704d566bf2c8".to_string(),
)])),
)
.unwrap();
let encoded_swap = encoder
.encode_swap(&swap, &encoding_context)
.unwrap();
let hex_swap = encode(&encoded_swap);
assert_eq!(
hex_swap,
String::from(concat!(
// token in
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2",
// token out
"ba100000625a3754423978a60c9317c58a424e3d",
// pool id
"5c6ee304399dbdb9c8ef030ab642b10820db8f56000200000000000000000014",
// receiver
"1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e",
// approval needed
"01",
// transfer type None
"02"
))
);
write_calldata_to_file("test_encode_balancer_v2", hex_swap.as_str());
}
}
mod uniswap_v4 {
use super::*;
use crate::encoding::evm::utils::{ple_encode, write_calldata_to_file};
#[test]
fn test_encode_uniswap_v4_simple_swap() {
let fee = BigInt::from(100);
let tick_spacing = BigInt::from(1);
let token_in = Bytes::from("0x4c9EDD5852cd905f086C759E8383e09bff1E68B3"); // USDE
let token_out = Bytes::from("0xdAC17F958D2ee523a2206206994597C13D831ec7"); // USDT
let mut static_attributes: HashMap<String, Bytes> = HashMap::new();
static_attributes.insert("key_lp_fee".into(), Bytes::from(fee.to_signed_bytes_be()));
static_attributes
.insert("tick_spacing".into(), Bytes::from(tick_spacing.to_signed_bytes_be()));
let usv4_pool = ProtocolComponent {
// Pool manager
id: String::from("0x000000000004444c5dc75cB358380D2e3dE08A90"),
static_attributes,
..Default::default()
};
let swap = SwapBuilder::new(usv4_pool, token_in.clone(), token_out.clone()).build();
let encoding_context = EncodingContext {
// The receiver is ALICE to match the solidity tests
receiver: Bytes::from("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2"),
exact_out: false,
// Same as the executor address
router_address: Some(Bytes::from("0x5615deb798bb3e4dfa0139dfa1b3d433cc23b72f")),
group_token_in: token_in.clone(),
group_token_out: token_out.clone(),
transfer_type: TransferType::Transfer,
historical_trade: false,
};
let encoder = UniswapV4SwapEncoder::new(
Bytes::from("0xF62849F9A0B5Bf2913b396098F7c7019b51A820a"),
Chain::Ethereum,
None,
)
.unwrap();
let encoded_swap = encoder
.encode_swap(&swap, &encoding_context)
.unwrap();
let hex_swap = encode(&encoded_swap);
assert_eq!(
hex_swap,
String::from(concat!(
// group token in
"4c9edd5852cd905f086c759e8383e09bff1e68b3",
// group token out
"dac17f958d2ee523a2206206994597c13d831ec7",
// zero for one
"01",
// transfer type Transfer
"01",
// receiver
"cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2",
// pool params:
// - intermediary token
"dac17f958d2ee523a2206206994597c13d831ec7",
// - fee
"000064",
// - tick spacing
"000001",
// hook address (not set, so zero)
"0000000000000000000000000000000000000000",
// hook data length (0)
"0000"
))
);
write_calldata_to_file("test_encode_uniswap_v4_simple_swap", hex_swap.as_str());
}
#[test]
fn test_encode_uniswap_v4_second_swap() {
let fee = BigInt::from(3000);
let tick_spacing = BigInt::from(60);
let group_token_in = Bytes::from("0x4c9EDD5852cd905f086C759E8383e09bff1E68B3"); // USDE
let token_in = Bytes::from("0xdAC17F958D2ee523a2206206994597C13D831ec7"); // USDT
let token_out = Bytes::from("0x2260FAC5E5542a773Aa44fBCfeDf7C193bc2C599"); // WBTC
let mut static_attributes: HashMap<String, Bytes> = HashMap::new();
static_attributes.insert("key_lp_fee".into(), Bytes::from(fee.to_signed_bytes_be()));
static_attributes
.insert("tick_spacing".into(), Bytes::from(tick_spacing.to_signed_bytes_be()));
let usv4_pool = ProtocolComponent {
id: String::from("0x000000000004444c5dc75cB358380D2e3dE08A90"),
static_attributes,
..Default::default()
};
let swap = SwapBuilder::new(usv4_pool, token_in.clone(), token_out.clone()).build();
let encoding_context = EncodingContext {
receiver: Bytes::from("0x0000000000000000000000000000000000000001"),
exact_out: false,
router_address: Some(Bytes::zero(20)),
group_token_in: group_token_in.clone(),
// Token out is the same as the group token out
group_token_out: token_out.clone(),
transfer_type: TransferType::Transfer,
historical_trade: false,
};
let encoder = UniswapV4SwapEncoder::new(
Bytes::from("0x543778987b293C7E8Cf0722BB2e935ba6f4068D4"),
Chain::Ethereum,
None,
)
.unwrap();
let encoded_swap = encoder
.encode_swap(&swap, &encoding_context)
.unwrap();
