Files
tycho-execution/foundry/test/protocols/UniswapV4.t.sol

445 lines
15 KiB
Solidity

// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.26;
import "../../src/executors/UniswapV4Executor.sol";
import "../TestUtils.sol";
import "../TychoRouterTestSetup.sol";
import "./UniswapV4Utils.sol";
import "@src/executors/UniswapV4Executor.sol";
import {Constants} from "../Constants.sol";
import {SafeCallback} from "@uniswap/v4-periphery/src/base/SafeCallback.sol";
import {Test} from "../../lib/forge-std/src/Test.sol";
contract UniswapV4ExecutorExposed is UniswapV4Executor {
constructor(IPoolManager _poolManager, address _permit2)
UniswapV4Executor(_poolManager, _permit2)
{}
function decodeData(bytes calldata data)
external
pure
returns (
address tokenIn,
address tokenOut,
bool zeroForOne,
RestrictTransferFrom.TransferType transferType,
address receiver,
address hook,
bytes memory hookData,
UniswapV4Pool[] memory pools
)
{
return _decodeData(data);
}
}
contract UniswapV4ExecutorTest is Constants, TestUtils {
using SafeERC20 for IERC20;
UniswapV4ExecutorExposed uniswapV4Exposed;
IERC20 USDE = IERC20(USDE_ADDR);
IERC20 USDT = IERC20(USDT_ADDR);
IERC20 USDC = IERC20(USDC_ADDR);
address poolManager = 0x000000000004444c5dc75cB358380D2e3dE08A90;
function setUp() public {
uint256 forkBlock = 22689128;
vm.createSelectFork(vm.rpcUrl("mainnet"), forkBlock);
uniswapV4Exposed = new UniswapV4ExecutorExposed(
IPoolManager(poolManager), PERMIT2_ADDRESS
);
}
function testDecodeParams() public view {
bool zeroForOne = true;
uint24 pool1Fee = 500;
int24 tickSpacing1 = 60;
uint24 pool2Fee = 1000;
int24 tickSpacing2 = -10;
UniswapV4Executor.UniswapV4Pool[] memory pools =
new UniswapV4Executor.UniswapV4Pool[](2);
pools[0] = UniswapV4Executor.UniswapV4Pool({
intermediaryToken: USDT_ADDR,
fee: pool1Fee,
tickSpacing: tickSpacing1
});
pools[1] = UniswapV4Executor.UniswapV4Pool({
intermediaryToken: USDE_ADDR,
fee: pool2Fee,
tickSpacing: tickSpacing2
});
bytes memory data = UniswapV4Utils.encodeExactInput(
USDE_ADDR,
USDT_ADDR,
zeroForOne,
RestrictTransferFrom.TransferType.Transfer,
ALICE,
address(0),
bytes(""),
pools
);
(
address tokenIn,
address tokenOut,
bool zeroForOneDecoded,
RestrictTransferFrom.TransferType transferType,
address receiver,
address hook,
bytes memory hookData,
UniswapV4Executor.UniswapV4Pool[] memory decodedPools
) = uniswapV4Exposed.decodeData(data);
assertEq(tokenIn, USDE_ADDR);
assertEq(tokenOut, USDT_ADDR);
assertEq(zeroForOneDecoded, zeroForOne);
assertEq(
uint8(transferType),
uint8(RestrictTransferFrom.TransferType.Transfer)
);
assertEq(receiver, ALICE);
assertEq(hook, address(0));
assertEq(decodedPools.length, 2);
assertEq(decodedPools[0].intermediaryToken, USDT_ADDR);
assertEq(decodedPools[0].fee, pool1Fee);
assertEq(decodedPools[0].tickSpacing, tickSpacing1);
assertEq(decodedPools[1].intermediaryToken, USDE_ADDR);
assertEq(decodedPools[1].fee, pool2Fee);
