Files
tycho-execution/src/encoding/evm/strategy_encoder/strategy_encoders.rs
Diana Carvalho 0f9af65846 feat: Support new transfer logic in encoding
The transfer from the user into the router is supposed to happen in the router (we only support this in the executors for callback constrained protocols). This is necessary because of some security concerns that were found in the audit. This way we reduce the space of attack.
- Refactored TransferOptimization not to handle TransferTypes anymore but just return bools.
- Split get_transfer_type into get_transfers and get_in_between_transfer. Updates tests
- Updated the strategies to use this
- Updated function signatures to pass transfer_from and funds_receiver
- Updated SwapEncoders to handle this
- SplitSwapStrategy just assumes all tokens are sent to and from the router at all times

Took 2 hours 46 minutes
2025-05-14 18:00:19 +01:00

2823 lines
126 KiB
Rust

use std::{collections::HashSet, str::FromStr};
use alloy_primitives::{aliases::U24, Address, U256, U8};
use alloy_sol_types::SolValue;
use tycho_common::Bytes;
use crate::encoding::{
errors::EncodingError,
evm::{
approvals::permit2::Permit2,
constants::CALLBACK_CONSTRAINED_PROTOCOLS,
group_swaps::group_swaps,
strategy_encoder::{
strategy_validators::{SequentialSwapValidator, SplitSwapValidator, SwapValidator},
transfer_optimizations::TransferOptimization,
},
swap_encoder::swap_encoder_registry::SwapEncoderRegistry,
utils::{
biguint_to_u256, bytes_to_address, encode_input, get_min_amount_for_solution,
get_token_position, percentage_to_uint24, ple_encode,
},
},
models::{Chain, EncodingContext, NativeAction, Solution},
strategy_encoder::StrategyEncoder,
swap_encoder::SwapEncoder,
};
/// Represents the encoder for a swap strategy which supports single swaps.
///
/// # Fields
/// * `swap_encoder_registry`: SwapEncoderRegistry, containing all possible swap encoders
/// * `permit2`: Permit2, responsible for managing permit2 operations and providing necessary
/// signatures and permit2 objects for calling the router
/// * `selector`: String, the selector for the swap function in the router contract
/// * `router_address`: Address of the router to be used to execute swaps
/// * `transfer_optimization`: TransferOptimization, responsible for optimizing the token transfers
#[derive(Clone)]
pub struct SingleSwapStrategyEncoder {
swap_encoder_registry: SwapEncoderRegistry,
permit2: Option<Permit2>,
selector: String,
router_address: Bytes,
transfer_optimization: TransferOptimization,
}
impl SingleSwapStrategyEncoder {
pub fn new(
chain: Chain,
swap_encoder_registry: SwapEncoderRegistry,
swapper_pk: Option<String>,
router_address: Bytes,
token_in_already_in_router: bool,
) -> Result<Self, EncodingError> {
let (permit2, selector) = if let Some(swapper_pk) = swapper_pk {
(Some(Permit2::new(swapper_pk, chain.clone())?), "singleSwapPermit2(uint256,address,address,uint256,bool,bool,address,((address,uint160,uint48,uint48),address,uint256),bytes,bytes)".to_string())
} else {
(
None,
"singleSwap(uint256,address,address,uint256,bool,bool,address,bytes)".to_string(),
)
};
Ok(Self {
permit2,
selector,
swap_encoder_registry,
router_address: router_address.clone(),
transfer_optimization: TransferOptimization::new(
chain.native_token()?,
chain.wrapped_token()?,
token_in_already_in_router,
router_address,
),
})
}
/// Encodes information necessary for performing a single hop against a given executor for
/// a protocol.
fn encode_swap_header(&self, executor_address: Bytes, protocol_data: Vec<u8>) -> Vec<u8> {
let mut encoded = Vec::new();
encoded.extend(executor_address.to_vec());
encoded.extend(protocol_data);
encoded
}
}
impl StrategyEncoder for SingleSwapStrategyEncoder {
fn encode_strategy(&self, solution: Solution) -> Result<(Vec<u8>, Bytes), EncodingError> {
let grouped_swaps = group_swaps(solution.clone().swaps);
let number_of_groups = grouped_swaps.len();
if number_of_groups != 1 {
return Err(EncodingError::InvalidInput(format!(
"Executor strategy only supports exactly one swap for non-groupable protocols. Found {number_of_groups}",
)))
}
let grouped_swap = grouped_swaps
.first()
.ok_or_else(|| EncodingError::FatalError("Swap grouping failed".to_string()))?;
if grouped_swap.split != 0f64 {
return Err(EncodingError::InvalidInput(
"Splits not supported for single swaps.".to_string(),
))
}
let min_amount_out = get_min_amount_for_solution(solution.clone());
let (mut unwrap, mut wrap) = (false, false);
if let Some(action) = solution.native_action.clone() {
match action {
NativeAction::Wrap => wrap = true,
NativeAction::Unwrap => unwrap = true,
}
}
let protocol = grouped_swap.protocol_system.clone();
let swap_encoder = self
.get_swap_encoder(&protocol)
.ok_or_else(|| {
EncodingError::InvalidInput(format!(
"Swap encoder not found for protocol: {protocol}"
))
})?;
let swap_receiver =
if !unwrap { solution.receiver.clone() } else { self.router_address.clone() };
let (mut transfer_from, mut funds_receiver, transfer) = self
.transfer_optimization
.get_transfers(grouped_swap.clone(), wrap);
let encoding_context = EncodingContext {
receiver: swap_receiver.clone(),
exact_out: solution.exact_out,
router_address: Some(self.router_address.clone()),
group_token_in: grouped_swap.token_in.clone(),
group_token_out: grouped_swap.token_out.clone(),
transfer_from,
transfer,
};
let mut grouped_protocol_data: Vec<u8> = vec![];
for swap in grouped_swap.swaps.iter() {
let protocol_data = swap_encoder.encode_swap(swap.clone(), encoding_context.clone())?;
grouped_protocol_data.extend(protocol_data);
}
let swap_data = self.encode_swap_header(
Bytes::from_str(swap_encoder.executor_address())
.map_err(|_| EncodingError::FatalError("Invalid executor address".to_string()))?,
grouped_protocol_data,
);
if CALLBACK_CONSTRAINED_PROTOCOLS.contains(
&grouped_swaps[0]
.protocol_system
.as_str(),
) {
// The first swap is from a callback constrained protocol. This means that the in
// transfer needs to happen at callback time and not before.
transfer_from = false;
funds_receiver = Address::ZERO.to_string();
}
let funds_receiver = Address::from_str(&funds_receiver).map_err(|_| {
EncodingError::FatalError(format!("Invalid funds receiver address: {funds_receiver}"))
})?;
let method_calldata = if let Some(permit2) = self.permit2.clone() {
let (permit, signature) = permit2.get_permit(
&self.router_address,
&solution.sender,
&solution.given_token,
&solution.given_amount,
)?;
(
biguint_to_u256(&solution.given_amount),
bytes_to_address(&solution.given_token)?,
bytes_to_address(&solution.checked_token)?,
biguint_to_u256(&min_amount_out),
wrap,
unwrap,
bytes_to_address(&solution.receiver)?,
transfer_from,
funds_receiver,
permit,
signature.as_bytes().to_vec(),
swap_data,
)
.abi_encode()
} else {
(
biguint_to_u256(&solution.given_amount),
bytes_to_address(&solution.given_token)?,
bytes_to_address(&solution.checked_token)?,
biguint_to_u256(&min_amount_out),
wrap,
unwrap,
bytes_to_address(&solution.receiver)?,
transfer_from,
funds_receiver,
swap_data,
)
.abi_encode()
};
let contract_interaction = encode_input(&self.selector, method_calldata);
Ok((contract_interaction, self.router_address.clone()))
}
fn get_swap_encoder(&self, protocol_system: &str) -> Option<&Box<dyn SwapEncoder>> {
self.swap_encoder_registry
.get_encoder(protocol_system)
}
fn clone_box(&self) -> Box<dyn StrategyEncoder> {
Box::new(self.clone())
}
}
/// Represents the encoder for a swap strategy which supports sequential swaps.
///
/// # Fields
/// * `swap_encoder_registry`: SwapEncoderRegistry, containing all possible swap encoders
/// * `permit2`: Permit2, responsible for managing permit2 operations and providing necessary
/// signatures and permit2 objects for calling the router
/// * `selector`: String, the selector for the swap function in the router contract
/// * `native_address`: Address of the chain's native token
/// * `wrapped_address`: Address of the chain's wrapped token
/// * `router_address`: Address of the router to be used to execute swaps
/// * `sequential_swap_validator`: SequentialSwapValidator, responsible for checking validity of
/// sequential swap solutions
/// * `transfer_optimization`: TransferOptimization, responsible for optimizing the token transfers
#[derive(Clone)]
pub struct SequentialSwapStrategyEncoder {
swap_encoder_registry: SwapEncoderRegistry,
permit2: Option<Permit2>,
selector: String,
router_address: Bytes,
native_address: Bytes,
wrapped_address: Bytes,
sequential_swap_validator: SequentialSwapValidator,
transfer_optimization: TransferOptimization,
}
impl SequentialSwapStrategyEncoder {
pub fn new(
chain: Chain,
swap_encoder_registry: SwapEncoderRegistry,
swapper_pk: Option<String>,
router_address: Bytes,
token_in_already_in_router: bool,
) -> Result<Self, EncodingError> {
let (permit2, selector) = if let Some(swapper_pk) = swapper_pk {
(Some(Permit2::new(swapper_pk, chain.clone())?), "sequentialSwapPermit2(uint256,address,address,uint256,bool,bool,address,((address,uint160,uint48,uint48),address,uint256),bytes,bytes)".to_string())
} else {
(
None,
"sequentialSwap(uint256,address,address,uint256,bool,bool,address,bytes)"
.to_string(),
)
};
Ok(Self {
permit2,
selector,
swap_encoder_registry,
router_address: router_address.clone(),
native_address: chain.native_token()?,
wrapped_address: chain.wrapped_token()?,
sequential_swap_validator: SequentialSwapValidator,
transfer_optimization: TransferOptimization::new(
chain.native_token()?,
chain.wrapped_token()?,
token_in_already_in_router,
router_address,
),
})
}
/// Encodes information necessary for performing a single hop against a given executor for
/// a protocol.
