Files
tycho-execution/src/encoding/evm/strategy_encoder/strategy_encoders.rs
2025-02-06 11:34:57 -05:00

1208 lines
48 KiB
Rust

use std::{
cmp::max,
collections::{HashMap, HashSet, VecDeque},
str::FromStr,
};
use alloy_primitives::{aliases::U24, FixedBytes, U256, U8};
use alloy_sol_types::SolValue;
use num_bigint::BigUint;
use tycho_core::{dto::Chain, keccak256, Bytes};
use crate::encoding::{
errors::EncodingError,
evm::{
approvals::permit2::Permit2,
constants::{NATIVE_ADDRESS, WETH_ADDRESS},
swap_encoder::swap_encoder_registry::SwapEncoderRegistry,
utils::{biguint_to_u256, bytes_to_address, encode_input, percentage_to_uint24},
},
models::{EncodingContext, NativeAction, Solution, Swap},
strategy_encoder::StrategyEncoder,
swap_encoder::SwapEncoder,
};
/// Encodes a solution using a specific strategy for execution on the EVM-compatible network.
pub trait EVMStrategyEncoder: StrategyEncoder {
/// Encodes information necessary for performing a single swap against a given executor for
/// a protocol.
fn encode_swap_header(
&self,
token_in: U8,
token_out: U8,
split: U24,
executor_address: Bytes,
executor_selector: FixedBytes<4>,
protocol_data: Vec<u8>,
) -> Vec<u8> {
let mut encoded = Vec::new();
encoded.push(token_in.to_be_bytes_vec()[0]);
encoded.push(token_out.to_be_bytes_vec()[0]);
encoded.extend_from_slice(&split.to_be_bytes_vec());
encoded.extend(executor_address.to_vec());
encoded.extend(executor_selector);
encoded.extend(protocol_data);
encoded
}
/// Encodes a selector string into its 4-byte representation.
fn encode_executor_selector(&self, selector: &str) -> FixedBytes<4> {
let hash = keccak256(selector.as_bytes());
FixedBytes::<4>::from([hash[0], hash[1], hash[2], hash[3]])
}
/// Uses prefix-length encoding to efficient encode action data.
///
/// Prefix-length encoding is a data encoding method where the beginning of a data segment
/// (the "prefix") contains information about the length of the following data.
fn ple_encode(&self, action_data_array: Vec<Vec<u8>>) -> Vec<u8> {
let mut encoded_action_data: Vec<u8> = Vec::new();
for action_data in action_data_array {
let args = (encoded_action_data, action_data.len() as u16, action_data);
encoded_action_data = args.abi_encode_packed();
}
encoded_action_data
}
}
/// Represents the encoder for a swap strategy which supports single, sequential and split swaps.
///
/// # Fields
/// * `swap_encoder_registry`: SwapEncoderRegistry, containing all possible swap encoders
/// * `permit2`: Permit2, responsible for managing permit2 operations and providing necessary
/// signatures and permit2 objects for calling the router
/// * `selector`: String, the selector for the swap function in the router contract
pub struct SplitSwapStrategyEncoder {
swap_encoder_registry: SwapEncoderRegistry,
permit2: Permit2,
selector: String,
}
impl SplitSwapStrategyEncoder {
pub fn new(
signer_pk: String,
chain: Chain,
swap_encoder_registry: SwapEncoderRegistry,
) -> Result<Self, EncodingError> {
let selector = "swap(uint256,address,address,uint256,bool,bool,uint256,address,((address,uint160,uint48,uint48),address,uint256),bytes,bytes)".to_string();
Ok(Self { permit2: Permit2::new(signer_pk, chain)?, selector, swap_encoder_registry })
}
/// Raises an error if the split percentages are invalid.