let hex_swap = encode(&encoded_swap);
assert_eq!(
hex_swap,
String::from(concat!(
// pool params:
// - intermediary token (20 bytes)
"2260fac5e5542a773aa44fbcfedf7c193bc2c599",
// - fee (3 bytes)
"000bb8",
// - tick spacing (3 bytes)
"00003c",
// hook address (not set, so zero)
"0000000000000000000000000000000000000000",
// hook data length (0)
"0000"
))
);
}
#[test]
fn test_encode_uniswap_v4_sequential_swap() {
let usde_address = Bytes::from("0x4c9EDD5852cd905f086C759E8383e09bff1E68B3");
let usdt_address = Bytes::from("0xdAC17F958D2ee523a2206206994597C13D831ec7");
let wbtc_address = Bytes::from("0x2260FAC5E5542a773Aa44fBCfeDf7C193bc2C599");
let router_address = Bytes::from("0x5615deb798bb3e4dfa0139dfa1b3d433cc23b72f");
// The context is the same for both swaps, since the group token in and out are the same
let context = EncodingContext {
// The receiver is ALICE to match the solidity tests
receiver: Bytes::from("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2"),
exact_out: false,
router_address: Some(router_address.clone()),
group_token_in: usde_address.clone(),
group_token_out: wbtc_address.clone(),
transfer_type: TransferType::Transfer,
historical_trade: false,
};
// Setup - First sequence: USDE -> USDT
let usde_usdt_fee = BigInt::from(100);
let usde_usdt_tick_spacing = BigInt::from(1);
let mut usde_usdt_static_attributes: HashMap<String, Bytes> = HashMap::new();
usde_usdt_static_attributes
.insert("key_lp_fee".into(), Bytes::from(usde_usdt_fee.to_signed_bytes_be()));
usde_usdt_static_attributes.insert(
"tick_spacing".into(),
Bytes::from(usde_usdt_tick_spacing.to_signed_bytes_be()),
);
let usde_usdt_component = ProtocolComponent {
id: String::from("0x000000000004444c5dc75cB358380D2e3dE08A90"),
static_attributes: usde_usdt_static_attributes,
..Default::default()
};
// Setup - Second sequence: USDT -> WBTC
let usdt_wbtc_fee = BigInt::from(3000);
let usdt_wbtc_tick_spacing = BigInt::from(60);
let mut usdt_wbtc_static_attributes: HashMap<String, Bytes> = HashMap::new();
usdt_wbtc_static_attributes
.insert("key_lp_fee".into(), Bytes::from(usdt_wbtc_fee.to_signed_bytes_be()));
usdt_wbtc_static_attributes.insert(
"tick_spacing".into(),
Bytes::from(usdt_wbtc_tick_spacing.to_signed_bytes_be()),
);
let usdt_wbtc_component = ProtocolComponent {
id: String::from("0x000000000004444c5dc75cB358380D2e3dE08A90"),
static_attributes: usdt_wbtc_static_attributes,
..Default::default()
};
let initial_swap =
SwapBuilder::new(usde_usdt_component, usde_address.clone(), usdt_address.clone())
.build();
let second_swap =
SwapBuilder::new(usdt_wbtc_component, usdt_address.clone(), wbtc_address.clone())
.build();
let encoder = UniswapV4SwapEncoder::new(
Bytes::from("0xF62849F9A0B5Bf2913b396098F7c7019b51A820a"),
Chain::Ethereum,
None,
)
.unwrap();
let initial_encoded_swap = encoder
.encode_swap(&initial_swap, &context)
.unwrap();
let second_encoded_swap = encoder
.encode_swap(&second_swap, &context)
.unwrap();
let combined_hex = format!(
"{}{}",
encode(&initial_encoded_swap),
encode(ple_encode(vec![second_encoded_swap]))
);
assert_eq!(
combined_hex,
String::from(concat!(
// group_token in
"4c9edd5852cd905f086c759e8383e09bff1e68b3",
// group_token out
"2260fac5e5542a773aa44fbcfedf7c193bc2c599",
// zero for one
"01",
// transfer type Transfer
"01",
// receiver
"cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2",
// pool params:
// - intermediary token USDT
"dac17f958d2ee523a2206206994597c13d831ec7",
// - fee
"000064",
// - tick spacing
"000001",
// hook address (not set, so zero)
"0000000000000000000000000000000000000000",
// hook data length (0)
"0000",
// Second swap
// ple encoding
"0030",
// - intermediary token WBTC
"2260fac5e5542a773aa44fbcfedf7c193bc2c599",
// - fee
"000bb8",
// - tick spacing
"00003c",
// hook address (not set, so zero)
"0000000000000000000000000000000000000000",
// hook data length (0)
"0000"
))
);
write_calldata_to_file("test_encode_uniswap_v4_sequential_swap", combined_hex.as_str());
}
}
mod ekubo {
use super::*;
const RECEIVER: &str = "ca4f73fe97d0b987a0d12b39bbd562c779bab6f6"; // Random address
#[test]
fn test_encode_swap_simple() {
let token_in = Bytes::from(Address::ZERO.as_slice());
let token_out = Bytes::from("0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48"); // USDC