fn encode_swap_header(&self, executor_address: Bytes, protocol_data: Vec<u8>) -> Vec<u8> {
let mut encoded = Vec::new();
encoded.extend(executor_address.to_vec());
encoded.extend(protocol_data);
encoded
}
}
impl StrategyEncoder for SequentialSwapStrategyEncoder {
fn encode_strategy(&self, solution: Solution) -> Result<(Vec<u8>, Bytes), EncodingError> {
self.sequential_swap_validator
.validate_solution_min_amounts(&solution)?;
self.sequential_swap_validator
.validate_swap_path(
&solution.swaps,
&solution.given_token,
&solution.checked_token,
&solution.native_action,
&self.native_address,
&self.wrapped_address,
)?;
let min_amount_out = get_min_amount_for_solution(solution.clone());
let grouped_swaps = group_swaps(solution.swaps);
let (mut unwrap, mut wrap) = (false, false);
if let Some(action) = solution.native_action.clone() {
match action {
NativeAction::Wrap => wrap = true,
NativeAction::Unwrap => unwrap = true,
}
}
let (mut transfer_from, mut funds_receiver, transfer) = self
.transfer_optimization
.get_transfers(grouped_swaps[0].clone(), wrap);
let mut swaps = vec![];
let mut next_in_between_swap_optimization_allowed = true;
for (i, grouped_swap) in grouped_swaps.iter().enumerate() {
let protocol = grouped_swap.protocol_system.clone();
let swap_encoder = self
.get_swap_encoder(&protocol)
.ok_or_else(|| {
EncodingError::InvalidInput(format!(
"Swap encoder not found for protocol: {protocol}",
))
})?;
let in_between_swap_optimization_allowed = next_in_between_swap_optimization_allowed;
let next_swap = grouped_swaps.get(i + 1);
let (swap_receiver, next_swap_optimization) = self
.transfer_optimization
.get_receiver(solution.receiver.clone(), next_swap)?;
next_in_between_swap_optimization_allowed = next_swap_optimization;
let in_between_transfer = if i == 0 {
transfer
} else {
self.transfer_optimization
.get_in_between_transfer(&protocol, in_between_swap_optimization_allowed)
};
let encoding_context = EncodingContext {
receiver: swap_receiver.clone(),
exact_out: solution.exact_out,
router_address: Some(self.router_address.clone()),
group_token_in: grouped_swap.token_in.clone(),
group_token_out: grouped_swap.token_out.clone(),
transfer_from: if i == 0 { transfer_from } else { false },
transfer: in_between_transfer,
};
let mut grouped_protocol_data: Vec<u8> = vec![];
for swap in grouped_swap.swaps.iter() {
let protocol_data =
swap_encoder.encode_swap(swap.clone(), encoding_context.clone())?;
grouped_protocol_data.extend(protocol_data);
}
let swap_data = self.encode_swap_header(
Bytes::from_str(swap_encoder.executor_address()).map_err(|_| {
EncodingError::FatalError("Invalid executor address".to_string())
})?,
grouped_protocol_data,
);
swaps.push(swap_data);
}
if CALLBACK_CONSTRAINED_PROTOCOLS.contains(
&grouped_swaps[0]
.protocol_system
.as_str(),
) {
// The first swap is from a callback constrained protocol. This means that the in
// transfer needs to happen at callback time and not before.
transfer_from = false;
funds_receiver = Address::ZERO.to_string();
}
let funds_receiver = Address::from_str(&funds_receiver).map_err(|_| {
EncodingError::FatalError(format!("Invalid funds receiver address: {funds_receiver}"))
})?;
let encoded_swaps = ple_encode(swaps);
let method_calldata = if let Some(permit2) = self.permit2.clone() {
let (permit, signature) = permit2.get_permit(
&self.router_address,
&solution.sender,
&solution.given_token,
&solution.given_amount,
)?;
(
biguint_to_u256(&solution.given_amount),
bytes_to_address(&solution.given_token)?,
bytes_to_address(&solution.checked_token)?,
biguint_to_u256(&min_amount_out),
wrap,
unwrap,
bytes_to_address(&solution.receiver)?,
transfer_from,
funds_receiver,
permit,
signature.as_bytes().to_vec(),
encoded_swaps,
)
.abi_encode()
} else {
(
biguint_to_u256(&solution.given_amount),
bytes_to_address(&solution.given_token)?,
bytes_to_address(&solution.checked_token)?,
biguint_to_u256(&min_amount_out),
wrap,
unwrap,
bytes_to_address(&solution.receiver)?,
transfer_from,
funds_receiver,
encoded_swaps,
)
.abi_encode()
};
let contract_interaction = encode_input(&self.selector, method_calldata);
Ok((contract_interaction, self.router_address.clone()))
}
fn get_swap_encoder(&self, protocol_system: &str) -> Option<&Box<dyn SwapEncoder>> {
self.swap_encoder_registry
.get_encoder(protocol_system)
}
fn clone_box(&self) -> Box<dyn StrategyEncoder> {
Box::new(self.clone())
}
}
/// Represents the encoder for a swap strategy which supports split swaps.
///
/// # Fields
/// * `swap_encoder_registry`: SwapEncoderRegistry, containing all possible swap encoders
/// * `permit2`: Permit2, responsible for managing permit2 operations and providing necessary
/// signatures and permit2 objects for calling the router
/// * `selector`: String, the selector for the swap function in the router contract
/// * `native_address`: Address of the chain's native token
/// * `wrapped_address`: Address of the chain's wrapped token
/// * `split_swap_validator`: SplitSwapValidator, responsible for checking validity of split swap
/// solutions
/// * `router_address`: Address of the router to be used to execute swaps
/// * `transfer_optimization`: TransferOptimization, responsible for optimizing the token transfers
#[derive(Clone)]
pub struct SplitSwapStrategyEncoder {
swap_encoder_registry: SwapEncoderRegistry,
permit2: Option<Permit2>,
selector: String,
native_address: Bytes,
wrapped_address: Bytes,
split_swap_validator: SplitSwapValidator,
router_address: Bytes,
transfer_optimization: TransferOptimization,
}
impl SplitSwapStrategyEncoder {
pub fn new(
chain: Chain,
swap_encoder_registry: SwapEncoderRegistry,
swapper_pk: Option<String>,
router_address: Bytes,
token_in_already_in_router: bool,
) -> Result<Self, EncodingError> {
let (permit2, selector) = if let Some(swapper_pk) = swapper_pk {
(Some(Permit2::new(swapper_pk, chain.clone())?), "splitSwapPermit2(uint256,address,address,uint256,bool,bool,uint256,address,((address,uint160,uint48,uint48),address,uint256),bytes,bytes)".to_string())
} else {
(
None,
"splitSwap(uint256,address,address,uint256,bool,bool,uint256,address,bytes)"
.to_string(),
)
};
Ok(Self {
permit2,
selector,
swap_encoder_registry,
native_address: chain.native_token()?,
wrapped_address: chain.wrapped_token()?,
split_swap_validator: SplitSwapValidator,
router_address: router_address.clone(),
transfer_optimization: TransferOptimization::new(
chain.native_token()?,
chain.wrapped_token()?,
token_in_already_in_router,
router_address,
),
})
}
/// Encodes information necessary for performing a single hop against a given executor for
/// a protocol as part of a split swap solution.
fn encode_swap_header(
&self,
token_in: U8,
token_out: U8,
split: U24,
executor_address: Bytes,
protocol_data: Vec<u8>,
) -> Vec<u8> {
let mut encoded = Vec::new();
encoded.push(token_in.to_be_bytes_vec()[0]);
encoded.push(token_out.to_be_bytes_vec()[0]);
encoded.extend_from_slice(&split.to_be_bytes_vec());
encoded.extend(executor_address.to_vec());
encoded.extend(protocol_data);
encoded
}
}
impl StrategyEncoder for SplitSwapStrategyEncoder {
fn encode_strategy(&self, solution: Solution) -> Result<(Vec<u8>, Bytes), EncodingError> {
self.split_swap_validator
.validate_solution_min_amounts(&solution)?;
self.split_swap_validator
.validate_split_percentages(&solution.swaps)?;
self.split_swap_validator
.validate_swap_path(
&solution.swaps,
&solution.given_token,
&solution.checked_token,
&solution.native_action,
&self.native_address,
&self.wrapped_address,
)?;
let min_amount_out = get_min_amount_for_solution(solution.clone());
// The tokens array is composed of the given token, the checked token and all the
// intermediary tokens in between. The contract expects the tokens to be in this order.