///
/// Split percentages are considered valid if all the following conditions are met:
/// * Each split amount is < 1 (100%)
/// * There is exactly one 0% split for each token, and it's the last swap specified, signifying
/// to the router to send the remainder of the token to the designated protocol
/// * The sum of all non-remainder splits for each token is < 1 (100%)
/// * There are no negative split amounts
fn validate_split_percentages(&self, swaps: &[Swap]) -> Result<(), EncodingError> {
let mut swaps_by_token: HashMap<Bytes, Vec<&Swap>> = HashMap::new();
for swap in swaps {
if swap.split >= 1.0 {
return Err(EncodingError::InvalidInput(format!(
"Split percentage must be less than 1 (100%), got {}",
swap.split
)));
}
swaps_by_token
.entry(swap.token_in.clone())
.or_default()
.push(swap);
}
for (token, token_swaps) in swaps_by_token {
// Single swaps don't need remainder handling
if token_swaps.len() == 1 {
if token_swaps[0].split != 0.0 {
return Err(EncodingError::InvalidInput(format!(
"Single swap must have 0% split for token {:?}",
token
)));
}
continue;
}
let mut found_zero_split = false;
let mut total_percentage = 0.0;
for (i, swap) in token_swaps.iter().enumerate() {
match (swap.split == 0.0, i == token_swaps.len() - 1) {
(true, false) => {
return Err(EncodingError::InvalidInput(format!(
"The 0% split for token {:?} must be the last swap",
token
)))
}
(true, true) => found_zero_split = true,
(false, _) => {
if swap.split < 0.0 {
return Err(EncodingError::InvalidInput(format!(
"All splits must be >= 0% for token {:?}",
token
)));
}
total_percentage += swap.split;
}
}
}
if !found_zero_split {
return Err(EncodingError::InvalidInput(format!(
"Token {:?} must have exactly one 0% split for remainder handling",
token
)));
}
// Total must be <100% to leave room for remainder
if total_percentage >= 1.0 {
return Err(EncodingError::InvalidInput(format!(
"Total of non-remainder splits for token {:?} must be <100%, got {}%",
token,
total_percentage * 100.0
)));
}
}
Ok(())
}
/// Raises an error if swaps do not represent a valid path from the given token to the checked
/// token.
///
/// A path is considered valid if all the following conditions are met:
/// * The checked token is reachable from the given token through the swap path
/// * There are no tokens which are unconnected from the main path
fn validate_swap_path(
&self,
swaps: &[Swap],
given_token: &Bytes,
checked_token: &Bytes,
native_action: &Option<NativeAction>,
) -> Result<(), EncodingError> {
// Convert ETH to WETH only if there's a corresponding wrap/unwrap action
let given_token = if *given_token == *NATIVE_ADDRESS {
match native_action {
Some(NativeAction::Wrap) => &WETH_ADDRESS,
_ => given_token,
}
} else {
given_token
};
let checked_token = if *checked_token == *NATIVE_ADDRESS {
match native_action {
Some(NativeAction::Unwrap) => &WETH_ADDRESS,
_ => checked_token,
}
} else {
checked_token
};
// Build directed graph of token flows
let mut graph: HashMap<&Bytes, HashSet<&Bytes>> = HashMap::new();
for swap in swaps {
graph
.entry(&swap.token_in)
.or_default()
.insert(&swap.token_out);
}
// BFS from validation_given
let mut visited = HashSet::new();
let mut queue = VecDeque::new();
queue.push_back(given_token);
while let Some(token) = queue.pop_front() {
if !visited.insert(token) {
continue;
}
// Early success check
if token == checked_token && visited.len() == graph.len() + 1 {
return Ok(());
}
if let Some(next_tokens) = graph.get(token) {
for &next_token in next_tokens {
if !visited.contains(next_token) {
queue.push_back(next_token);
}
}
}
}
// If we get here, either checked_token wasn't reached or not all tokens were visited
if !visited.contains(checked_token) {
Err(EncodingError::InvalidInput(
"Checked token is not reachable through swap path".to_string(),
))
} else {
Err(EncodingError::InvalidInput(
"Some tokens are not connected to the main path".to_string(),
))
}
}
}
impl EVMStrategyEncoder for SplitSwapStrategyEncoder {}
impl StrategyEncoder for SplitSwapStrategyEncoder {
fn encode_strategy(