assertEq(decodedPools[1].tickSpacing, tickSpacing2);
}
function testSingleSwap() public {
uint256 amountIn = 100 ether;
deal(USDE_ADDR, address(uniswapV4Exposed), amountIn);
uint256 usdeBalanceBeforePool = USDE.balanceOf(poolManager);
uint256 usdeBalanceBeforeSwapExecutor =
USDE.balanceOf(address(uniswapV4Exposed));
UniswapV4Executor.UniswapV4Pool[] memory pools =
new UniswapV4Executor.UniswapV4Pool[](1);
pools[0] = UniswapV4Executor.UniswapV4Pool({
intermediaryToken: USDT_ADDR,
fee: uint24(100),
tickSpacing: int24(1)
});
bytes memory data = UniswapV4Utils.encodeExactInput(
USDE_ADDR,
USDT_ADDR,
true,
RestrictTransferFrom.TransferType.Transfer,
ALICE,
address(0),
bytes(""),
pools
);
uint256 amountOut = uniswapV4Exposed.swap(amountIn, data);
assertEq(USDE.balanceOf(poolManager), usdeBalanceBeforePool + amountIn);
assertEq(
USDE.balanceOf(address(uniswapV4Exposed)),
usdeBalanceBeforeSwapExecutor - amountIn
);
assertTrue(USDT.balanceOf(ALICE) == amountOut);
}
function testSingleSwapIntegration() public {
// USDE -> USDT
bytes memory protocolData =
loadCallDataFromFile("test_encode_uniswap_v4_simple_swap");
uint256 amountIn = 100 ether;
deal(USDE_ADDR, address(uniswapV4Exposed), amountIn);
uint256 usdeBalanceBeforePool = USDE.balanceOf(poolManager);
uint256 usdeBalanceBeforeSwapExecutor =
USDE.balanceOf(address(uniswapV4Exposed));
uint256 amountOut = uniswapV4Exposed.swap(amountIn, protocolData);
assertEq(USDE.balanceOf(poolManager), usdeBalanceBeforePool + amountIn);
assertEq(
USDE.balanceOf(ALICE), usdeBalanceBeforeSwapExecutor - amountIn
);
assertTrue(USDT.balanceOf(ALICE) == amountOut);
}
function testMultipleSwap() public {
// USDE -> USDT -> WBTC
uint256 amountIn = 100 ether;
deal(USDE_ADDR, address(uniswapV4Exposed), amountIn);
uint256 usdeBalanceBeforePool = USDE.balanceOf(poolManager);
uint256 usdeBalanceBeforeSwapExecutor =
USDE.balanceOf(address(uniswapV4Exposed));
UniswapV4Executor.UniswapV4Pool[] memory pools =
new UniswapV4Executor.UniswapV4Pool[](2);
pools[0] = UniswapV4Executor.UniswapV4Pool({
intermediaryToken: USDT_ADDR,
fee: uint24(100),
tickSpacing: int24(1)
});
pools[1] = UniswapV4Executor.UniswapV4Pool({
intermediaryToken: WBTC_ADDR,
fee: uint24(3000),
tickSpacing: int24(60)
});
bytes memory data = UniswapV4Utils.encodeExactInput(
USDE_ADDR,
WBTC_ADDR,
true,
RestrictTransferFrom.TransferType.Transfer,
ALICE,
address(0),
bytes(""),
pools
);
uint256 amountOut = uniswapV4Exposed.swap(amountIn, data);
assertEq(USDE.balanceOf(poolManager), usdeBalanceBeforePool + amountIn);
assertEq(
USDE.balanceOf(address(uniswapV4Exposed)),
usdeBalanceBeforeSwapExecutor - amountIn
);
assertTrue(IERC20(WBTC_ADDR).balanceOf(ALICE) == amountOut);
}
function testMultipleSwapIntegration() public {
// USDE -> USDT -> WBTC
bytes memory protocolData =
loadCallDataFromFile("test_encode_uniswap_v4_sequential_swap");
uint256 amountIn = 100 ether;
deal(USDE_ADDR, address(uniswapV4Exposed), amountIn);