let solution_tokens: HashSet<Bytes> =
vec![solution.given_token.clone(), solution.checked_token.clone()]
.into_iter()
.collect();
let grouped_swaps = group_swaps(solution.swaps);
let intermediary_tokens: HashSet<Bytes> = grouped_swaps
.iter()
.flat_map(|grouped_swap| {
vec![grouped_swap.token_in.clone(), grouped_swap.token_out.clone()]
})
.collect();
let mut intermediary_tokens: Vec<Bytes> = intermediary_tokens
.difference(&solution_tokens)
.cloned()
.collect();
// this is only to make the test deterministic (same index for the same token for different
// runs)
intermediary_tokens.sort();
let (mut unwrap, mut wrap) = (false, false);
if let Some(action) = solution.native_action.clone() {
match action {
NativeAction::Wrap => wrap = true,
NativeAction::Unwrap => unwrap = true,
}
}
let mut tokens = Vec::with_capacity(2 + intermediary_tokens.len());
if wrap {
tokens.push(self.wrapped_address.clone());
} else {
tokens.push(solution.given_token.clone());
}
tokens.extend(intermediary_tokens);
if unwrap {
tokens.push(self.wrapped_address.clone());
} else {
tokens.push(solution.checked_token.clone());
}
let mut swaps = vec![];
for grouped_swap in grouped_swaps.iter() {
let protocol = grouped_swap.protocol_system.clone();
let swap_encoder = self
.get_swap_encoder(&protocol)
.ok_or_else(|| {
EncodingError::InvalidInput(format!(
"Swap encoder not found for protocol: {protocol}",
))
})?;
let swap_receiver = if !unwrap && grouped_swap.token_out == solution.checked_token {
solution.receiver.clone()
} else {
self.router_address.clone()
};
let transfer = self
.transfer_optimization
.get_in_between_transfer(&protocol, false);
let encoding_context = EncodingContext {
receiver: swap_receiver.clone(),
exact_out: solution.exact_out,
router_address: Some(self.router_address.clone()),
group_token_in: grouped_swap.token_in.clone(),
group_token_out: grouped_swap.token_out.clone(),
transfer_from: false,
transfer,
};
let mut grouped_protocol_data: Vec<u8> = vec![];
for swap in grouped_swap.swaps.iter() {
let protocol_data =
swap_encoder.encode_swap(swap.clone(), encoding_context.clone())?;
grouped_protocol_data.extend(protocol_data);
}
let swap_data = self.encode_swap_header(
get_token_position(tokens.clone(), grouped_swap.token_in.clone())?,
get_token_position(tokens.clone(), grouped_swap.token_out.clone())?,
percentage_to_uint24(grouped_swap.split),
Bytes::from_str(swap_encoder.executor_address()).map_err(|_| {
EncodingError::FatalError("Invalid executor address".to_string())
})?,
grouped_protocol_data,
);
swaps.push(swap_data);
}
let encoded_swaps = ple_encode(swaps);
let tokens_len = if solution.given_token == solution.checked_token {
tokens.len() - 1
} else {
tokens.len()
};
let method_calldata = if let Some(permit2) = self.permit2.clone() {
let (permit, signature) = permit2.get_permit(
&self.router_address,
&solution.sender,
&solution.given_token,
&solution.given_amount,
)?;
(
biguint_to_u256(&solution.given_amount),
bytes_to_address(&solution.given_token)?,
bytes_to_address(&solution.checked_token)?,
biguint_to_u256(&min_amount_out),
wrap,
unwrap,
U256::from(tokens_len),
bytes_to_address(&solution.receiver)?,
permit,
signature.as_bytes().to_vec(),
encoded_swaps,
)
.abi_encode()
} else {
(
biguint_to_u256(&solution.given_amount),
bytes_to_address(&solution.given_token)?,
bytes_to_address(&solution.checked_token)?,
biguint_to_u256(&min_amount_out),
wrap,
unwrap,
U256::from(tokens_len),
bytes_to_address(&solution.receiver)?,
encoded_swaps,
)
.abi_encode()
};
let contract_interaction = encode_input(&self.selector, method_calldata);
Ok((contract_interaction, self.router_address.clone()))
}
fn get_swap_encoder(&self, protocol_system: &str) -> Option<&Box<dyn SwapEncoder>> {
self.swap_encoder_registry
.get_encoder(protocol_system)
}
fn clone_box(&self) -> Box<dyn StrategyEncoder> {
Box::new(self.clone())
}
}
#[cfg(test)]
mod tests {
use std::{collections::HashMap, str::FromStr};
use alloy::hex::encode;
use alloy_primitives::{hex, Address};
use num_bigint::{BigInt, BigUint};
use rstest::rstest;
use tycho_common::{
models::{protocol::ProtocolComponent, Chain as TychoCommonChain},
Bytes,
};
use super::*;
use crate::encoding::{evm::utils::write_calldata_to_file, models::Swap};
fn eth_chain() -> Chain {
TychoCommonChain::Ethereum.into()
}
fn eth() -> Bytes {
Bytes::from(hex!("0000000000000000000000000000000000000000").to_vec())
}
fn weth() -> Bytes {
Bytes::from(hex!("c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").to_vec())
}
fn get_swap_encoder_registry() -> SwapEncoderRegistry {
let eth_chain = eth_chain();
SwapEncoderRegistry::new(Some("config/test_executor_addresses.json".to_string()), eth_chain)
.unwrap()
}
mod single {
use super::*;
#[rstest]
#[case::with_check_no_slippage(
None,
None,
Some(BigUint::from_str("2659881924818443699787").unwrap()),
U256::from_str("2659881924818443699787").unwrap(),
)]
#[case::no_check_with_slippage(
Some(BigUint::from_str("2_000_000000000000000000").unwrap()),
Some(0.01f64),
None,
U256::from_str("1_980_000000000000000000").unwrap(),
)]
#[case::with_check_and_slippage(
Some(BigUint::from_str("2_000_000000000000000000").unwrap()),
Some(0.01f64),
Some(BigUint::from_str("1_999_000000000000000000").unwrap()),
U256::from_str("1_999_000000000000000000").unwrap(),
)]
fn test_single_swap_strategy_encoder(
#[case] expected_amount: Option<BigUint>,
#[case] slippage: Option<f64>,
#[case] checked_amount: Option<BigUint>,
#[case] expected_min_amount: U256,
) {
// Performs a single swap from WETH to DAI on a USV2 pool, with no grouping
// optimizations.
// Set up a mock private key for signing
let private_key =
"0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string();
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let swap = Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: dai.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SingleSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
Some(private_key),
Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(),
false,
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: weth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: dai,
expected_amount: expected_amount.clone(),
slippage,
checked_amount: checked_amount.clone(),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap],
..Default::default()
};
let (calldata, _) = encoder
.encode_strategy(solution)
.unwrap();
let expected_min_amount_encoded = hex::encode(U256::abi_encode(&expected_min_amount));
let expected_input = [
"30ace1b1", // Function selector
"0000000000000000000000000000000000000000000000000de0b6b3a7640000", // amount out
"000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"0000000000000000000000006b175474e89094c44da98b954eedeac495271d0f", // token out
&expected_min_amount_encoded, // min amount out
"0000000000000000000000000000000000000000000000000000000000000000", // wrap
"0000000000000000000000000000000000000000000000000000000000000000", // unwrap
"000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
"0000000000000000000000000000000000000000000000000000000000000001", // transfer from
"000000000000000000000000a478c2975ab1ea89e8196811f51a7b7ade33eb11", // funds receiver
]
.join("");
// after this there is the permit and because of the deadlines (that depend on block
// time) it's hard to assert
let expected_swap = String::from(concat!(
// length of encoded swap without padding
"0000000000000000000000000000000000000000000000000000000000000052",
// Swap data
"5615deb798bb3e4dfa0139dfa1b3d433cc23b72f", // executor address
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"a478c2975ab1ea89e8196811f51a7b7ade33eb11", // component id
"cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
"00", // zero2one
"00", // transfer false
"0000000000000000000000000000", // padding
));
let hex_calldata = encode(&calldata);
assert_eq!(hex_calldata[..584], expected_input);
assert_eq!(hex_calldata[1352..], expected_swap);
if expected_amount.is_some() & slippage.is_some() & checked_amount.is_none() {
// only write to file for 1 test case
write_calldata_to_file(
"test_single_swap_strategy_encoder",
&hex_calldata.to_string(),
);
}
}
#[test]
fn test_single_swap_strategy_encoder_no_permit2() {
// Performs a single swap from WETH to DAI on a USV2 pool, without permit2 and no
// grouping optimizations.