let static_attributes = HashMap::from([
("fee".to_string(), Bytes::from(0_u64)),
("tick_spacing".to_string(), Bytes::from(0_u32)),
(
"extension".to_string(),
Bytes::from("0x51d02a5948496a67827242eabc5725531342527c"),
), // Oracle
]);
let component = ProtocolComponent { static_attributes, ..Default::default() };
let swap = SwapBuilder::new(component, token_in.clone(), token_out.clone()).build();
let encoding_context = EncodingContext {
receiver: RECEIVER.into(),
group_token_in: token_in.clone(),
group_token_out: token_out.clone(),
exact_out: false,
router_address: Some(Bytes::default()),
transfer_type: TransferType::Transfer,
historical_trade: false,
};
let encoder = EkuboSwapEncoder::new(Bytes::default(), Chain::Ethereum, None).unwrap();
let encoded_swap = encoder
.encode_swap(&swap, &encoding_context)
.unwrap();
let hex_swap = encode(&encoded_swap);
assert_eq!(
hex_swap,
concat!(
// transfer type Transfer
"01",
// receiver
"ca4f73fe97d0b987a0d12b39bbd562c779bab6f6",
// group token in
"0000000000000000000000000000000000000000",
// token out 1st swap
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48",
// pool config 1st swap
"51d02a5948496a67827242eabc5725531342527c000000000000000000000000",
),
);
}
#[test]
fn test_encode_swap_multi() {
let group_token_in = Bytes::from(Address::ZERO.as_slice());
let group_token_out = Bytes::from("0xdAC17F958D2ee523a2206206994597C13D831ec7"); // USDT
let intermediary_token = Bytes::from("0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48"); // USDC
let encoder = EkuboSwapEncoder::new(Bytes::default(), Chain::Ethereum, None).unwrap();
let encoding_context = EncodingContext {
receiver: RECEIVER.into(),
group_token_in: group_token_in.clone(),
group_token_out: group_token_out.clone(),
exact_out: false,
router_address: Some(Bytes::default()),
transfer_type: TransferType::Transfer,
historical_trade: false,
};
let first_swap = SwapBuilder::new(
ProtocolComponent {
static_attributes: HashMap::from([
("fee".to_string(), Bytes::from(0_u64)),
("tick_spacing".to_string(), Bytes::from(0_u32)),
(
"extension".to_string(),
Bytes::from("0x51d02a5948496a67827242eabc5725531342527c"),
), // Oracle
]),
..Default::default()
},
group_token_in.clone(),
intermediary_token.clone(),
)
.build();
let second_swap = SwapBuilder::new(
ProtocolComponent {
// 0.0025% fee & 0.005% base pool
static_attributes: HashMap::from([
("fee".to_string(), Bytes::from(461168601842738_u64)),
("tick_spacing".to_string(), Bytes::from(50_u32)),
("extension".to_string(), Bytes::zero(20)),
]),
..Default::default()
},
intermediary_token.clone(),
group_token_out.clone(),
)
.build();
let first_encoded_swap = encoder
.encode_swap(&first_swap, &encoding_context)
.unwrap();
let second_encoded_swap = encoder
.encode_swap(&second_swap, &encoding_context)
.unwrap();
let combined_hex =
format!("{}{}", encode(first_encoded_swap), encode(second_encoded_swap));
assert_eq!(
combined_hex,
// transfer type
concat!(
// transfer type Transfer
"01",
// receiver
"ca4f73fe97d0b987a0d12b39bbd562c779bab6f6",
// group token in
"0000000000000000000000000000000000000000",
// token out 1st swap
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48",
// pool config 1st swap
"51d02a5948496a67827242eabc5725531342527c000000000000000000000000",
// token out 2nd swap
"dac17f958d2ee523a2206206994597c13d831ec7",
// pool config 2nd swap
"00000000000000000000000000000000000000000001a36e2eb1c43200000032",
),
);
write_calldata_to_file("test_ekubo_encode_swap_multi", combined_hex.as_str());
}
}
mod curve {
use rstest::rstest;
use super::*;
fn curve_config() -> Option<HashMap<String, String>> {
Some(HashMap::from([
(
"native_token_address".to_string(),
"0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE".to_string(),
),
(
"meta_registry_address".to_string(),
"0xF98B45FA17DE75FB1aD0e7aFD971b0ca00e379fC".to_string(),
),
]))
}
#[rstest]
#[case(
"0x5b22307838363533373733363730353435313665313730313463636465643165376438313465646339636534222c22307861353538386637636466353630383131373130613264383264336339633939373639646231646362225d",
"0x865377367054516e17014CcdED1e7d814EDC9ce4",
"0xA5588F7cdf560811710A2D82D3C9c99769DB1Dcb",
0,
1
)]
#[case(