&self,
solution: Solution,
router_address: Bytes,
) -> Result<(Vec<u8>, Bytes), EncodingError> {
self.validate_split_percentages(&solution.swaps)?;
self.validate_swap_path(
&solution.swaps,
&solution.given_token,
&solution.checked_token,
&solution.native_action,
)?;
let (permit, signature) = self.permit2.get_permit(
&router_address,
&solution.sender,
&solution.given_token,
&solution.given_amount,
)?;
let mut min_amount_out = solution
.check_amount
.unwrap_or(BigUint::ZERO);
if let (Some(expected_amount), Some(slippage)) =
(solution.expected_amount.as_ref(), solution.slippage)
{
let one_hundred = BigUint::from(100u32);
let slippage_percent = BigUint::from((slippage * 100.0) as u32);
let multiplier = &one_hundred - slippage_percent;
let expected_amount_with_slippage = (expected_amount * &multiplier) / &one_hundred;
min_amount_out = max(min_amount_out, expected_amount_with_slippage);
}
// The tokens array is composed of the given token, the checked token and all the
// intermediary tokens in between. The contract expects the tokens to be in this order.
let solution_tokens: HashSet<Bytes> =
vec![solution.given_token.clone(), solution.checked_token.clone()]
.into_iter()
.collect();
let intermediary_tokens: HashSet<Bytes> = solution
.swaps
.iter()
.flat_map(|swap| vec![swap.token_in.clone(), swap.token_out.clone()])
.collect();
let mut intermediary_tokens: Vec<Bytes> = intermediary_tokens
.difference(&solution_tokens)
.cloned()
.collect();
// this is only to make the test deterministic (same index for the same token for different
// runs)
intermediary_tokens.sort();
let (mut unwrap, mut wrap) = (false, false);
if let Some(action) = solution.native_action.clone() {
match action {
NativeAction::Wrap => wrap = true,
NativeAction::Unwrap => unwrap = true,
}
}
let mut tokens = Vec::with_capacity(2 + intermediary_tokens.len());
if wrap {
tokens.push(WETH_ADDRESS.clone());
} else {
tokens.push(solution.given_token.clone());
}
tokens.extend(intermediary_tokens);
if unwrap {
tokens.push(WETH_ADDRESS.clone());
} else {
tokens.push(solution.checked_token.clone());
}
let mut swaps = vec![];
for swap in solution.swaps.iter() {
let swap_encoder = self
.get_swap_encoder(&swap.component.protocol_system)
.ok_or_else(|| {
EncodingError::InvalidInput(format!(
"Swap encoder not found for protocol: {}",
swap.component.protocol_system
))
})?;
let encoding_context = EncodingContext {
receiver: router_address.clone(),
exact_out: solution.exact_out,
router_address: router_address.clone(),
};
let protocol_data = swap_encoder.encode_swap(swap.clone(), encoding_context)?;
let swap_data = self.encode_swap_header(
U8::from(
tokens
.iter()
.position(|t| *t == swap.token_in)
.ok_or_else(|| {
EncodingError::InvalidInput(
"In token not found in tokens array".to_string(),
)
})?,
),
U8::from(
tokens
.iter()
.position(|t| *t == swap.token_out)
.ok_or_else(|| {
EncodingError::InvalidInput(
"Out token not found in tokens array".to_string(),
)
})?,
),
percentage_to_uint24(swap.split),
Bytes::from_str(swap_encoder.executor_address()).map_err(|_| {
EncodingError::FatalError("Invalid executor address".to_string())
})?,
self.encode_executor_selector(swap_encoder.executor_selector()),
protocol_data,
);
swaps.push(swap_data);
}
let encoded_swaps = self.ple_encode(swaps);
let method_calldata = (
biguint_to_u256(&solution.given_amount),
bytes_to_address(&solution.given_token)?,
bytes_to_address(&solution.checked_token)?,
biguint_to_u256(&min_amount_out),
wrap,
unwrap,
U256::from(tokens.len()),
bytes_to_address(&solution.receiver)?,
permit,
signature.as_bytes().to_vec(),
encoded_swaps,
)
.abi_encode();
let contract_interaction = encode_input(&self.selector, method_calldata);
Ok((contract_interaction, router_address))
}
fn get_swap_encoder(&self, protocol_system: &str) -> Option<&Box<dyn SwapEncoder>> {
self.swap_encoder_registry
.get_encoder(protocol_system)
}
}
/// This strategy encoder is used for solutions that are sent directly to the executor, bypassing
/// the router. Only one solution with one swap is supported.