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let expected_amount = Some(BigUint::from_str("1_650_000000000000000000").unwrap());
let slippage = Some(0.01f64);
let checked_amount = Some(BigUint::from_str("1_640_000000000000000000").unwrap());
let expected_min_amount = U256::from_str("1_640_000000000000000000").unwrap();
let swap = Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: dai.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SingleSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
None,
Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(),
false,
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: weth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: dai,
expected_amount,
slippage,
checked_amount,
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap],
..Default::default()
};
let (calldata, _) = encoder
.encode_strategy(solution)
.unwrap();
let expected_min_amount_encoded = hex::encode(U256::abi_encode(&expected_min_amount));
let expected_input = [
"20144a07", // Function selector
"0000000000000000000000000000000000000000000000000de0b6b3a7640000", // amount in
"000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"0000000000000000000000006b175474e89094c44da98b954eedeac495271d0f", // token out
&expected_min_amount_encoded, // min amount out
"0000000000000000000000000000000000000000000000000000000000000000", // wrap
"0000000000000000000000000000000000000000000000000000000000000000", // unwrap
"000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
"0000000000000000000000000000000000000000000000000000000000000001", // transfer from
"000000000000000000000000a478c2975ab1ea89e8196811f51a7b7ade33eb11", // funds receiver
"0000000000000000000000000000000000000000000000000000000000000140", // offset of swap bytes
"0000000000000000000000000000000000000000000000000000000000000052", // length of swap bytes without padding
// Swap data
"5615deb798bb3e4dfa0139dfa1b3d433cc23b72f", // executor address
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"a478c2975ab1ea89e8196811f51a7b7ade33eb11", // component id
"cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
"00", // zero2one
"00", // transfer false
"0000000000000000000000000000", // padding
]
.join("");
let hex_calldata = encode(&calldata);
assert_eq!(hex_calldata, expected_input);
write_calldata_to_file(
"test_single_swap_strategy_encoder_no_permit2",
hex_calldata.as_str(),
);
}
#[test]
fn test_single_swap_strategy_encoder_no_transfer_in() {
// Performs a single swap from WETH to DAI on a USV2 pool assuming that the tokens are
// already in the router
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let expected_amount = Some(BigUint::from_str("1_650_000000000000000000").unwrap());
let slippage = Some(0.01f64);
let checked_amount = Some(BigUint::from_str("1_640_000000000000000000").unwrap());
let expected_min_amount = U256::from_str("1_640_000000000000000000").unwrap();
let swap = Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: dai.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SingleSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
None,
Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(),
true,
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: weth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: dai,
expected_amount,
slippage,
checked_amount,
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap],
..Default::default()
};
let (calldata, _) = encoder
.encode_strategy(solution)
.unwrap();
let expected_min_amount_encoded = hex::encode(U256::abi_encode(&expected_min_amount));
let expected_input = [
"20144a07", // Function selector
"0000000000000000000000000000000000000000000000000de0b6b3a7640000", // amount in
"000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"0000000000000000000000006b175474e89094c44da98b954eedeac495271d0f", // token out
&expected_min_amount_encoded, // min amount out
"0000000000000000000000000000000000000000000000000000000000000000", // wrap
"0000000000000000000000000000000000000000000000000000000000000000", // unwrap
"000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
"0000000000000000000000000000000000000000000000000000000000000000", // transfer from
"0000000000000000000000000000000000000000000000000000000000000000", // funds receiver
"0000000000000000000000000000000000000000000000000000000000000140", // offset of swap bytes
"0000000000000000000000000000000000000000000000000000000000000052", // length of swap bytes without padding
// Swap data
"5615deb798bb3e4dfa0139dfa1b3d433cc23b72f", // executor address
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"a478c2975ab1ea89e8196811f51a7b7ade33eb11", // component id
"cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
"00", // zero2one
"01", // transfer true
"0000000000000000000000000000", // padding
]
.join("");
let hex_calldata = encode(&calldata);
assert_eq!(hex_calldata, expected_input);
write_calldata_to_file(
"test_single_swap_strategy_encoder_no_transfer_in",
hex_calldata.as_str(),
);
}
#[test]
fn test_single_swap_strategy_encoder_wrap() {
// Performs a single swap from WETH to DAI on a USV2 pool, wrapping ETH
// Note: This test does not assert anything. It is only used to obtain integration test
// data for our router solidity test.
// Set up a mock private key for signing
let private_key =
"0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let swap = Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth(),
token_out: dai.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SingleSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
Some(private_key),
Bytes::from("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395"),
false,
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: eth(),
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: dai,
expected_amount: None,
checked_amount: Some(BigUint::from_str("1659881924818443699787").unwrap()),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap],
native_action: Some(NativeAction::Wrap),
..Default::default()
};
let (calldata, _) = encoder
.encode_strategy(solution)
.unwrap();
let hex_calldata = encode(&calldata);
write_calldata_to_file("test_single_swap_strategy_encoder_wrap", hex_calldata.as_str());
}
#[test]
fn test_single_swap_strategy_encoder_unwrap() {
// Performs a single swap from DAI to WETH on a USV2 pool, unwrapping ETH at the end
// Note: This test does not assert anything. It is only used to obtain integration test
// data for our router solidity test.
// Set up a mock private key for signing
let private_key =
"0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let swap = Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: dai.clone(),
token_out: weth(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SingleSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
Some(private_key),
Bytes::from("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395"),
false,
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: dai,
given_amount: BigUint::from_str("3_000_000000000000000000").unwrap(),
checked_token: eth(),
expected_amount: Some(BigUint::from_str("1_000000000000000000").unwrap()),
checked_amount: Some(BigUint::from_str("1_000000000000000000").unwrap()),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap],
native_action: Some(NativeAction::Unwrap),
..Default::default()
};
let (calldata, _) = encoder
.encode_strategy(solution)
.unwrap();
let hex_calldata = encode(&calldata);
write_calldata_to_file(
"test_single_swap_strategy_encoder_unwrap",
hex_calldata.as_str(),
);
}
}
mod sequential {
use super::*;
#[test]
fn test_sequential_swap_strategy_encoder() {
// Note: This test does not assert anything. It is only used to obtain integration test
// data for our router solidity test.
//
// Performs a sequential swap from WETH to USDC though WBTC using USV2 pools
//
// WETH ───(USV2)──> WBTC ───(USV2)──> USDC
// Set up a mock private key for signing
let private_key =
"0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string();
let weth = weth();
let wbtc = Bytes::from_str("0x2260fac5e5542a773aa44fbcfedf7c193bc2c599").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let swap_weth_wbtc = Swap {
component: ProtocolComponent {
id: "0xBb2b8038a1640196FbE3e38816F3e67Cba72D940".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: wbtc.clone(),
split: 0f64,
};
let swap_wbtc_usdc = Swap {
component: ProtocolComponent {
id: "0x004375Dff511095CC5A197A54140a24eFEF3A416".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: wbtc.clone(),
token_out: usdc.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SequentialSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
Some(private_key),
Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(),
false,
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: weth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: usdc,
expected_amount: None,
checked_amount: Some(BigUint::from_str("26173932").unwrap()),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap_weth_wbtc, swap_wbtc_usdc],
..Default::default()
};
let (calldata, _) = encoder
.encode_strategy(solution)
.unwrap();
let hex_calldata = encode(&calldata);
write_calldata_to_file("test_sequential_swap_strategy_encoder", hex_calldata.as_str());
}
#[test]
fn test_sequential_swap_strategy_encoder_no_permit2() {
// Performs a sequential swap from WETH to USDC though WBTC using USV2 pools
//
// WETH ───(USV2)──> WBTC ───(USV2)──> USDC
let weth = weth();
let wbtc = Bytes::from_str("0x2260fac5e5542a773aa44fbcfedf7c193bc2c599").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let swap_weth_wbtc = Swap {
component: ProtocolComponent {
id: "0xBb2b8038a1640196FbE3e38816F3e67Cba72D940".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: wbtc.clone(),
split: 0f64,
};
let swap_wbtc_usdc = Swap {
component: ProtocolComponent {
id: "0x004375Dff511095CC5A197A54140a24eFEF3A416".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: wbtc.clone(),
token_out: usdc.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SequentialSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
None,
Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(),
false,
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: weth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: usdc,
expected_amount: None,
checked_amount: Some(BigUint::from_str("26173932").unwrap()),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap_weth_wbtc, swap_wbtc_usdc],
..Default::default()
};
let (calldata, _) = encoder
.encode_strategy(solution)
.unwrap();
let hex_calldata = encode(&calldata);
let expected = String::from(concat!(
"e8a980d7", /* function selector */
"0000000000000000000000000000000000000000000000000de0b6b3a7640000", // amount in
"000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token ou
"00000000000000000000000000000000000000000000000000000000018f61ec", /* min amount out */
"0000000000000000000000000000000000000000000000000000000000000000", // wrap
"0000000000000000000000000000000000000000000000000000000000000000", // unwrap
"000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
"0000000000000000000000000000000000000000000000000000000000000001", /* transfer from */
"000000000000000000000000bb2b8038a1640196fbe3e38816f3e67cba72d940", /* funds receiver */
"0000000000000000000000000000000000000000000000000000000000000140", /* length ple
* encode */
"00000000000000000000000000000000000000000000000000000000000000a8",
// swap 1
"0052", // swap length
"5615deb798bb3e4dfa0139dfa1b3d433cc23b72f", // executor address
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"bb2b8038a1640196fbe3e38816f3e67cba72d940", // component id
"004375dff511095cc5a197a54140a24efef3a416", // receiver (next pool)
"00", // zero to one
"00", // transfer false
// swap 2
"0052", // swap length
"5615deb798bb3e4dfa0139dfa1b3d433cc23b72f", // executor address
