use std::{ cmp::max, collections::{HashMap, HashSet, VecDeque}, str::FromStr, }; use alloy_primitives::{aliases::U24, FixedBytes, U256, U8}; use alloy_sol_types::SolValue; use num_bigint::BigUint; use tycho_core::{keccak256, models::Chain, Bytes}; use crate::encoding::{ errors::EncodingError, evm::{ approvals::permit2::Permit2, constants::WETH_ADDRESS, swap_encoder::SWAP_ENCODER_REGISTRY, utils::{biguint_to_u256, bytes_to_address, encode_input, percentage_to_uint24}, }, models::{EncodingContext, NativeAction, Solution, Swap}, strategy_encoder::StrategyEncoder, }; pub trait EVMStrategyEncoder: StrategyEncoder { fn encode_swap_header( &self, token_in: U8, token_out: U8, split: U24, executor_address: Bytes, executor_selector: FixedBytes<4>, protocol_data: Vec, ) -> Vec { let mut encoded = Vec::new(); encoded.push(token_in.to_be_bytes_vec()[0]); encoded.push(token_out.to_be_bytes_vec()[0]); encoded.extend_from_slice(&split.to_be_bytes_vec()); encoded.extend(executor_address.to_vec()); encoded.extend(executor_selector); encoded.extend(protocol_data); encoded } fn encode_executor_selector(&self, selector: &str) -> FixedBytes<4> { let hash = keccak256(selector.as_bytes()); FixedBytes::<4>::from([hash[0], hash[1], hash[2], hash[3]]) } fn ple_encode(&self, action_data_array: Vec>) -> Vec { let mut encoded_action_data: Vec = Vec::new(); for action_data in action_data_array { let args = (encoded_action_data, action_data.len() as u16, action_data); encoded_action_data = args.abi_encode_packed(); } encoded_action_data } } pub struct SplitSwapStrategyEncoder { permit2: Permit2, selector: String, } impl SplitSwapStrategyEncoder { pub fn new(signer_pk: String, chain: Chain) -> Result { let selector = "swap(uint256,address,address,uint256,bool,bool,uint256,address,((address,uint160,uint48,uint48),address,uint256),bytes,bytes)".to_string(); Ok(Self { permit2: Permit2::new(signer_pk, chain)?, selector }) } } impl EVMStrategyEncoder for SplitSwapStrategyEncoder {} impl StrategyEncoder for SplitSwapStrategyEncoder { fn encode_strategy( &self, solution: Solution, router_address: Bytes, ) -> Result<(Vec, Bytes), EncodingError> { validate_swaps(&solution.swaps)?; validate_token_path_connectivity( &solution.swaps, &solution.given_token, &solution.checked_token, )?; let (permit, signature) = self.permit2.get_permit( &router_address, &solution.sender, &solution.given_token, &solution.given_amount, )?; let mut min_amount_out = solution .check_amount .unwrap_or(BigUint::ZERO); if let (Some(expected_amount), Some(slippage)) = (solution.expected_amount.as_ref(), solution.slippage) { let one_hundred = BigUint::from(100u32); let slippage_percent = BigUint::from((slippage * 100.0) as u32); let multiplier = &one_hundred - slippage_percent; let expected_amount_with_slippage = (expected_amount * &multiplier) / &one_hundred; min_amount_out = max(min_amount_out, expected_amount_with_slippage); } // The tokens array is composed of the given token, the checked token and all the // intermediary tokens in between. The contract expects the tokens to be in this order. let solution_tokens: HashSet = vec![solution.given_token.clone(), solution.checked_token.clone()] .into_iter() .collect(); let intermediary_tokens: HashSet = solution .swaps .iter() .flat_map(|swap| vec![swap.token_in.clone(), swap.token_out.clone()]) .collect(); let mut intermediary_tokens: Vec = intermediary_tokens .difference(&solution_tokens) .cloned() .collect(); // this is only to make the test deterministic (same index for the same token for different // runs) intermediary_tokens.sort(); let (mut unwrap, mut wrap) = (false, false); if let Some(action) = solution.native_action.clone() { match action { NativeAction::Wrap => wrap = true, NativeAction::Unwrap => unwrap = true, } } let mut tokens = Vec::with_capacity(2 + intermediary_tokens.len()); if wrap { tokens.push(WETH_ADDRESS.clone()); } else { tokens.push(solution.given_token.clone()); } tokens.extend(intermediary_tokens); if unwrap { tokens.push(WETH_ADDRESS.clone()); } else { tokens.push(solution.checked_token.clone()); } let mut swaps = vec![]; for swap in solution.swaps.iter() { let registry = SWAP_ENCODER_REGISTRY .read() .map_err(|_| { EncodingError::FatalError( "Failed to read the swap encoder registry".to_string(), ) })?; let swap_encoder = registry .get_encoder(&swap.component.protocol_system) .expect("Swap encoder not found"); let encoding_context = EncodingContext { receiver: router_address.clone(), exact_out: solution.exact_out, router_address: router_address.clone(), }; let protocol_data = swap_encoder.encode_swap(swap.clone(), encoding_context)?; let swap_data = self.encode_swap_header( U8::from( tokens .iter() .position(|t| *t == swap.token_in) .ok_or_else(|| { EncodingError::InvalidInput( "In token not found in tokens array".to_string(), ) })?, ), U8::from( tokens .iter() .position(|t| *t == swap.token_out) .ok_or_else(|| { EncodingError::InvalidInput( "Out token not found in tokens array".to_string(), ) })?, ), percentage_to_uint24(swap.split), Bytes::from_str(swap_encoder.executor_address()).map_err(|_| { EncodingError::FatalError("Invalid executor address".to_string()) })?, self.encode_executor_selector(swap_encoder.executor_selector()), protocol_data, ); swaps.push(swap_data); } let encoded_swaps = self.ple_encode(swaps); let method_calldata = ( biguint_to_u256(&solution.given_amount), bytes_to_address(&solution.given_token)?, bytes_to_address(&solution.checked_token)?, biguint_to_u256(&min_amount_out), wrap, unwrap, U256::from(tokens.len()), bytes_to_address(&solution.receiver)?, permit, signature.as_bytes().to_vec(), encoded_swaps, ) .abi_encode(); let contract_interaction = encode_input(&self.selector, method_calldata); Ok((contract_interaction, router_address)) } } fn validate_swaps(swaps: &[Swap]) -> Result<(), EncodingError> { for swap in swaps { if swap.split >= 1.0 { return Err(EncodingError::InvalidInput(format!( "Split percentage must be less than 1 (100%), got {}", swap.split ))); } } let mut swaps_by_token: HashMap> = HashMap::new(); for swap in swaps { swaps_by_token .entry(swap.token_in.clone()) .or_default() .push(swap); } for (token, token_swaps) in swaps_by_token { if token_swaps.is_empty() { return Err(EncodingError::InvalidInput(format!( "No swaps found for token {:?}", token ))); } // Single swaps don't need remainder handling if token_swaps.len() == 1 { if token_swaps[0].split != 1.0 { return Err(EncodingError::InvalidInput(format!( "Single swap must have 100% split for token {:?}", token ))); } continue; } // Check if exactly one swap has 0% split and it's the last one let mut found_zero_split = false; for (i, swap) in token_swaps.iter().enumerate() { match (swap.split == 0.0, i == token_swaps.len() - 1) { (true, false) => { return Err(EncodingError::InvalidInput(format!( "The 0% split for token {:?} must be the last swap", token ))) } (true, true) => found_zero_split = true, (false, _) => (), } } if !found_zero_split { return Err(EncodingError::InvalidInput(format!( "Token {:?} must have exactly one 0% split for remainder handling", token ))); } // Sum non-zero splits and validate each is >0% and <100% let mut total_percentage = 0.0; for swap in token_swaps .iter() .take(token_swaps.len() - 1) { if swap.split <= 0.0 { return Err(EncodingError::InvalidInput(format!( "Non-remainder splits must be >0% for token {:?}", token ))); } total_percentage += swap.split; } // Total must be <100% to leave room for remainder if total_percentage >= 1.0 { return Err(EncodingError::InvalidInput(format!( "Total of non-remainder splits for token {:?} must be <100%, got {}%", token, total_percentage * 100.0 ))); } } Ok(()) } fn validate_token_path_connectivity( swaps: &[Swap], given_token: &Bytes, checked_token: &Bytes, ) -> Result<(), EncodingError> { // Build directed graph of token flows let mut graph: HashMap<&Bytes, HashSet<&Bytes>> = HashMap::new(); for swap in swaps { graph .entry(&swap.token_in) .or_default() .insert(&swap.token_out); } // BFS from given_token let mut visited = HashSet::new(); let mut queue = VecDeque::new(); queue.push_back(given_token); while let Some(token) = queue.pop_front() { if !visited.insert(token) { continue; } // Early success check if token == checked_token && visited.len() == graph.len() + 1 { return Ok(()); } if let Some(next_tokens) = graph.get(token) { for &next_token in next_tokens { if !visited.contains(next_token) { queue.push_back(next_token); } } } } // If we get here, either checked_token wasn't reached or not all tokens were visited if !visited.contains(checked_token) { Err(EncodingError::InvalidInput( "Checked