///
/// # Fields
/// * `swap_encoder_registry`: SwapEncoderRegistry, containing all possible swap encoders
pub struct ExecutorStrategyEncoder {
swap_encoder_registry: SwapEncoderRegistry,
}
impl ExecutorStrategyEncoder {
pub fn new(swap_encoder_registry: SwapEncoderRegistry) -> Self {
Self { swap_encoder_registry }
}
}
impl EVMStrategyEncoder for ExecutorStrategyEncoder {}
impl StrategyEncoder for ExecutorStrategyEncoder {
fn encode_strategy(
&self,
solution: Solution,
_router_address: Bytes,
) -> Result<(Vec<u8>, Bytes), EncodingError> {
let router_address = solution.router_address.ok_or_else(|| {
EncodingError::InvalidInput(
"Router address is required for straight-to-executor solutions".to_string(),
)
})?;
let swap = solution
.swaps
.first()
.ok_or_else(|| EncodingError::InvalidInput("No swaps found in solution".to_string()))?;
let swap_encoder = self
.get_swap_encoder(&swap.component.protocol_system)
.ok_or_else(|| {
EncodingError::InvalidInput(format!(
"Swap encoder not found for protocol: {}",
swap.component.protocol_system
))
})?;
let encoding_context = EncodingContext {
receiver: solution.receiver,
exact_out: solution.exact_out,
router_address,
};
let protocol_data = swap_encoder.encode_swap(swap.clone(), encoding_context)?;
let executor_address = Bytes::from_str(swap_encoder.executor_address())
.map_err(|_| EncodingError::FatalError("Invalid executor address".to_string()))?;
Ok((protocol_data, executor_address))
}
fn get_swap_encoder(&self, protocol_system: &str) -> Option<&Box<dyn SwapEncoder>> {
self.swap_encoder_registry
.get_encoder(protocol_system)
}
}
#[cfg(test)]
mod tests {
use std::str::FromStr;
use alloy::hex::encode;
use num_bigint::BigUint;
use rstest::rstest;
use tycho_core::{dto::ProtocolComponent, Bytes};
use super::*;
use crate::encoding::{
evm::constants::{NATIVE_ADDRESS, WETH_ADDRESS},
models::Swap,
};
fn get_swap_encoder_registry() -> SwapEncoderRegistry {
SwapEncoderRegistry::new("src/encoding/config/executor_addresses.json", Chain::Ethereum)
.unwrap()
}
#[test]
fn test_executor_strategy_encode() {
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = ExecutorStrategyEncoder::new(swap_encoder_registry);
let token_in = Bytes::from("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2");
let token_out = Bytes::from("0x6b175474e89094c44da98b954eedeac495271d0f");
let swap = Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: token_in.clone(),
token_out: token_out.clone(),
split: 0f64,
};
let solution = Solution {
exact_out: false,
given_token: token_in,
given_amount: BigUint::from(1000000000000000000u64),
expected_amount: Some(BigUint::from(1000000000000000000u64)),
checked_token: token_out,
check_amount: None,
sender: Bytes::from_str("0x0000000000000000000000000000000000000000").unwrap(),
// The receiver was generated with `makeAddr("bob") using forge`
receiver: Bytes::from_str("0x1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e").unwrap(),
swaps: vec![swap],
direct_execution: true,
router_address: Some(Bytes::zero(20)),
slippage: None,
native_action: None,
};
let (protocol_data, executor_address) = encoder
.encode_strategy(solution, Bytes::zero(20))
.unwrap();
let hex_protocol_data = encode(&protocol_data);
assert_eq!(
executor_address,
Bytes::from_str("0x5c2f5a71f67c01775180adc06909288b4c329308").unwrap()
);
assert_eq!(
hex_protocol_data,
String::from(concat!(
// in token
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2",
// component id
"a478c2975ab1ea89e8196811f51a7b7ade33eb11",
// receiver
"1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e",