"2260fac5e5542a773aa44fbcfedf7c193bc2c599", // token in
"004375dff511095cc5a197a54140a24efef3a416", // component id
"cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver (final user)
"01", // zero to one
"00", // transfer false
"000000000000000000000000000000000000000000000000", // padding
));
assert_eq!(hex_calldata, expected);
write_calldata_to_file(
"test_sequential_swap_strategy_encoder_no_permit2",
hex_calldata.as_str(),
);
}
#[test]
fn test_sequential_strategy_cyclic_swap() {
// This test has start and end tokens that are the same
// The flow is:
// USDC -> WETH -> USDC using two pools
// Set up a mock private key for signing (Alice's pk in our router tests)
let private_key =
"0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string();
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
// Create two Uniswap V3 pools for the cyclic swap
// USDC -> WETH (Pool 1)
let swap_usdc_weth = Swap {
component: ProtocolComponent {
id: "0x88e6A0c2dDD26FEEb64F039a2c41296FcB3f5640".to_string(), /* USDC-WETH USV3
* Pool 1 */
protocol_system: "uniswap_v3".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(500).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: usdc.clone(),
token_out: weth.clone(),
split: 0f64,
};
// WETH -> USDC (Pool 2)
let swap_weth_usdc = Swap {
component: ProtocolComponent {
id: "0x8ad599c3A0ff1De082011EFDDc58f1908eb6e6D8".to_string(), /* USDC-WETH USV3
* Pool 2 */
protocol_system: "uniswap_v3".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(3000).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: weth.clone(),
token_out: usdc.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SequentialSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
Some(private_key),
Bytes::from("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395"),
false,
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: usdc.clone(),
given_amount: BigUint::from_str("100000000").unwrap(), // 100 USDC (6 decimals)
checked_token: usdc.clone(),
expected_amount: None,
checked_amount: Some(BigUint::from_str("99389294").unwrap()), /* Expected output
* from
* test */
slippage: None,
swaps: vec![swap_usdc_weth, swap_weth_usdc],
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
..Default::default()
};
let (calldata, _) = encoder
.encode_strategy(solution)
.unwrap();
let hex_calldata = hex::encode(&calldata);
let expected_input = [
"51bcc7b6", // selector
"0000000000000000000000000000000000000000000000000000000005f5e100", // given amount
"000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // given token
"000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // checked token
"0000000000000000000000000000000000000000000000000000000005ec8f6e", // min amount out
"0000000000000000000000000000000000000000000000000000000000000000", // wrap action
"0000000000000000000000000000000000000000000000000000000000000000", // unwrap action
"000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
"0000000000000000000000000000000000000000000000000000000000000000", // transfer from
"0000000000000000000000000000000000000000000000000000000000000000", // funds receiver
]
.join("");
let expected_swaps = [
"00000000000000000000000000000000000000000000000000000000000000d8", // length of ple encoded swaps without padding
"006a", // ple encoded swaps
"2e234dae75c793f67a35089c9d99245e1c58470b", // executor address
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token in
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token out
"0001f4", // pool fee
"3ede3eca2a72b3aecc820e955b36f38437d01395", // receiver
"88e6a0c2ddd26feeb64f039a2c41296fcb3f5640", // component id
"01", // zero2one
"01", // transfer from true
"00", // transfer false
"006a", // ple encoded swaps
"2e234dae75c793f67a35089c9d99245e1c58470b", // executor address
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token out
"000bb8", // pool fee
"cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
"8ad599c3a0ff1de082011efddc58f1908eb6e6d8", // component id
"00", // zero2one
"00", // transfer from false
"01", // transfer true
"0000000000000000", // padding
]
.join("");
assert_eq!(hex_calldata[..584], expected_input);
assert_eq!(hex_calldata[1352..], expected_swaps);
write_calldata_to_file("test_sequential_strategy_cyclic_swap", hex_calldata.as_str());
}
mod optimized_transfers {
// In this module we test the ability to chain swaps or not. Different protocols are
// tested. The encoded data is used for solidity tests as well
use super::*;
#[test]
fn test_uniswap_v3_uniswap_v2() {
// Note: This test does not assert anything. It is only used to obtain integration
// test data for our router solidity test.
//
// Performs a sequential swap from WETH to USDC though WBTC using USV3 and USV2
// pools
//
// WETH ───(USV3)──> WBTC ───(USV2)──> USDC
let weth = weth();
let wbtc = Bytes::from_str("0x2260fac5e5542a773aa44fbcfedf7c193bc2c599").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let swap_weth_wbtc = Swap {
component: ProtocolComponent {
id: "0xCBCdF9626bC03E24f779434178A73a0B4bad62eD".to_string(),
protocol_system: "uniswap_v3".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(3000).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: weth.clone(),
token_out: wbtc.clone(),
split: 0f64,
};
let swap_wbtc_usdc = Swap {
component: ProtocolComponent {
id: "0x004375Dff511095CC5A197A54140a24eFEF3A416".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: wbtc.clone(),
token_out: usdc.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SequentialSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
None,
Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(),
false,
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: weth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: usdc,
expected_amount: None,
checked_amount: Some(BigUint::from_str("26173932").unwrap()),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2")
.unwrap(),
swaps: vec![swap_weth_wbtc, swap_wbtc_usdc],
..Default::default()
};
let (calldata, _) = encoder
.encode_strategy(solution)
.unwrap();
let hex_calldata = encode(&calldata);
write_calldata_to_file("test_uniswap_v3_uniswap_v2", hex_calldata.as_str());
}
#[test]
fn test_uniswap_v3_uniswap_v3() {
// Note: This test does not assert anything. It is only used to obtain integration
// test data for our router solidity test.
//
// Performs a sequential swap from WETH to USDC though WBTC using USV3 pools
// There is no optimization between the two USV3 pools, this is currently not
// supported.
//
// WETH ───(USV3)──> WBTC ───(USV3)──> USDC
let weth = weth();
let wbtc = Bytes::from_str("0x2260fac5e5542a773aa44fbcfedf7c193bc2c599").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let swap_weth_wbtc = Swap {
component: ProtocolComponent {
id: "0xCBCdF9626bC03E24f779434178A73a0B4bad62eD".to_string(),
protocol_system: "uniswap_v3".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(3000).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: weth.clone(),
token_out: wbtc.clone(),
split: 0f64,
};
let swap_wbtc_usdc = Swap {
component: ProtocolComponent {
id: "0x99ac8cA7087fA4A2A1FB6357269965A2014ABc35".to_string(),
protocol_system: "uniswap_v3".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(3000).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: wbtc.clone(),
token_out: usdc.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SequentialSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
None,
Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(),
false,
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: weth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: usdc,
expected_amount: None,
checked_amount: Some(BigUint::from_str("26173932").unwrap()),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2")
.unwrap(),
swaps: vec![swap_weth_wbtc, swap_wbtc_usdc],
..Default::default()
};
let (calldata, _) = encoder
.encode_strategy(solution)
.unwrap();
let hex_calldata = encode(&calldata);
write_calldata_to_file("test_uniswap_v3_uniswap_v3", hex_calldata.as_str());
}
#[test]
fn test_uniswap_v3_curve() {
// Note: This test does not assert anything. It is only used to obtain integration
// test data for our router solidity test.
//
// Performs a sequential swap from WETH to USDT though WBTC using USV3 and curve
// pools
//
// WETH ───(USV3)──> WBTC ───(curve)──> USDT
let weth = weth();
let wbtc = Bytes::from_str("0x2260fac5e5542a773aa44fbcfedf7c193bc2c599").unwrap();
let usdt = Bytes::from_str("0xdAC17F958D2ee523a2206206994597C13D831ec7").unwrap();
let swap_weth_wbtc = Swap {
component: ProtocolComponent {
id: "0xCBCdF9626bC03E24f779434178A73a0B4bad62eD".to_string(),
protocol_system: "uniswap_v3".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(3000).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: weth.clone(),
token_out: wbtc.clone(),
split: 0f64,
};
let swap_wbtc_usdt = Swap {
component: ProtocolComponent {
id: String::from("0xD51a44d3FaE010294C616388b506AcdA1bfAAE46"),
protocol_system: String::from("vm:curve"),
static_attributes: {
let mut attrs: HashMap<String, Bytes> = HashMap::new();
attrs.insert(
"factory".into(),
Bytes::from(
"0x0000000000000000000000000000000000000000"
.as_bytes()
.to_vec(),
),
);
attrs
},
..Default::default()
},
token_in: wbtc.clone(),
token_out: usdt.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SequentialSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
None,
Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(),
false,
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: weth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: usdt,
expected_amount: None,
checked_amount: Some(BigUint::from_str("26173932").unwrap()),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2")
.unwrap(),
swaps: vec![swap_weth_wbtc, swap_wbtc_usdt],
..Default::default()
};
let (calldata, _) = encoder
.encode_strategy(solution)
.unwrap();
let hex_calldata = encode(&calldata);
write_calldata_to_file("test_uniswap_v3_curve", hex_calldata.as_str());
}
#[test]
fn test_balancer_v2_uniswap_v2() {
// Note: This test does not assert anything. It is only used to obtain integration
// test data for our router solidity test.
//
// Performs a sequential swap from WETH to USDC though WBTC using balancer and USV2
// pools
//
// WETH ───(balancer)──> WBTC ───(USV2)──> USDC
let weth = weth();
let wbtc = Bytes::from_str("0x2260fac5e5542a773aa44fbcfedf7c193bc2c599").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let swap_weth_wbtc = Swap {
component: ProtocolComponent {
id: "0xa6f548df93de924d73be7d25dc02554c6bd66db500020000000000000000000e"
.to_string(),
protocol_system: "vm:balancer_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: wbtc.clone(),
split: 0f64,
};
let swap_wbtc_usdc = Swap {
component: ProtocolComponent {
id: "0x004375Dff511095CC5A197A54140a24eFEF3A416".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: wbtc.clone(),
token_out: usdc.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SequentialSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
None,
Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(),
false,
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: weth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: usdc,
expected_amount: None,
checked_amount: Some(BigUint::from_str("26173932").unwrap()),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2")
.unwrap(),
swaps: vec![swap_weth_wbtc, swap_wbtc_usdc],
..Default::default()
};
let (calldata, _) = encoder
.encode_strategy(solution)
.unwrap();
let hex_calldata = encode(&calldata);
write_calldata_to_file("test_balancer_v2_uniswap_v2", hex_calldata.as_str());
}
#[test]
fn test_multi_protocol() {
// Note: This test does not assert anything. It is only used to obtain integration
// test data for our router solidity test.