"0x5b22307836623137353437346538393039346334346461393862393534656564656163343935323731643066222c22307861306238363939316336323138623336633164313964346132653965623063653336303665623438222c22307864616331376639353864326565353233613232303632303639393435393763313364383331656337222c22307835376162316563323864313239373037303532646634646634313864353861326434366435663531225d",
"0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48",
"0x57Ab1ec28D129707052df4dF418D58a2D46d5f51",
1,
3
)]
#[case(
"0x5b22307864616331376639353864326565353233613232303632303639393435393763313364383331656337222c22307832323630666163356535353432613737336161343466626366656466376331393362633263353939222c22307863303261616133396232323366653864306130653563346632376561643930383363373536636332225d",
"0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2",
"0x2260FAC5E5542a773Aa44fBCfeDf7C193bc2C599",
2,
1
)]
#[case(
"0x5b22307861306238363939316336323138623336633164313964346132653965623063653336303665623438222c22307832323630666163356535353432613737336161343466626366656466376331393362633263353939222c22307865656565656565656565656565656565656565656565656565656565656565656565656565656565225d",
"0xeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee",
"0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48",
2,
0
)]
// Pool that holds ETH but coin is WETH
#[case(
"0x5b22307861306238363939316336323138623336633164313964346132653965623063653336303665623438222c22307832323630666163356535353432613737336161343466626366656466376331393362633263353939222c22307865656565656565656565656565656565656565656565656565656565656565656565656565656565225d",
"0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE",
"0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48",
2,
0
)]
// Pool that holds ETH but coin is WETH
#[case(
"0x5b22307861306238363939316336323138623336633164313964346132653965623063653336303665623438222c22307832323630666163356535353432613737336161343466626366656466376331393362633263353939222c22307865656565656565656565656565656565656565656565656565656565656565656565656565656565225d",
"0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48",
"0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE",
0,
2
)]
fn test_curve_get_coin_indexes(
#[case] coins: &str,
#[case] token_in: &str,
#[case] token_out: &str,
#[case] expected_i: u64,
#[case] expected_j: u64,
) {
let mut static_attributes: HashMap<String, Bytes> = HashMap::new();
static_attributes.insert("coins".into(), Bytes::from_str(coins).unwrap());
let swap = SwapBuilder::new(
ProtocolComponent {
id: "pool-id".into(),
protocol_system: String::from("vm:curve"),
static_attributes,
..Default::default()
},
Bytes::from(token_in),
Bytes::from(token_out),
)
.build();
let encoder =
CurveSwapEncoder::new(Bytes::default(), Chain::Ethereum, curve_config()).unwrap();
let (i, j) = encoder
.get_coin_indexes(
&swap,
Address::from_str(token_in).unwrap(),
Address::from_str(token_out).unwrap(),
)
.unwrap();
assert_eq!(i, U8::from(expected_i));
assert_eq!(j, U8::from(expected_j));
}
#[test]
fn test_curve_encode_tripool() {
let mut static_attributes: HashMap<String, Bytes> = HashMap::new();
static_attributes.insert(
"factory".into(),
Bytes::from(
"0x0000000000000000000000000000000000000000"
.as_bytes()
.to_vec(),
),
);
static_attributes.insert("coins".into(), Bytes::from_str("0x5b22307836623137353437346538393039346334346461393862393534656564656163343935323731643066222c22307861306238363939316336323138623336633164313964346132653965623063653336303665623438222c22307864616331376639353864326565353233613232303632303639393435393763313364383331656337225d").unwrap());
let curve_tri_pool = ProtocolComponent {
id: String::from("0xbEbc44782C7dB0a1A60Cb6fe97d0b483032FF1C7"),
protocol_system: String::from("vm:curve"),
static_attributes,
..Default::default()
};
let token_in = Bytes::from("0x6B175474E89094C44Da98b954EedeAC495271d0F");
let token_out = Bytes::from("0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48");
let swap =
SwapBuilder::new(curve_tri_pool, token_in.clone(), token_out.clone()).build();
let encoding_context = EncodingContext {
// The receiver was generated with `makeAddr("bob") using forge`
receiver: Bytes::from("0x1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e"),
exact_out: false,
router_address: None,
group_token_in: token_in.clone(),