// zero for one
"00",
))
);
}
#[rstest]
#[case::no_check_no_slippage(
None,
None,
None,
U256::from_str("0").unwrap(),
)]
#[case::with_check_no_slippage(
None,
None,
Some(BigUint::from_str("3_000_000000000000000000").unwrap()),
U256::from_str("3_000_000000000000000000").unwrap(),
)]
#[case::no_check_with_slippage(
Some(BigUint::from_str("3_000_000000000000000000").unwrap()),
Some(0.01f64),
None,
U256::from_str("2_970_000000000000000000").unwrap(),
)]
#[case::with_check_and_slippage(
Some(BigUint::from_str("3_000_000000000000000000").unwrap()),
Some(0.01f64),
Some(BigUint::from_str("2_999_000000000000000000").unwrap()),
U256::from_str("2_999_000000000000000000").unwrap(),
)]
fn test_split_swap_strategy_encoder_simple_route(
#[case] expected_amount: Option<BigUint>,
#[case] slippage: Option<f64>,
#[case] check_amount: Option<BigUint>,
#[case] expected_min_amount: U256,
) {
// Performs a single swap from WETH to DAI on a USV2 pool
// Set up a mock private key for signing
let private_key =
"0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string();
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let swap = Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: dai.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder =
SplitSwapStrategyEncoder::new(private_key, Chain::Ethereum, swap_encoder_registry)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: weth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: dai,
expected_amount,
slippage,
check_amount,
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap],
..Default::default()
};
let router_address = Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap();
let (calldata, _) = encoder
.encode_strategy(solution, router_address)
.unwrap();
let expected_min_amount_encoded = hex::encode(U256::abi_encode(&expected_min_amount));
let expected_input = [
"4860f9ed", // Function selector
"0000000000000000000000000000000000000000000000000de0b6b3a7640000", // amount out
"000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"0000000000000000000000006b175474e89094c44da98b954eedeac495271d0f", // token out
&expected_min_amount_encoded, // min amount out
"0000000000000000000000000000000000000000000000000000000000000000", // wrap
"0000000000000000000000000000000000000000000000000000000000000000", // unwrap
"0000000000000000000000000000000000000000000000000000000000000002", // tokens length
"000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
]
.join("");
// after this there is the permit and because of the deadlines (that depend on block time)
// it's hard to assert
// "000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
// "0000000000000000000000000000000000000000000000000de0b6b3a7640000", // amount in
// "0000000000000000000000000000000000000000000000000000000067c205fe", // expiration
// "0000000000000000000000000000000000000000000000000000000000000000", // nonce
// "0000000000000000000000002c6a3cd97c6283b95ac8c5a4459ebb0d5fd404f4", // spender
// "00000000000000000000000000000000000000000000000000000000679a8006", // deadline
// offset of signature (from start of call data to beginning of length indication)
// "0000000000000000000000000000000000000000000000000000000000000200",
// offset of ple encoded swaps (from start of call data to beginning of length indication)
// "0000000000000000000000000000000000000000000000000000000000000280",
// length of signature without padding
// "0000000000000000000000000000000000000000000000000000000000000041",
// signature + padding
// "a031b63a01ef5d25975663e5d6c420ef498e3a5968b593cdf846c6729a788186",