uint256 usdeBalanceBeforePool = USDE.balanceOf(poolManager);
uint256 usdeBalanceBeforeSwapExecutor =
USDE.balanceOf(address(uniswapV4Exposed));
uint256 amountOut = uniswapV4Exposed.swap(amountIn, protocolData);
assertEq(USDE.balanceOf(poolManager), usdeBalanceBeforePool + amountIn);
assertEq(
USDE.balanceOf(address(uniswapV4Exposed)),
usdeBalanceBeforeSwapExecutor - amountIn
);
assertTrue(IERC20(WBTC_ADDR).balanceOf(ALICE) == amountOut);
}
function testSingleSwapEulerHook() public {
// Replicating tx: 0xb372306a81c6e840f4ec55f006da6b0b097f435802a2e6fd216998dd12fb4aca
address hook = address(0x69058613588536167BA0AA94F0CC1Fe420eF28a8);
uint256 amountIn = 7407000000;
deal(USDC_ADDR, address(uniswapV4Exposed), amountIn);
uint256 usdcBalanceBeforeSwapExecutor =
USDC.balanceOf(address(uniswapV4Exposed));
UniswapV4Executor.UniswapV4Pool[] memory pools =
new UniswapV4Executor.UniswapV4Pool[](1);
pools[0] = UniswapV4Executor.UniswapV4Pool({
intermediaryToken: WETH_ADDR,
fee: uint24(500),
tickSpacing: int24(1)
});
bytes memory data = UniswapV4Utils.encodeExactInput(
USDC_ADDR,
WETH_ADDR,
true,
RestrictTransferFrom.TransferType.Transfer,
ALICE,
hook,
bytes(""),
pools
);
uint256 amountOut = uniswapV4Exposed.swap(amountIn, data);
assertEq(amountOut, 2681115183499232721);
assertEq(
USDC.balanceOf(address(uniswapV4Exposed)),
usdcBalanceBeforeSwapExecutor - amountIn
);
assertTrue(IERC20(WETH_ADDR).balanceOf(ALICE) == amountOut);
}
function testExportContract() public {
exportRuntimeBytecode(address(uniswapV4Exposed), "UniswapV4");
}
}
contract TychoRouterForBalancerV3Test is TychoRouterTestSetup {
function testSingleSwapUSV4CallbackPermit2() public {
vm.startPrank(ALICE);
uint256 amountIn = 100 ether;
deal(USDE_ADDR, ALICE, amountIn);
(
IAllowanceTransfer.PermitSingle memory permitSingle,
bytes memory signature
) = handlePermit2Approval(USDE_ADDR, tychoRouterAddr, amountIn);
UniswapV4Executor.UniswapV4Pool[] memory pools =
new UniswapV4Executor.UniswapV4Pool[](1);
pools[0] = UniswapV4Executor.UniswapV4Pool({
intermediaryToken: USDT_ADDR,
fee: uint24(100),
tickSpacing: int24(1)
});
bytes memory protocolData = UniswapV4Utils.encodeExactInput(
USDE_ADDR,
USDT_ADDR,
true,
RestrictTransferFrom.TransferType.TransferFrom,
ALICE,
address(0),
bytes(""),
pools
);
bytes memory swap =
encodeSingleSwap(address(usv4Executor), protocolData);
tychoRouter.singleSwapPermit2(
amountIn,
USDE_ADDR,
USDT_ADDR,
99943850,
false,
false,
ALICE,
permitSingle,
signature,
swap
);
assertEq(IERC20(USDT_ADDR).balanceOf(ALICE), 99963618);
vm.stopPrank();
}
function testSplitSwapMultipleUSV4Callback() public {
// This test has two uniswap v4 hops that will be executed inside of the V4 pool manager
// USDE -> USDT -> WBTC
uint256 amountIn = 100 ether;
deal(USDE_ADDR, ALICE, amountIn);
UniswapV4Executor.UniswapV4Pool[] memory pools =
new UniswapV4Executor.UniswapV4Pool[](2);