group_token_out: token_out.clone(),
transfer_type: TransferType::None,
historical_trade: false,
};
let encoder = CurveSwapEncoder::new(
Bytes::from("0x5615dEB798BB3E4dFa0139dFa1b3D433Cc23b72f"),
Chain::Ethereum,
curve_config(),
)
.unwrap();
let encoded_swap = encoder
.encode_swap(&swap, &encoding_context)
.unwrap();
let hex_swap = encode(&encoded_swap);
assert_eq!(
hex_swap,
String::from(concat!(
// token in
"6b175474e89094c44da98b954eedeac495271d0f",
// token out
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48",
// pool address
"bebc44782c7db0a1a60cb6fe97d0b483032ff1c7",
// pool type 1
"01",
// i index
"00",
// j index
"01",
// approval needed
"01",
// transfer type None
"02",
// receiver,
"1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e",
))
);
}
#[test]
fn test_curve_encode_factory() {
let mut static_attributes: HashMap<String, Bytes> = HashMap::new();
static_attributes.insert(
"factory".into(),
Bytes::from(
"0x6A8cbed756804B16E05E741eDaBd5cB544AE21bf"
.as_bytes()
.to_vec(),
),
);
static_attributes.insert("coins".into(), Bytes::from_str("0x5b22307834633965646435383532636439303566303836633735396538333833653039626666316536386233222c22307861306238363939316336323138623336633164313964346132653965623063653336303665623438225d").unwrap());
let curve_pool = ProtocolComponent {
id: String::from("0x02950460E2b9529D0E00284A5fA2d7bDF3fA4d72"),
protocol_system: String::from("vm:curve"),
static_attributes,
..Default::default()
};
let token_in = Bytes::from("0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48");
let token_out = Bytes::from("0x4c9EDD5852cd905f086C759E8383e09bff1E68B3");
let swap = SwapBuilder::new(curve_pool, token_in.clone(), token_out.clone()).build();
let encoding_context = EncodingContext {
// The receiver was generated with `makeAddr("bob") using forge`
receiver: Bytes::from("0x1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e"),
exact_out: false,
router_address: None,
group_token_in: token_in.clone(),
group_token_out: token_out.clone(),
transfer_type: TransferType::None,
historical_trade: false,
};
let encoder = CurveSwapEncoder::new(
Bytes::from("0x5615dEB798BB3E4dFa0139dFa1b3D433Cc23b72f"),
Chain::Ethereum,
curve_config(),
)
.unwrap();
let encoded_swap = encoder
.encode_swap(&swap, &encoding_context)
.unwrap();
let hex_swap = encode(&encoded_swap);
assert_eq!(
hex_swap,
String::from(concat!(
// token in
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48",
// token out
"4c9edd5852cd905f086c759e8383e09bff1e68b3",
// pool address
"02950460e2b9529d0e00284a5fa2d7bdf3fa4d72",
// pool type 1
"01",
// i index
"01",
// j index
"00",
// approval needed
"01",
// transfer type None
"02",
// receiver
"1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e",
))
);
}
#[test]
fn test_curve_encode_st_eth() {
// This test is for the stETH pool, which is a special case in Curve
// where the token in is ETH but not as the zero address.
let mut static_attributes: HashMap<String, Bytes> = HashMap::new();
static_attributes.insert(
"factory".into(),
Bytes::from(
"0x0000000000000000000000000000000000000000"
.as_bytes()
.to_vec(),
),
);
static_attributes.insert("coins".into(), Bytes::from_str("0x5b22307865656565656565656565656565656565656565656565656565656565656565656565656565656565222c22307861653761623936353230646533613138653565313131623565616162303935333132643766653834225d").unwrap());
let curve_pool = ProtocolComponent {
id: String::from("0xDC24316b9AE028F1497c275EB9192a3Ea0f67022"),
protocol_system: String::from("vm:curve"),
static_attributes,
..Default::default()
};
let token_in = Bytes::from("0x0000000000000000000000000000000000000000");
let token_out = Bytes::from("0xae7ab96520DE3A18E5e111B5EaAb095312D7fE84");
let swap = SwapBuilder::new(curve_pool, token_in.clone(), token_out.clone()).build();
let encoding_context = EncodingContext {
// The receiver was generated with `makeAddr("bob") using forge`
receiver: Bytes::from("0x1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e"),
exact_out: false,
router_address: None,
group_token_in: token_in.clone(),
group_token_out: token_out.clone(),
transfer_type: TransferType::None,
historical_trade: false,
};
let encoder = CurveSwapEncoder::new(
Bytes::from("0x5615dEB798BB3E4dFa0139dFa1b3D433Cc23b72f"),