// "1ddaf79c51453cd501d321ee541d13593e3a266be44103eefdf6e76a032d2870",
// "1b00000000000000000000000000000000000000000000000000000000000000"
let expected_swaps = String::from(concat!(
// length of ple encoded swaps without padding
"000000000000000000000000000000000000000000000000000000000000005c",
// ple encoded swaps
"005a",
// Swap header
"00", // token in index
"01", // token out index
"000000", // split
// Swap data
"5c2f5a71f67c01775180adc06909288b4c329308", // executor address
"bd0625ab", // selector
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"a478c2975ab1ea89e8196811f51a7b7ade33eb11", // component id
"3ede3eca2a72b3aecc820e955b36f38437d01395", // receiver
"00", // zero2one
"00", // exact out
"000000", // padding
));
let hex_calldata = encode(&calldata);
assert_eq!(hex_calldata[..520], expected_input);
assert_eq!(hex_calldata[1288..], expected_swaps);
}
#[test]
fn test_split_swap_strategy_encoder_simple_route_wrap() {
// Performs a single swap from WETH to DAI on a USV2 pool, wrapping ETH
// Note: This test does not assert anything. It is only used to obtain integration test
// data for our router solidity test.
// Set up a mock private key for signing
let private_key =
"0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let swap = Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: WETH_ADDRESS.clone(),
token_out: dai.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder =
SplitSwapStrategyEncoder::new(private_key, Chain::Ethereum, swap_encoder_registry)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: NATIVE_ADDRESS.clone(),
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: dai,
expected_amount: Some(BigUint::from_str("3_000_000000000000000000").unwrap()),
check_amount: None,
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap],
native_action: Some(NativeAction::Wrap),
..Default::default()
};
let router_address = Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap();
let (calldata, _) = encoder
.encode_strategy(solution, router_address)
.unwrap();
let hex_calldata = encode(&calldata);
println!("{}", hex_calldata);
}
#[test]
fn test_split_swap_strategy_encoder_simple_route_unwrap() {
// Performs a single swap from DAI to WETH on a USV2 pool, unwrapping ETH at the end
// Note: This test does not assert anything. It is only used to obtain integration test
// data for our router solidity test.
// Set up a mock private key for signing
let private_key =
"0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let swap = Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: dai.clone(),
token_out: WETH_ADDRESS.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder =
SplitSwapStrategyEncoder::new(private_key, Chain::Ethereum, swap_encoder_registry)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: dai,
given_amount: BigUint::from_str("3_000_000000000000000000").unwrap(),
checked_token: NATIVE_ADDRESS.clone(),
expected_amount: Some(BigUint::from_str("1_000000000000000000").unwrap()),
check_amount: None,
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap],
native_action: Some(NativeAction::Unwrap),
..Default::default()
};
let router_address = Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap();
let (calldata, _) = encoder
.encode_strategy(solution, router_address)
.unwrap();
let hex_calldata = encode(&calldata);
println!("{}", hex_calldata);
}
#[test]
fn test_split_swap_strategy_encoder_complex_route() {
// Note: This test does not assert anything. It is only used to obtain integration test
// data for our router solidity test.