pools[0] = UniswapV4Executor.UniswapV4Pool({
intermediaryToken: USDT_ADDR,
fee: uint24(100),
tickSpacing: int24(1)
});
pools[1] = UniswapV4Executor.UniswapV4Pool({
intermediaryToken: WBTC_ADDR,
fee: uint24(3000),
tickSpacing: int24(60)
});
bytes memory protocolData = UniswapV4Utils.encodeExactInput(
USDE_ADDR,
WBTC_ADDR,
true,
RestrictTransferFrom.TransferType.TransferFrom,
ALICE,
address(0),
bytes(""),
pools
);
bytes memory swap =
encodeSingleSwap(address(usv4Executor), protocolData);
vm.startPrank(ALICE);
IERC20(USDE_ADDR).approve(tychoRouterAddr, amountIn);
tychoRouter.singleSwap(
amountIn,
USDE_ADDR,
WBTC_ADDR,
118280,
false,
false,
ALICE,
true,
swap
);
assertEq(IERC20(WBTC_ADDR).balanceOf(ALICE), 118281);
}
function testSingleUSV4IntegrationGroupedSwap() public {
// Test created with calldata from our router encoder.
// Performs a single swap from USDC to PEPE though ETH using two
// consecutive USV4 pools. It's a single swap because it is a consecutive grouped swaps
//
// USDC ──(USV4)──> ETH ───(USV4)──> PEPE
//
deal(USDC_ADDR, ALICE, 1 ether);
uint256 balanceBefore = IERC20(PEPE_ADDR).balanceOf(ALICE);
// Approve permit2
vm.startPrank(ALICE);
IERC20(USDC_ADDR).approve(PERMIT2_ADDRESS, type(uint256).max);
bytes memory callData = loadCallDataFromFile(
"test_single_encoding_strategy_usv4_grouped_swap"
);
(bool success,) = tychoRouterAddr.call(callData);
vm.stopPrank();
uint256 balanceAfter = IERC20(PEPE_ADDR).balanceOf(ALICE);
assertTrue(success, "Call Failed");
assertEq(balanceAfter - balanceBefore, 123172000092711286554274694);
}
function testSingleUSV4IntegrationInputETH() public {
// Test created with calldata from our router encoder.
// Performs a single swap from ETH to PEPE without wrapping or unwrapping
//
// ETH ───(USV4)──> PEPE
//
deal(ALICE, 1 ether);
uint256 balanceBefore = IERC20(PEPE_ADDR).balanceOf(ALICE);
bytes memory callData =
loadCallDataFromFile("test_single_encoding_strategy_usv4_eth_in");
(bool success,) = tychoRouterAddr.call{value: 1 ether}(callData);
vm.stopPrank();
uint256 balanceAfter = IERC20(PEPE_ADDR).balanceOf(ALICE);
assertTrue(success, "Call Failed");
assertEq(balanceAfter - balanceBefore, 235610487387677804636755778);
}
function testSingleUSV4IntegrationOutputETH() public {
// Test created with calldata from our router encoder.
// Performs a single swap from USDC to ETH without wrapping or unwrapping
//
// USDC ───(USV4)──> ETH
//
deal(USDC_ADDR, ALICE, 3000_000000);
uint256 balanceBefore = ALICE.balance;
// Approve permit2
vm.startPrank(ALICE);
IERC20(USDC_ADDR).approve(PERMIT2_ADDRESS, type(uint256).max);
bytes memory callData =
loadCallDataFromFile("test_single_encoding_strategy_usv4_eth_out");
(bool success,) = tychoRouterAddr.call(callData);
vm.stopPrank();
uint256 balanceAfter = ALICE.balance;
assertTrue(success, "Call Failed");
console.logUint(balanceAfter - balanceBefore);
assertEq(balanceAfter - balanceBefore, 1474406268748155809);
}
}