Chain::Ethereum,
Some(HashMap::from([
(
"native_token_address".to_string(),
"0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE".to_string(),
),
(
"meta_registry_address".to_string(),
"0xF98B45FA17DE75FB1aD0e7aFD971b0ca00e379fC".to_string(),
),
])),
)
.unwrap();
let encoded_swap = encoder
.encode_swap(&swap, &encoding_context)
.unwrap();
let hex_swap = encode(&encoded_swap);
assert_eq!(
hex_swap,
String::from(concat!(
// token in
"eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee",
// token out
"ae7ab96520de3a18e5e111b5eaab095312d7fe84",
// pool address
"dc24316b9ae028f1497c275eb9192a3ea0f67022",
// pool type 1
"01",
// i index
"00",
// j index
"01",
// approval needed
"01",
// transfer type None
"02",
// receiver
"1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e",
))
);
}
}
mod balancer_v3 {
use super::*;
#[test]
fn test_encode_balancer_v3() {
let balancer_pool = ProtocolComponent {
id: String::from("0x85b2b559bc2d21104c4defdd6efca8a20343361d"),
protocol_system: String::from("vm:balancer_v3"),
..Default::default()
};
let token_in = Bytes::from("0x7bc3485026ac48b6cf9baf0a377477fff5703af8");
let token_out = Bytes::from("0xc71ea051a5f82c67adcf634c36ffe6334793d24c");
let swap = SwapBuilder::new(balancer_pool, token_in.clone(), token_out.clone()).build();
let encoding_context = EncodingContext {
// The receiver was generated with `makeAddr("bob") using forge`
receiver: Bytes::from("0x1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e"),
exact_out: false,
router_address: Some(Bytes::zero(20)),
group_token_in: token_in.clone(),
group_token_out: token_out.clone(),
transfer_type: TransferType::Transfer,
historical_trade: false,
};
let encoder = BalancerV3SwapEncoder::new(
Bytes::from("0x543778987b293C7E8Cf0722BB2e935ba6f4068D4"),
Chain::Ethereum,
None,
)
.unwrap();
let encoded_swap = encoder
.encode_swap(&swap, &encoding_context)
.unwrap();
let hex_swap = encode(&encoded_swap);
assert_eq!(
hex_swap,
String::from(concat!(
// token in
"7bc3485026ac48b6cf9baf0a377477fff5703af8",
// token out
"c71ea051a5f82c67adcf634c36ffe6334793d24c",
// pool id
"85b2b559bc2d21104c4defdd6efca8a20343361d",
// transfer type None
"01",
// receiver
"1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e",
))
);
write_calldata_to_file("test_encode_balancer_v3", hex_swap.as_str());
}
}
mod maverick_v2 {
use super::*;
#[test]
fn test_encode_maverick_v2() {
// GHO -> (maverick) -> USDC
let maverick_pool = ProtocolComponent {
id: String::from("0x14Cf6D2Fe3E1B326114b07d22A6F6bb59e346c67"),
protocol_system: String::from("vm:maverick_v2"),
..Default::default()
};
let token_in = Bytes::from("0x40D16FC0246aD3160Ccc09B8D0D3A2cD28aE6C2f");
let token_out = Bytes::from("0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48");
let swap = SwapBuilder::new(maverick_pool, token_in.clone(), token_out.clone()).build();
let encoding_context = EncodingContext {
// The receiver was generated with `makeAddr("bob") using forge`
receiver: Bytes::from("0x1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e"),
exact_out: false,
router_address: Some(Bytes::default()),
group_token_in: token_in.clone(),
group_token_out: token_out.clone(),
transfer_type: TransferType::Transfer,
historical_trade: false,
};
let encoder = MaverickV2SwapEncoder::new(
Bytes::from("0x543778987b293C7E8Cf0722BB2e935ba6f4068D4"),
Chain::Ethereum,
None,
)
.unwrap();
let encoded_swap = encoder
.encode_swap(&swap, &encoding_context)
.unwrap();
let hex_swap = encode(&encoded_swap);
assert_eq!(
hex_swap,
String::from(concat!(
// token in
"40D16FC0246aD3160Ccc09B8D0D3A2cD28aE6C2f",
// pool
"14Cf6D2Fe3E1B326114b07d22A6F6bb59e346c67",
// receiver
"1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e",
// transfer true
"01",
))
.to_lowercase()
);
write_calldata_to_file("test_encode_maverick_v2", hex_swap.as_str());
}
}
mod bebop {
use num_bigint::BigUint;
use super::*;
use crate::encoding::evm::testing_utils::MockRFQState;
fn bebop_config() -> HashMap<String, String> {
HashMap::from([
(
"bebop_settlement_address".to_string(),
"0xbbbbbBB520d69a9775E85b458C58c648259FAD5F".to_string(),
),
(
"native_token_address".to_string(),
"0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE".to_string(),
),
])
}
#[test]