token is not reachable through swap path".to_string(), )) } else { Err(EncodingError::InvalidInput( "Some tokens are not connected to the main path".to_string(), )) } } /// This strategy encoder is used for solutions that are sent directly to the pool. /// Only 1 solution with 1 swap is supported. pub struct ExecutorStrategyEncoder {} impl EVMStrategyEncoder for ExecutorStrategyEncoder {} impl StrategyEncoder for ExecutorStrategyEncoder { fn encode_strategy( &self, solution: Solution, _router_address: Bytes, ) -> Result<(Vec, Bytes), EncodingError> { let router_address = solution.router_address.ok_or_else(|| { EncodingError::InvalidInput( "Router address is required for straight to pool solutions".to_string(), ) })?; let swap = solution .swaps .first() .ok_or_else(|| EncodingError::InvalidInput("No swaps found in solution".to_string()))?; let registry = SWAP_ENCODER_REGISTRY .read() .map_err(|_| { EncodingError::FatalError("Failed to read the swap encoder registry".to_string()) })?; let swap_encoder = registry .get_encoder(&swap.component.protocol_system) .ok_or_else(|| { EncodingError::InvalidInput(format!( "Swap encoder not found for protocol: {}", swap.component.protocol_system )) })?; let encoding_context = EncodingContext { receiver: solution.receiver, exact_out: solution.exact_out, router_address, }; let protocol_data = swap_encoder.encode_swap(swap.clone(), encoding_context)?; let executor_address = Bytes::from_str(swap_encoder.executor_address()) .map_err(|_| EncodingError::FatalError("Invalid executor address".to_string()))?; Ok((protocol_data, executor_address)) } } #[cfg(test)] mod tests { use std::str::FromStr; use alloy::hex::encode; use num_bigint::BigUint; use rstest::rstest; use tycho_core::{dto::ProtocolComponent, Bytes}; use super::*; use crate::encoding::{ evm::constants::{NATIVE_ADDRESS, WETH_ADDRESS}, models::Swap, }; #[test] fn test_executor_strategy_encode() { let encoder = ExecutorStrategyEncoder {}; let token_in = Bytes::from("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2"); let token_out = Bytes::from("0x6b175474e89094c44da98b954eedeac495271d0f"); let swap = Swap { component: ProtocolComponent { id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(), protocol_system: "uniswap_v2".to_string(), ..Default::default() }, token_in: token_in.clone(), token_out: token_out.clone(), split: 0f64, }; let solution = Solution { exact_out: false, given_token: token_in, given_amount: BigUint::from(1000000000000000000u64), expected_amount: Some(BigUint::from(1000000000000000000u64)), checked_token: token_out, check_amount: None, sender: Bytes::from_str("0x0000000000000000000000000000000000000000").unwrap(), // The receiver was generated with `makeAddr("bob") using forge` receiver: Bytes::from_str("0x1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e").unwrap(), swaps: vec![swap], direct_execution: true, router_address: Some(Bytes::zero(20)), slippage: None, native_action: None, }; let (protocol_data, executor_address) = encoder .encode_strategy(solution, Bytes::zero(20)) .unwrap(); let hex_protocol_data = encode(&protocol_data); assert_eq!( executor_address, Bytes::from_str("0x5c2f5a71f67c01775180adc06909288b4c329308").unwrap() ); assert_eq!( hex_protocol_data, String::from(concat!( // in token "c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // component id "a478c2975ab1ea89e8196811f51a7b7ade33eb11", // receiver "1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e", // zero for one "00", )) ); } #[rstest] #[case::no_check_no_slippage( None, None, None, U256::from_str("0").unwrap(), )] #[case::with_check_no_slippage( None, None, Some(BigUint::from_str("3_000_000000000000000000").unwrap()), U256::from_str("3_000_000000000000000000").unwrap(), )] #[case::no_check_with_slippage( Some(BigUint::from_str("3_000_000000000000000000").unwrap()), Some(0.01f64), None, U256::from_str("2_970_000000000000000000").unwrap(), )] #[case::with_check_and_slippage( Some(BigUint::from_str("3_000_000000000000000000").unwrap()), Some(0.01f64), Some(BigUint::from_str("2_999_000000000000000000").unwrap()), U256::from_str("2_999_000000000000000000").unwrap(), )] fn test_split_swap_strategy_encoder_simple_route( #[case] expected_amount: Option, #[case] slippage: Option, #[case] check_amount: Option, #[case] expected_min_amount: U256, ) { // Performs a single swap from WETH to DAI on a USV2 pool // Set up a mock private key for signing let private_key = "0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string(); let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap(); let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap(); let swap = Swap { component: ProtocolComponent { id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(), protocol_system: "uniswap_v2".to_string(), ..Default::default() }, token_in: weth.clone(), token_out: dai.clone(), split: 0f64, }; let encoder = SplitSwapStrategyEncoder::new(private_key, Chain::Ethereum).unwrap(); let solution = Solution { exact_out: false, given_token: weth, given_amount: BigUint::from_str("1_000000000000000000").unwrap(), checked_token: dai, expected_amount, slippage, check_amount, sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(), receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(), swaps: vec![swap], ..Default::default() }; let router_address = Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(); let (calldata, _) = encoder .encode_strategy(solution, router_address) .unwrap(); let expected_min_amount_encoded = hex::encode(U256::abi_encode(&expected_min_amount)); let expected_input = [ "4860f9ed", // Function selector "0000000000000000000000000000000000000000000000000de0b6b3a7640000", // amount out "000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in "0000000000000000000000006b175474e89094c44da98b954eedeac495271d0f", // token out &expected_min_amount_encoded, // min amount out "0000000000000000000000000000000000000000000000000000000000000000", // wrap "0000000000000000000000000000000000000000000000000000000000000000", // unwrap "0000000000000000000000000000000000000000000000000000000000000002", // tokens length "000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver ] .join(""); // after this there is the permit and because of the deadlines (that depend on block time) // it's hard to assert // "000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in // "0000000000000000000000000000000000000000000000000de0b6b3a7640000", // amount in // "0000000000000000000000000000000000000000000000000000000067c205fe", // expiration // "0000000000000000000000000000000000000000000000000000000000000000", // nonce // "0000000000000000000000002c6a3cd97c6283b95ac8c5a4459ebb0d5fd404f4", // spender // "00000000000000000000000000000000000000000000000000000000679a8006", // deadline // offset of signature (from start of call data to beginning of length indication) // "0000000000000000000000000000000000000000000000000000000000000200", // offset of ple encoded swaps (from start of call data to beginning of length indication) // "0000000000000000000000000000000000000000000000000000000000000280", // length of signature without padding // "0000000000000000000000000000000000000000000000000000000000000041", // signature + padding // "a031b63a01ef5d25975663e5d6c420ef498e3a5968b593cdf846c6729a788186", // "1ddaf79c51453cd501d321ee541d13593e3a266be44103eefdf6e76a032d2870", // "1b00000000000000000000000000000000000000000000000000000000000000" let expected_swaps = String::from(concat!( // length of ple encoded swaps without padding "000000000000000000000000000000000000000000000000000000000000005c", // ple encoded swaps "005a", // Swap header "00", // token in index "01", // token out index "000000", // split // Swap data "5c2f5a71f67c01775180adc06909288b4c329308", // executor address "bd0625ab", // selector "c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in "a478c2975ab1ea89e8196811f51a7b7ade33eb11", // component id "3ede3eca2a72b3aecc820e955b36f38437d01395", // receiver "00", // zero2one "00", // exact out "000000", // padding )); let hex_calldata = encode(&calldata); assert_eq!(hex_calldata[..520], expected_input); assert_eq!