//
// Performs a split swap from WETH to USDC though WBTC and DAI using USV2 pools
//
// ┌──(USV2)──> WBTC ───(USV2)──> USDC
// WETH ─┤
// └──(USV2)──> DAI ───(USV2)──> USDC
//
// Set up a mock private key for signing
let private_key =
"0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string();
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let wbtc = Bytes::from_str("0x2260fac5e5542a773aa44fbcfedf7c193bc2c599").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let swap_weth_dai = Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: dai.clone(),
split: 0.5f64,
};
let swap_weth_wbtc = Swap {
component: ProtocolComponent {
id: "0xBb2b8038a1640196FbE3e38816F3e67Cba72D940".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: wbtc.clone(),
// This represents the remaining 50%, but to avoid any rounding errors we set this to
// 0 to signify "the remainder of the WETH value". It should still be very close to 50%
split: 0f64,
};
let swap_dai_usdc = Swap {
component: ProtocolComponent {
id: "0xAE461cA67B15dc8dc81CE7615e0320dA1A9aB8D5".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: dai.clone(),
token_out: usdc.clone(),
split: 0f64,
};
let swap_wbtc_usdc = Swap {
component: ProtocolComponent {
id: "0x004375Dff511095CC5A197A54140a24eFEF3A416".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: wbtc.clone(),
token_out: usdc.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder =
SplitSwapStrategyEncoder::new(private_key, Chain::Ethereum, swap_encoder_registry)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: weth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: usdc,
expected_amount: Some(BigUint::from_str("3_000_000000").unwrap()),
check_amount: None,
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap_weth_dai, swap_weth_wbtc, swap_dai_usdc, swap_wbtc_usdc],
..Default::default()
};
let router_address = Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap();
let (calldata, _) = encoder
.encode_strategy(solution, router_address)
.unwrap();
let _hex_calldata = encode(&calldata);
println!("{}", _hex_calldata);
}
fn get_mock_split_swap_strategy_encoder() -> SplitSwapStrategyEncoder {
let private_key =
"0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string();
let swap_encoder_registry = get_swap_encoder_registry();
SplitSwapStrategyEncoder::new(private_key, Chain::Ethereum, swap_encoder_registry).unwrap()
}
#[test]
fn test_validate_path_single_swap() {
let encoder = get_mock_split_swap_strategy_encoder();
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let swaps = vec![Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: dai.clone(),
split: 0f64,
}];
let result = encoder.validate_swap_path(&swaps, &weth, &dai, &None);
assert_eq!(result, Ok(()));
}
#[test]
fn test_validate_path_multiple_swaps() {
let encoder = get_mock_split_swap_strategy_encoder();
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let swaps = vec![
Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: dai.clone(),
split: 0.5f64,
},
Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: dai.clone(),
token_out: usdc.clone(),
split: 0f64,
},
];
let result = encoder.validate_swap_path(&swaps, &weth, &usdc, &None);
assert_eq!(result, Ok(()));
}
#[test]
fn test_validate_path_disconnected() {
let encoder = get_mock_split_swap_strategy_encoder();
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let wbtc = Bytes::from_str("0x2260fac5e5542a773aa44fbcfedf7c193bc2c599").unwrap();
let disconnected_swaps = vec![
Swap {
component: ProtocolComponent {
id: "pool1".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: dai.clone(),
split: 0.5,
},
// This swap is disconnected from the WETH->DAI path
Swap {
component: ProtocolComponent {
id: "pool2".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: wbtc.clone(),
token_out: usdc.clone(),
split: 0.0,
},
];
let result = encoder.validate_swap_path(&disconnected_swaps, &weth, &usdc, &None);
assert!(matches!(
result,
Err(EncodingError::InvalidInput(msg)) if msg.contains("not reachable through swap path")
));
}
#[test]
fn test_validate_path_unreachable_checked_token() {
let encoder = get_mock_split_swap_strategy_encoder();
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let unreachable_swaps = vec![Swap {
component: ProtocolComponent {
id: "pool1".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: dai.clone(),
split: 1.0,
}];
let result = encoder.validate_swap_path(&unreachable_swaps, &weth, &usdc, &None);
assert!(matches!(
result,
Err(EncodingError::InvalidInput(msg)) if msg.contains("not reachable through swap path")
));
}
#[test]
fn test_validate_path_empty_swaps() {
let encoder = get_mock_split_swap_strategy_encoder();