//
// Performs the following swap:
//
// DAI ─(USV2)-> WETH ─(bal)─> WBTC ─(curve)─> USDT ─(ekubo)─> USDC ─(USV4)─> ETH
let weth = weth();
let eth = eth();
let wbtc = Bytes::from_str("0x2260fac5e5542a773aa44fbcfedf7c193bc2c599").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let usdt = Bytes::from_str("0xdAC17F958D2ee523a2206206994597C13D831ec7").unwrap();
let dai = Bytes::from_str("0x6B175474E89094C44Da98b954EedeAC495271d0F").unwrap();
// Set up a mock private key for signing (Alice's pk in our router tests)
let private_key =
"0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234"
.to_string();
let usv2_swap_dai_weth = Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: dai.clone(),
token_out: weth.clone(),
split: 0f64,
};
let balancer_swap_weth_wbtc = Swap {
component: ProtocolComponent {
id: "0xa6f548df93de924d73be7d25dc02554c6bd66db500020000000000000000000e"
.to_string(),
protocol_system: "vm:balancer_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: wbtc.clone(),
split: 0f64,
};
let curve_swap_wbtc_usdt = Swap {
component: ProtocolComponent {
id: String::from("0xD51a44d3FaE010294C616388b506AcdA1bfAAE46"),
protocol_system: String::from("vm:curve"),
static_attributes: {
let mut attrs: HashMap<String, Bytes> = HashMap::new();
attrs.insert(
"factory".into(),
Bytes::from(
"0x0000000000000000000000000000000000000000"
.as_bytes()
.to_vec(),
),
);
attrs
},
..Default::default()
},
token_in: wbtc.clone(),
token_out: usdt.clone(),
split: 0f64,
};
// Ekubo
let component = ProtocolComponent {
// All Ekubo swaps go through the core contract - not necessary to specify pool
// id for test
protocol_system: "ekubo_v2".to_string(),
// 0.0025% fee & 0.005% base pool
static_attributes: HashMap::from([
("fee".to_string(), Bytes::from(461168601842738_u64)),
("tick_spacing".to_string(), Bytes::from(50_u32)),
("extension".to_string(), Bytes::zero(20)),
]),
..Default::default()
};
let ekubo_swap_usdt_usdc = Swap {
component,
token_in: usdt.clone(),
token_out: usdc.clone(),
split: 0f64,
};
// USV4
// Fee and tick spacing information for this test is obtained by querying the
// USV4 Position Manager contract: 0xbd216513d74c8cf14cf4747e6aaa6420ff64ee9e
// Using the poolKeys function with the first 25 bytes of the pool id
let pool_fee_usdc_eth = Bytes::from(BigInt::from(3000).to_signed_bytes_be());
let tick_spacing_usdc_eth = Bytes::from(BigInt::from(60).to_signed_bytes_be());
let mut static_attributes_usdc_eth: HashMap<String, Bytes> = HashMap::new();
static_attributes_usdc_eth.insert("key_lp_fee".into(), pool_fee_usdc_eth);
static_attributes_usdc_eth.insert("tick_spacing".into(), tick_spacing_usdc_eth);
let usv4_swap_usdc_eth = Swap {
component: ProtocolComponent {
id: "0xdce6394339af00981949f5f3baf27e3610c76326a700af57e4b3e3ae4977f78d"
.to_string(),
protocol_system: "uniswap_v4".to_string(),
static_attributes: static_attributes_usdc_eth,
..Default::default()
},
token_in: usdc.clone(),
token_out: eth.clone(),
split: 0f64,
};
// Put all components together
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SequentialSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
Some(private_key),
Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(),
false,
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: dai,
given_amount: BigUint::from_str("1500_000000000000000000").unwrap(),
checked_token: eth,
expected_amount: None,
checked_amount: Some(BigUint::from_str("732214216964381330").unwrap()),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2")
.unwrap(),
swaps: vec![
usv2_swap_dai_weth,
balancer_swap_weth_wbtc,
curve_swap_wbtc_usdt,
ekubo_swap_usdt_usdc,
usv4_swap_usdc_eth,
],
..Default::default()
};
let (calldata, _) = encoder
.encode_strategy(solution)
.unwrap();
let hex_calldata = encode(&calldata);
write_calldata_to_file("test_multi_protocol", hex_calldata.as_str());
}
}
}
mod split {
use super::*;
#[test]
fn test_split_swap_strategy_encoder() {
// Note: This test does not assert anything. It is only used to obtain integration test
// data for our router solidity test.
//
// Performs a split swap from WETH to USDC though WBTC and DAI using USV2 pools
//
// ┌──(USV2)──> WBTC ───(USV2)──> USDC
// WETH ─┤
// └──(USV2)──> DAI ───(USV2)──> USDC
//
// Set up a mock private key for signing
let private_key =
"0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string();
let weth = weth();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let wbtc = Bytes::from_str("0x2260fac5e5542a773aa44fbcfedf7c193bc2c599").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let swap_weth_dai = Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: dai.clone(),
split: 0.5f64,
};
let swap_weth_wbtc = Swap {
component: ProtocolComponent {
id: "0xBb2b8038a1640196FbE3e38816F3e67Cba72D940".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: wbtc.clone(),
// This represents the remaining 50%, but to avoid any rounding errors we set this
// to 0 to signify "the remainder of the WETH value". It should
// still be very close to 50%
split: 0f64,
};
let swap_dai_usdc = Swap {
component: ProtocolComponent {
id: "0xAE461cA67B15dc8dc81CE7615e0320dA1A9aB8D5".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: dai.clone(),
token_out: usdc.clone(),
split: 0f64,
};
let swap_wbtc_usdc = Swap {
component: ProtocolComponent {
id: "0x004375Dff511095CC5A197A54140a24eFEF3A416".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: wbtc.clone(),
token_out: usdc.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SplitSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
Some(private_key),
Bytes::from("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395"),
false,
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: weth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: usdc,
expected_amount: None,
checked_amount: Some(BigUint::from_str("26173932").unwrap()),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap_weth_dai, swap_weth_wbtc, swap_dai_usdc, swap_wbtc_usdc],
..Default::default()
};
let (calldata, _) = encoder
.encode_strategy(solution)
.unwrap();
let hex_calldata = encode(&calldata);
write_calldata_to_file("test_split_swap_strategy_encoder", hex_calldata.as_str());
}
#[test]
fn test_split_input_cyclic_swap() {
// This test has start and end tokens that are the same
// The flow is:
// ┌─ (USV3, 60% split) ──> WETH ─┐
// │ │
// USDC ──────┤ ├──(USV2)──> USDC
// │ │
// └─ (USV3, 40% split) ──> WETH ─┘
// Set up a mock private key for signing (Alice's pk in our router tests)
let private_key =
"0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string();
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
// USDC -> WETH (Pool 1) - 60% of input
let swap_usdc_weth_pool1 = Swap {
component: ProtocolComponent {
id: "0x88e6A0c2dDD26FEEb64F039a2c41296FcB3f5640".to_string(), /* USDC-WETH USV3
* Pool 1 */
protocol_system: "uniswap_v3".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(500).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: usdc.clone(),
token_out: weth.clone(),
split: 0.6f64, // 60% of input
};
// USDC -> WETH (Pool 2) - 40% of input (remaining)
let swap_usdc_weth_pool2 = Swap {
component: ProtocolComponent {
id: "0x8ad599c3A0ff1De082011EFDDc58f1908eb6e6D8".to_string(), /* USDC-WETH USV3
* Pool 2 */
protocol_system: "uniswap_v3".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(3000).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: usdc.clone(),
token_out: weth.clone(),
split: 0f64, // Remaining 40%
};
// WETH -> USDC (Pool 2)
let swap_weth_usdc_pool2 = Swap {
component: ProtocolComponent {
id: "0xB4e16d0168e52d35CaCD2c6185b44281Ec28C9Dc".to_string(), /* USDC-WETH USV2
* Pool 2 */
protocol_system: "uniswap_v2".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(3000).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: weth.clone(),
token_out: usdc.clone(),
split: 0.0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SplitSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
Some(private_key.clone()),
Bytes::from("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395"),
false,
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: usdc.clone(),
given_amount: BigUint::from_str("100000000").unwrap(), // 100 USDC (6 decimals)
checked_token: usdc.clone(),
expected_amount: None,
checked_amount: Some(BigUint::from_str("99574171").unwrap()), /* Expected output
* from
* test */
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
slippage: None,
swaps: vec![swap_usdc_weth_pool1, swap_usdc_weth_pool2, swap_weth_usdc_pool2],
..Default::default()
};
let (calldata, _) = encoder
.encode_strategy(solution)
.unwrap();
let hex_calldata = hex::encode(&calldata);
let expected_input = [
"7c553846", // selector
"0000000000000000000000000000000000000000000000000000000005f5e100", // given amount
"000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // given token
"000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // checked token
"0000000000000000000000000000000000000000000000000000000005ef619b", // min amount out
"0000000000000000000000000000000000000000000000000000000000000000", // wrap action
"0000000000000000000000000000000000000000000000000000000000000000", // unwrap action
"0000000000000000000000000000000000000000000000000000000000000002", // tokens length
"000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
]
.join("");
let expected_swaps = [
"000000000000000000000000000000000000000000000000000000000000013b", // length of ple encoded swaps without padding
"006f", // ple encoded swaps
"00", // token in index
"01", // token out index
"999999", // split
"2e234dae75c793f67a35089c9d99245e1c58470b", // executor address
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token in
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token out
"0001f4", // pool fee
"3ede3eca2a72b3aecc820e955b36f38437d01395", // receiver
"88e6a0c2ddd26feeb64f039a2c41296fcb3f5640", // component id
"01", // zero2one
"00", // transfer from false
"01", // transfer true
"006f", // ple encoded swaps
"00", // token in index
"01", // token out index
"000000", // split
"2e234dae75c793f67a35089c9d99245e1c58470b", // executor address
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token in
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token out
"000bb8", // pool fee
"3ede3eca2a72b3aecc820e955b36f38437d01395", // receiver