fn test_encode_bebop_single_with_protocol_state() {
// 3000 USDC -> 1 WETH using a mocked RFQ state to get a quote
let bebop_calldata = Bytes::from_str("0x123456").unwrap();
let partial_fill_offset = 12u64;
let quote_amount_out = BigUint::from_str("1000000000000000000").unwrap();
let bebop_component = ProtocolComponent {
id: String::from("bebop-rfq"),
protocol_system: String::from("rfq:bebop"),
..Default::default()
};
let bebop_state = MockRFQState {
quote_amount_out,
quote_data: HashMap::from([
("calldata".to_string(), bebop_calldata.clone()),
(
"partial_fill_offset".to_string(),
Bytes::from(
partial_fill_offset
.to_be_bytes()
.to_vec(),
),
),
]),
};
let token_in = Bytes::from("0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48"); // USDC
let token_out = Bytes::from("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2"); // WETH
let swap = SwapBuilder::new(bebop_component, token_in.clone(), token_out.clone())
.estimated_amount_in(BigUint::from_str("3000000000").unwrap())
.protocol_state(Arc::new(bebop_state))
.build();
let encoding_context = EncodingContext {
receiver: Bytes::from("0xc5564C13A157E6240659fb81882A28091add8670"),
exact_out: false,
router_address: Some(Bytes::zero(20)),
group_token_in: token_in.clone(),
group_token_out: token_out.clone(),
transfer_type: TransferType::Transfer,
historical_trade: false,
};
let encoder = BebopSwapEncoder::new(
Bytes::from("0x543778987b293C7E8Cf0722BB2e935ba6f4068D4"),
Chain::Ethereum,
Some(bebop_config()),
)
.unwrap();
let encoded_swap = encoder
.encode_swap(&swap, &encoding_context)
.unwrap();
let hex_swap = encode(&encoded_swap);
let expected_swap = String::from(concat!(
// token in
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48",
// token out
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2",
// transfer type
"01",
// partiall filled offset
"0c",
// original taker amount
"0000000000000000000000000000000000000000000000000de0b6b3a7640000",
// approval needed
"01",
//receiver,
"c5564c13a157e6240659fb81882a28091add8670",
));
assert_eq!(hex_swap, expected_swap + &bebop_calldata.to_string()[2..]);
}
}
mod hashflow {
use alloy::hex::encode;
use num_bigint::BigUint;
use super::*;
use crate::encoding::{
evm::testing_utils::MockRFQState,
models::{SwapBuilder, TransferType},
};
fn hashflow_config() -> Option<HashMap<String, String>> {
Some(HashMap::from([(
"hashflow_router_address".to_string(),
"0x55084eE0fEf03f14a305cd24286359A35D735151".to_string(),
)]))
}
#[test]
fn test_encode_hashflow_single_fails_without_protocol_data() {
// Hashflow requires a swap with protocol data, otherwise will return an error
let hashflow_component = ProtocolComponent {
id: String::from("hashflow-rfq"),
protocol_system: String::from("rfq:hashflow"),
..Default::default()
};
let token_in = Bytes::from("0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48"); // USDC
let token_out = Bytes::from("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2"); // WETH
let swap = SwapBuilder::new(hashflow_component, token_in.clone(), token_out.clone())
.estimated_amount_in(BigUint::from_str("3000000000").unwrap())
.build();
let encoding_context = EncodingContext {
receiver: Bytes::from("0xc5564C13A157E6240659fb81882A28091add8670"),
exact_out: false,
router_address: Some(Bytes::zero(20)),
group_token_in: token_in.clone(),
group_token_out: token_out.clone(),
transfer_type: TransferType::Transfer,
historical_trade: false,
};
let encoder = HashflowSwapEncoder::new(
Bytes::from("0x543778987b293C7E8Cf0722BB2e935ba6f4068D4"),
Chain::Ethereum,
hashflow_config(),
)
.unwrap();
encoder
.encode_swap(&swap, &encoding_context)
.expect_err("Should returned an error if the swap has no protocol state");
}
#[test]
fn test_encode_hashflow_single_with_protocol_state() {
// 3000 USDC -> 1 WETH using a mocked RFQ state to get a quote
let quote_amount_out = BigUint::from_str("1000000000000000000").unwrap();
let hashflow_component = ProtocolComponent {
id: String::from("hashflow-rfq"),
protocol_system: String::from("rfq:hashflow"),
..Default::default()
};
let hashflow_quote_data = vec![
(
"pool".to_string(),
Bytes::from_str("0x478eca1b93865dca0b9f325935eb123c8a4af011").unwrap(),
),
(
"external_account".to_string(),
Bytes::from_str("0xbee3211ab312a8d065c4fef0247448e17a8da000").unwrap(),