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let empty_swaps: Vec<Swap> = vec![];
let result = encoder.validate_swap_path(&empty_swaps, &weth, &usdc, &None);
assert!(matches!(
result,
Err(EncodingError::InvalidInput(msg)) if msg.contains("not reachable through swap path")
));
}
#[test]
fn test_validate_swap_single() {
let encoder = get_mock_split_swap_strategy_encoder();
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let swaps = vec![Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: dai.clone(),
split: 0f64,
}];
let result = encoder.validate_split_percentages(&swaps);
assert_eq!(result, Ok(()));
}
#[test]
fn test_validate_swaps_multiple() {
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
// Valid case: Multiple swaps with proper splits (50%, 30%, remainder)
let valid_swaps = vec![
Swap {
component: ProtocolComponent {
id: "pool1".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: dai.clone(),
split: 0.5,
},
Swap {
component: ProtocolComponent {
id: "pool2".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: dai.clone(),
split: 0.3,
},
Swap {
component: ProtocolComponent {
id: "pool3".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: dai.clone(),
split: 0.0, // Remainder (20%)
},
];
let encoder = get_mock_split_swap_strategy_encoder();
assert!(encoder
.validate_split_percentages(&valid_swaps)
.is_ok());
}
#[test]
fn test_validate_swaps_no_remainder_split() {
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let invalid_total_swaps = vec![
Swap {
component: ProtocolComponent {
id: "pool1".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: dai.clone(),
split: 0.7,
},
Swap {
component: ProtocolComponent {
id: "pool2".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: dai.clone(),
split: 0.3,
},
];
let encoder = get_mock_split_swap_strategy_encoder();
assert!(matches!(
encoder.validate_split_percentages(&invalid_total_swaps),
Err(EncodingError::InvalidInput(msg)) if msg.contains("must have exactly one 0% split")
));
}
#[test]
fn test_validate_swaps_zero_split_not_at_end() {
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let invalid_zero_position_swaps = vec![
Swap {
component: ProtocolComponent {
id: "pool1".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: dai.clone(),
split: 0.0,
},
Swap {
component: ProtocolComponent {
id: "pool2".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: dai.clone(),
split: 0.5,
},
];
let encoder = get_mock_split_swap_strategy_encoder();
assert!(matches!(
encoder.validate_split_percentages(&invalid_zero_position_swaps),
Err(EncodingError::InvalidInput(msg)) if msg.contains("must be the last swap")
));
}
#[test]
fn test_validate_swaps_splits_exceed_hundred_percent() {
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let invalid_overflow_swaps = vec![
Swap {
component: ProtocolComponent {
id: "pool1".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: dai.clone(),
split: 0.6,
},
Swap {
component: ProtocolComponent {
id: "pool2".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: dai.clone(),
split: 0.5,
},
Swap {
component: ProtocolComponent {
id: "pool3".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: dai.clone(),
split: 0.0,
},
];
let encoder = get_mock_split_swap_strategy_encoder();
assert!(matches!(
encoder.validate_split_percentages(&invalid_overflow_swaps),
Err(EncodingError::InvalidInput(msg)) if msg.contains("must be <100%")
));
}
#[test]
fn test_validate_path_wrap_eth_given_token() {
let encoder = get_mock_split_swap_strategy_encoder();
let eth = Bytes::from_str("0x0000000000000000000000000000000000000000").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let weth = Bytes::from_str("0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2").unwrap();
let swaps = vec![Swap {
component: ProtocolComponent {
id: "pool1".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: usdc.clone(),
split: 0f64,
}];
let result = encoder.validate_swap_path(&swaps, &eth, &usdc, &Some(NativeAction::Wrap));
assert_eq!(result, Ok(()));
}
#[test]
fn test_validate_token_path_connectivity_wrap_eth_checked_token() {
let encoder = get_mock_split_swap_strategy_encoder();
let eth = Bytes::from_str("0x0000000000000000000000000000000000000000").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let weth = Bytes::from_str("0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2").unwrap();
let swaps = vec![Swap {
component: ProtocolComponent {
id: "pool1".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: usdc.clone(),
token_out: weth.clone(),
split: 0f64,
}];
let result = encoder.validate_swap_path(&swaps, &usdc, &eth, &Some(NativeAction::Unwrap));
assert_eq!(result, Ok(()));
}
}