"8ad599c3a0ff1de082011efddc58f1908eb6e6d8", // component id
"01", // zero2one
"00", // transfer from false
"01", // transfer true
"0057", // ple encoded swaps
"01", // token in index
"00", // token out index
"000000", // split
"5615deb798bb3e4dfa0139dfa1b3d433cc23b72f", // executor address,
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"b4e16d0168e52d35cacd2c6185b44281ec28c9dc", // component id,
"cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
"00", // zero2one
"01", // transfer true
"0000000000" // padding
]
.join("");
assert_eq!(hex_calldata[..520], expected_input);
assert_eq!(hex_calldata[1288..], expected_swaps);
write_calldata_to_file("test_split_input_cyclic_swap", hex_calldata.as_str());
}
#[test]
fn test_split_output_cyclic_swap() {
// This test has start and end tokens that are the same
// The flow is:
// ┌─── (USV3, 60% split) ───┐
// │ │
// USDC ──(USV2) ── WETH──| ├─> USDC
// │ │
// └─── (USV3, 40% split) ───┘
// Set up a mock private key for signing (Alice's pk in our router tests)
let private_key =
"0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string();
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let swap_usdc_weth_v2 = Swap {
component: ProtocolComponent {
id: "0xB4e16d0168e52d35CaCD2c6185b44281Ec28C9Dc".to_string(), // USDC-WETH USV2
protocol_system: "uniswap_v2".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(500).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: usdc.clone(),
token_out: weth.clone(),
split: 0.0f64,
};
let swap_weth_usdc_v3_pool1 = Swap {
component: ProtocolComponent {
id: "0x88e6A0c2dDD26FEEb64F039a2c41296FcB3f5640".to_string(), /* USDC-WETH USV3
* Pool 1 */
protocol_system: "uniswap_v3".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(500).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: weth.clone(),
token_out: usdc.clone(),
split: 0.6f64,
};
let swap_weth_usdc_v3_pool2 = Swap {
component: ProtocolComponent {
id: "0x8ad599c3A0ff1De082011EFDDc58f1908eb6e6D8".to_string(), /* USDC-WETH USV3
* Pool 2 */
protocol_system: "uniswap_v3".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(3000).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: weth.clone(),
token_out: usdc.clone(),
split: 0.0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SplitSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
Some(private_key.clone()),
Bytes::from("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395"),
false,
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: usdc.clone(),
given_amount: BigUint::from_str("100000000").unwrap(), // 100 USDC (6 decimals)
checked_token: usdc.clone(),
expected_amount: None,
checked_amount: Some(BigUint::from_str("99025908").unwrap()), /* Expected output
* from
* test */
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
slippage: None,
swaps: vec![swap_usdc_weth_v2, swap_weth_usdc_v3_pool1, swap_weth_usdc_v3_pool2],
..Default::default()
};
let (calldata, _) = encoder
.encode_strategy(solution)
.unwrap();
let hex_calldata = hex::encode(&calldata);
let expected_input = [
"7c553846", // selector
"0000000000000000000000000000000000000000000000000000000005f5e100", // given amount
"000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // given token
"000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // checked token
"0000000000000000000000000000000000000000000000000000000005e703f4", // min amount out
"0000000000000000000000000000000000000000000000000000000000000000", // wrap action
"0000000000000000000000000000000000000000000000000000000000000000", // unwrap action
"0000000000000000000000000000000000000000000000000000000000000002", // tokens length
"000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
]
.join("");
let expected_swaps = [
"000000000000000000000000000000000000000000000000000000000000013b", // length of ple encoded swaps without padding
"0057", // ple encoded swaps
"00", // token in index
"01", // token out index
"000000", // split
"5615deb798bb3e4dfa0139dfa1b3d433cc23b72f", // executor address
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token in
"b4e16d0168e52d35cacd2c6185b44281ec28c9dc", // component id
"3ede3eca2a72b3aecc820e955b36f38437d01395", // receiver
"01", // zero2one
"01", // transfer true
"006f", // ple encoded swaps
"01", // token in index
"00", // token out index
"999999", // split
"2e234dae75c793f67a35089c9d99245e1c58470b", // executor address
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token out
"0001f4", // pool fee
"cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
"88e6a0c2ddd26feeb64f039a2c41296fcb3f5640", // component id
"00", // zero2one
"00", // transfer from false
"01", // transfer true
"006f", // ple encoded swaps
"01", // token in index
"00", // token out index
"000000", // split
"2e234dae75c793f67a35089c9d99245e1c58470b", // executor address
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token out
"000bb8", // pool fee
"cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
"8ad599c3a0ff1de082011efddc58f1908eb6e6d8", // component id
"00", // zero2one
"00", // transfer from false
"01", // transfer true
"0000000000" // padding
]
.join("");
assert_eq!(hex_calldata[..520], expected_input);
assert_eq!(hex_calldata[1288..], expected_swaps);
write_calldata_to_file("test_split_output_cyclic_swap", hex_calldata.as_str());
}
}
mod protocol_integration {
// in this module we test protocol specific logic by creating the calldata that then is
// used in the solidity tests
use super::*;
#[test]
fn test_single_encoding_strategy_ekubo() {
// ETH ──(EKUBO)──> USDC
let token_in = Bytes::from(Address::ZERO.as_slice());
let token_out = Bytes::from("0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48"); // USDC
let static_attributes = HashMap::from([
("fee".to_string(), Bytes::from(0_u64)),
("tick_spacing".to_string(), Bytes::from(0_u32)),
(
"extension".to_string(),
Bytes::from("0x51d02a5948496a67827242eabc5725531342527c"),
), /* Oracle */
]);
let component = ProtocolComponent {
// All Ekubo swaps go through the core contract - not necessary to specify pool id
// for test
protocol_system: "ekubo_v2".to_string(),
static_attributes,
..Default::default()
};
let swap = Swap {
component,
token_in: token_in.clone(),
token_out: token_out.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SingleSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
None,
Bytes::from_str("0xA4AD4f68d0b91CFD19687c881e50f3A00242828c").unwrap(),
false,
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: token_in,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: token_out,
expected_amount: None,
checked_amount: Some(BigUint::from_str("1000").unwrap()),
slippage: None,
// Alice
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap],
..Default::default()
};
let (calldata, _) = encoder
.encode_strategy(solution)
.unwrap();
let hex_calldata = encode(&calldata);
write_calldata_to_file("test_single_encoding_strategy_ekubo", hex_calldata.as_str());
}
#[test]
fn test_single_encoding_strategy_maverick() {
// GHO -> (maverick) -> USDC
let maverick_pool = ProtocolComponent {
id: String::from("0x14Cf6D2Fe3E1B326114b07d22A6F6bb59e346c67"),
protocol_system: String::from("vm:maverick_v2"),
..Default::default()
};
let token_in = Bytes::from("0x40D16FC0246aD3160Ccc09B8D0D3A2cD28aE6C2f");
let token_out = Bytes::from("0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48");
let swap = Swap {
component: maverick_pool,
token_in: token_in.clone(),
token_out: token_out.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SingleSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
None,
Bytes::from_str("0xA4AD4f68d0b91CFD19687c881e50f3A00242828c").unwrap(),
false,
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: token_in,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: token_out,
expected_amount: None,
checked_amount: Some(BigUint::from_str("1000").unwrap()),
slippage: None,
// Alice
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap],
..Default::default()
};
let (calldata, _) = encoder
.encode_strategy(solution)
.unwrap();
let hex_calldata = encode(&calldata);
write_calldata_to_file("test_single_encoding_strategy_maverick", hex_calldata.as_str());
}
#[test]
fn test_single_encoding_strategy_usv4_eth_in() {
// Performs a single swap from ETH to PEPE using a USV4 pool
// Note: This test does not assert anything. It is only used to obtain integration test
// data for our router solidity test.
//
// ETH ───(USV4)──> PEPE
//
// Set up a mock private key for signing (Alice's pk in our router tests)
let private_key =
"0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string();
let eth = eth();
let pepe = Bytes::from_str("0x6982508145454Ce325dDbE47a25d4ec3d2311933").unwrap();
let pool_fee_eth_pepe = Bytes::from(BigInt::from(25000).to_signed_bytes_be());
let tick_spacing_eth_pepe = Bytes::from(BigInt::from(500).to_signed_bytes_be());
let mut static_attributes_eth_pepe: HashMap<String, Bytes> = HashMap::new();
static_attributes_eth_pepe.insert("key_lp_fee".into(), pool_fee_eth_pepe);
static_attributes_eth_pepe.insert("tick_spacing".into(), tick_spacing_eth_pepe);
let swap_eth_pepe = Swap {
component: ProtocolComponent {
id: "0xecd73ecbf77219f21f129c8836d5d686bbc27d264742ddad620500e3e548e2c9"
.to_string(),
protocol_system: "uniswap_v4".to_string(),
static_attributes: static_attributes_eth_pepe,
..Default::default()
},
token_in: eth.clone(),
token_out: pepe.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SingleSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
Some(private_key),
Bytes::from("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395"),
false,
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: eth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: pepe,
expected_amount: None,
checked_amount: Some(BigUint::from_str("152373460199848577067005852").unwrap()),
slippage: None,
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap_eth_pepe],
..Default::default()
};
let (calldata, _) = encoder
.encode_strategy(solution)
.unwrap();
let hex_calldata = encode(&calldata);
write_calldata_to_file(
"test_single_encoding_strategy_usv4_eth_in",
hex_calldata.as_str(),
);
}
#[test]
fn test_single_encoding_strategy_usv4_eth_out() {
// Performs a single swap from USDC to ETH using a USV4 pool
// Note: This test does not assert anything. It is only used to obtain integration test
// data for our router solidity test.