),
(
"trader".to_string(),
Bytes::from_str("0xcd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2").unwrap(),
),
(
"base_token".to_string(),
Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap(),
),
(
"quote_token".to_string(),
Bytes::from_str("0x2260fac5e5542a773aa44fbcfedf7c193bc2c599").unwrap(),
),
(
"base_token_amount".to_string(),
Bytes::from(biguint_to_u256(&BigUint::from(3000_u64)).to_be_bytes::<32>().to_vec()),
),
(
"quote_token_amount".to_string(),
Bytes::from(biguint_to_u256(&BigUint::from(1_u64)).to_be_bytes::<32>().to_vec()),
),
("quote_expiry".to_string(), Bytes::from(biguint_to_u256(&BigUint::from(1755610328_u64)).to_be_bytes::<32>().to_vec())),
("nonce".to_string(), Bytes::from(biguint_to_u256(&BigUint::from(1755610283723_u64)).to_be_bytes::<32>().to_vec())),
(
"tx_id".to_string(),
Bytes::from_str(
"0x125000064000640000001747eb8c38ffffffffffffff0029642016edb36d0000",
)
.unwrap(),
),
("signature".to_string(), Bytes::from_str("0x6ddb3b21fe8509e274ddf46c55209cdbf30360944abbca6569ed6b26740d052f419964dcb5a3bdb98b4ed1fb3642a2760b8312118599a962251f7a8f73fe4fbe1c").unwrap()),
];
let hashflow_quote_data_values =
hashflow_quote_data
.iter()
.fold(vec![], |mut acc, (_key, value)| {
acc.extend_from_slice(value);
acc
});
let hashflow_calldata = Bytes::from(hashflow_quote_data_values);
let hashflow_state = MockRFQState {
quote_amount_out,
quote_data: hashflow_quote_data
.into_iter()
.collect(),
};
let token_in = Bytes::from("0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48"); // USDC
let token_out = Bytes::from("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2"); // WETH
let swap = SwapBuilder::new(hashflow_component, token_in.clone(), token_out.clone())
.estimated_amount_in(BigUint::from_str("3000000000").unwrap())
.protocol_state(Arc::new(hashflow_state))
.build();
let encoding_context = EncodingContext {
receiver: Bytes::from("0xc5564C13A157E6240659fb81882A28091add8670"),
exact_out: false,
router_address: Some(Bytes::zero(20)),
group_token_in: token_in.clone(),
group_token_out: token_out.clone(),
transfer_type: TransferType::Transfer,
historical_trade: false,
};
let encoder = HashflowSwapEncoder::new(
Bytes::from("0x543778987b293C7E8Cf0722BB2e935ba6f4068D4"),
Chain::Ethereum,
hashflow_config(),
)
.unwrap();
let encoded_swap = encoder
.encode_swap(&swap, &encoding_context)
.unwrap();
let hex_swap = encode(&encoded_swap);
let expected_swap = String::from(concat!(
"01", // transfer type
"01", // approval needed
));
assert_eq!(hex_swap, expected_swap + &hashflow_calldata.to_string()[2..]);
}
}
mod liquidityparty {
use super::*;
use crate::encoding::models::SwapBuilder;
#[test]
fn test_encode_liquidityparty() {
let liqp_pool = ProtocolComponent {
// mainnet test
id: String::from("0x2A804e94500AE379ee0CcC423a67B07cc0aF548C"),
..Default::default()
};
let token_in = Bytes::from("0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48"); // USDC
let token_out = Bytes::from("0xD31a59c85aE9D8edEFeC411D448f90841571b89c"); // WSOL
let swap = SwapBuilder::new(liqp_pool, token_in.clone(), token_out.clone()).build();
let encoding_context = EncodingContext {
receiver: Bytes::from("0x1D96F2f6BeF1202E4Ce1Ff6Dad0c2CB002861d3e"), // BOB
exact_out: false,
router_address: Some(Bytes::zero(20)),
group_token_in: token_in.clone(),
group_token_out: token_out.clone(),
transfer_type: TransferType::Transfer,
historical_trade: false,
};
let encoder = LiquidityPartySwapEncoder::new(
Bytes::from("0x543778987b293C7E8Cf0722BB2e935ba6f4068D4"), // What is this address? It is used in all the tests in place of the router address
Chain::Ethereum,
None,
)
.unwrap();
let encoded_swap = encoder
.encode_swap(&swap, &encoding_context)
.unwrap();
let hex_swap = encode(&encoded_swap);
assert_eq!(
hex_swap,
String::from(concat!(
// pool address
"2a804e94500ae379ee0ccc423a67b07cc0af548c", // MUST BE LOWERCASE
// in token address
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // MUST BE LOWERCASE
// in token index
"01",
// out token index
"05",
// receiver
"1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e", // Bob, MUST BE LOWERCASE
// transfer type Transfer
"01",
))
);
write_calldata_to_file("test_encode_liquidityparty", hex_swap.as_str());
}
}
}