//
// USDC ───(USV4)──> ETH
//
// Set up a mock private key for signing (Alice's pk in our router tests)
let private_key =
"0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string();
let eth = eth();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
// Fee and tick spacing information for this test is obtained by querying the
// USV4 Position Manager contract: 0xbd216513d74c8cf14cf4747e6aaa6420ff64ee9e
// Using the poolKeys function with the first 25 bytes of the pool id
let pool_fee_usdc_eth = Bytes::from(BigInt::from(3000).to_signed_bytes_be());
let tick_spacing_usdc_eth = Bytes::from(BigInt::from(60).to_signed_bytes_be());
let mut static_attributes_usdc_eth: HashMap<String, Bytes> = HashMap::new();
static_attributes_usdc_eth.insert("key_lp_fee".into(), pool_fee_usdc_eth);
static_attributes_usdc_eth.insert("tick_spacing".into(), tick_spacing_usdc_eth);
let swap_usdc_eth = Swap {
component: ProtocolComponent {
id: "0xdce6394339af00981949f5f3baf27e3610c76326a700af57e4b3e3ae4977f78d"
.to_string(),
protocol_system: "uniswap_v4".to_string(),
static_attributes: static_attributes_usdc_eth,
..Default::default()
},
token_in: usdc.clone(),
token_out: eth.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SplitSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
Some(private_key),
Bytes::from("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395"),
false,
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: usdc,
given_amount: BigUint::from_str("3000_000000").unwrap(),
checked_token: eth,
expected_amount: None,
checked_amount: Some(BigUint::from_str("1117254495486192350").unwrap()),
slippage: None,
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap_usdc_eth],
..Default::default()
};
let (calldata, _) = encoder
.encode_strategy(solution)
.unwrap();
let hex_calldata = encode(&calldata);
write_calldata_to_file(
"test_single_encoding_strategy_usv4_eth_out",
hex_calldata.as_str(),
);
}
#[test]
fn test_single_encoding_strategy_usv4_grouped_swap() {
// Performs a sequential swap from USDC to PEPE though ETH using two consecutive USV4
// pools
//
// USDC ──(USV4)──> ETH ───(USV4)──> PEPE
//
// Set up a mock private key for signing (Alice's pk in our router tests)
let private_key =
"0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string();
let eth = eth();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let pepe = Bytes::from_str("0x6982508145454Ce325dDbE47a25d4ec3d2311933").unwrap();
// Fee and tick spacing information for this test is obtained by querying the
// USV4 Position Manager contract: 0xbd216513d74c8cf14cf4747e6aaa6420ff64ee9e
// Using the poolKeys function with the first 25 bytes of the pool id
let pool_fee_usdc_eth = Bytes::from(BigInt::from(3000).to_signed_bytes_be());
let tick_spacing_usdc_eth = Bytes::from(BigInt::from(60).to_signed_bytes_be());
let mut static_attributes_usdc_eth: HashMap<String, Bytes> = HashMap::new();
static_attributes_usdc_eth.insert("key_lp_fee".into(), pool_fee_usdc_eth);
static_attributes_usdc_eth.insert("tick_spacing".into(), tick_spacing_usdc_eth);
let pool_fee_eth_pepe = Bytes::from(BigInt::from(25000).to_signed_bytes_be());
let tick_spacing_eth_pepe = Bytes::from(BigInt::from(500).to_signed_bytes_be());
let mut static_attributes_eth_pepe: HashMap<String, Bytes> = HashMap::new();
static_attributes_eth_pepe.insert("key_lp_fee".into(), pool_fee_eth_pepe);
static_attributes_eth_pepe.insert("tick_spacing".into(), tick_spacing_eth_pepe);
let swap_usdc_eth = Swap {
component: ProtocolComponent {
id: "0xdce6394339af00981949f5f3baf27e3610c76326a700af57e4b3e3ae4977f78d"
.to_string(),
protocol_system: "uniswap_v4".to_string(),
static_attributes: static_attributes_usdc_eth,
..Default::default()
},
token_in: usdc.clone(),
token_out: eth.clone(),
split: 0f64,
};
let swap_eth_pepe = Swap {
component: ProtocolComponent {
id: "0xecd73ecbf77219f21f129c8836d5d686bbc27d264742ddad620500e3e548e2c9"
.to_string(),
protocol_system: "uniswap_v4".to_string(),
static_attributes: static_attributes_eth_pepe,
..Default::default()
},
token_in: eth.clone(),
token_out: pepe.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SingleSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
Some(private_key),
Bytes::from("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395"),
false,
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: usdc,
given_amount: BigUint::from_str("1000_000000").unwrap(),
checked_token: pepe,
expected_amount: None,
checked_amount: Some(BigUint::from_str("97191013220606467325121599").unwrap()),
slippage: None,
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap_usdc_eth, swap_eth_pepe],
..Default::default()
};
let (calldata, _) = encoder
.encode_strategy(solution)
.unwrap();
let expected_input = [
"30ace1b1", // Function selector (single swap)
"000000000000000000000000000000000000000000000000000000003b9aca00", // amount in
"000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token in
"0000000000000000000000006982508145454ce325ddbe47a25d4ec3d2311933", // token out
"0000000000000000000000000000000000000000005064ff624d54346285543f", // min amount out
"0000000000000000000000000000000000000000000000000000000000000000", // wrap
"0000000000000000000000000000000000000000000000000000000000000000", // unwrap
"000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
"0000000000000000000000000000000000000000000000000000000000000000", // transfer from
"0000000000000000000000000000000000000000000000000000000000000000", // funds receiver
]
.join("");
// after this there is the permit and because of the deadlines (that depend on block
// time) it's hard to assert
let expected_swaps = String::from(concat!(
// length of ple encoded swaps without padding
"0000000000000000000000000000000000000000000000000000000000000087",
// Swap data header
"f62849f9a0b5bf2913b396098f7c7019b51a820a", // executor address
// Protocol data
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // group token in
"6982508145454ce325ddbe47a25d4ec3d2311933", // group token in
"00", // zero2one
"01", // transfer from true
"00", // transfer false
"cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
// First pool params
"0000000000000000000000000000000000000000", // intermediary token (ETH)
"000bb8", // fee
"00003c", // tick spacing
// Second pool params
"6982508145454ce325ddbe47a25d4ec3d2311933", // intermediary token (PEPE)
"0061a8", // fee
"0001f4", // tick spacing
"00000000000000000000000000000000000000000000000000" // padding
));
let hex_calldata = encode(&calldata);
assert_eq!(hex_calldata[..584], expected_input);
assert_eq!(hex_calldata[1352..], expected_swaps);
write_calldata_to_file(
"test_single_encoding_strategy_usv4_grouped_swap",
hex_calldata.as_str(),
);
}
#[test]
fn test_single_encoding_strategy_curve() {
// UWU ──(curve 2 crypto pool)──> WETH
let token_in = Bytes::from("0x55C08ca52497e2f1534B59E2917BF524D4765257"); // UWU
let token_out = Bytes::from("0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2"); // WETH
let static_attributes = HashMap::from([(
"factory".to_string(),
Bytes::from(
"0x98ee851a00abee0d95d08cf4ca2bdce32aeaaf7f"
.as_bytes()
.to_vec(),
),
)]);
let component = ProtocolComponent {
id: String::from("0x77146B0a1d08B6844376dF6d9da99bA7F1b19e71"),
protocol_system: String::from("vm:curve"),
static_attributes,
..Default::default()
};
let swap = Swap {
component,
token_in: token_in.clone(),
token_out: token_out.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SingleSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
None,
Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(),
false,
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: token_in,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: token_out,
expected_amount: None,
checked_amount: Some(BigUint::from_str("1").unwrap()),
slippage: None,
// Alice
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap],
..Default::default()
};
let (calldata, _) = encoder
.encode_strategy(solution)
.unwrap();
let hex_calldata = encode(&calldata);
write_calldata_to_file("test_single_encoding_strategy_curve", hex_calldata.as_str());
}
#[test]
fn test_single_encoding_strategy_curve_st_eth() {
// ETH ──(curve stETH pool)──> STETH
let token_in = Bytes::from("0x0000000000000000000000000000000000000000"); // ETH
let token_out = Bytes::from("0xae7ab96520DE3A18E5e111B5EaAb095312D7fE84"); // STETH
let static_attributes = HashMap::from([(
"factory".to_string(),
Bytes::from(
"0x0000000000000000000000000000000000000000"
.as_bytes()
.to_vec(),
),
)]);
let component = ProtocolComponent {
id: String::from("0xDC24316b9AE028F1497c275EB9192a3Ea0f67022"),
protocol_system: String::from("vm:curve"),
static_attributes,
..Default::default()
};
let swap = Swap {
component,
token_in: token_in.clone(),
token_out: token_out.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SingleSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
None,
Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(),
false,
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: token_in,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: token_out,
expected_amount: None,
checked_amount: Some(BigUint::from_str("1").unwrap()),
slippage: None,
// Alice
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
swaps: vec![swap],
..Default::default()
};
let (calldata, _) = encoder
.encode_strategy(solution)
.unwrap();
let hex_calldata = encode(&calldata);
write_calldata_to_file(
"test_single_encoding_strategy_curve_st_eth",
hex_calldata.as_str(),
);
}
}
}