(hex_calldata[1288..], expected_swaps); } #[test] fn test_split_swap_strategy_encoder_simple_route_wrap() { // Performs a single swap from WETH to DAI on a USV2 pool, wrapping ETH // Note: This test does not assert anything. It is only used to obtain integration test // data for our router solidity test. // Set up a mock private key for signing let private_key = "0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string(); let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap(); let swap = Swap { component: ProtocolComponent { id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(), protocol_system: "uniswap_v2".to_string(), ..Default::default() }, token_in: WETH_ADDRESS.clone(), token_out: dai.clone(), split: 0f64, }; let encoder = SplitSwapStrategyEncoder::new(private_key, Chain::Ethereum).unwrap(); let solution = Solution { exact_out: false, given_token: NATIVE_ADDRESS.clone(), given_amount: BigUint::from_str("1_000000000000000000").unwrap(), checked_token: dai, expected_amount: Some(BigUint::from_str("3_000_000000000000000000").unwrap()), check_amount: None, sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(), receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(), swaps: vec![swap], native_action: Some(NativeAction::Wrap), ..Default::default() }; let router_address = Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(); let (calldata, _) = encoder .encode_strategy(solution, router_address) .unwrap(); let hex_calldata = encode(&calldata); println!("{}", hex_calldata); } #[test] fn test_split_swap_strategy_encoder_simple_route_unwrap() { // Performs a single swap from DAI to WETH on a USV2 pool, unwrapping ETH at the end // Note: This test does not assert anything. It is only used to obtain integration test // data for our router solidity test. // Set up a mock private key for signing let private_key = "0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string(); let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap(); let swap = Swap { component: ProtocolComponent { id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(), protocol_system: "uniswap_v2".to_string(), ..Default::default() }, token_in: dai.clone(), token_out: WETH_ADDRESS.clone(), split: 0f64, }; let encoder = SplitSwapStrategyEncoder::new(private_key, Chain::Ethereum).unwrap(); let solution = Solution { exact_out: false, given_token: dai, given_amount: BigUint::from_str("3_000_000000000000000000").unwrap(), checked_token: NATIVE_ADDRESS.clone(), expected_amount: Some(BigUint::from_str("1_000000000000000000").unwrap()), check_amount: None, sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(), receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(), swaps: vec![swap], native_action: Some(NativeAction::Unwrap), ..Default::default() }; let router_address = Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(); let (calldata, _) = encoder .encode_strategy(solution, router_address) .unwrap(); let hex_calldata = encode(&calldata); println!("{}", hex_calldata); } #[test] fn test_split_swap_strategy_encoder_complex_route() { // Note: This test does not assert anything. It is only used to obtain integration test // data for our router solidity test. // // Performs a split swap from WETH to USDC though WBTC and DAI using USV2 pools // // ┌──(USV2)──> WBTC ───(USV2)──> USDC // WETH ─┤ // └──(USV2)──> DAI ───(USV2)──> USDC // // Set up a mock private key for signing let private_key = "0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string(); let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap(); let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap(); let wbtc = Bytes::from_str("0x2260fac5e5542a773aa44fbcfedf7c193bc2c599").unwrap(); let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap(); let swap_weth_dai = Swap { component: ProtocolComponent { id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(), protocol_system: "uniswap_v2".to_string(), ..Default::default() }, token_in: weth.clone(), token_out: dai.clone(), split: 0.5f64, }; let swap_weth_wbtc = Swap { component: ProtocolComponent { id: "0xBb2b8038a1640196FbE3e38816F3e67Cba72D940".to_string(), protocol_system: "uniswap_v2".to_string(), ..Default::default() }, token_in: weth.clone(), token_out: wbtc.clone(), // This represents the remaining 50%, but to avoid any rounding errors we set this to // 0 to signify "the remainder of the WETH value". It should still be very close to 50% split: 0f64, }; let swap_dai_usdc = Swap { component: ProtocolComponent { id: "0xAE461cA67B15dc8dc81CE7615e0320dA1A9aB8D5".to_string(), protocol_system: "uniswap_v2".to_string(), ..Default::default() }, token_in: dai.clone(), token_out: usdc.clone(), split: 0f64, }; let swap_wbtc_usdc = Swap { component: ProtocolComponent { id: "0x004375Dff511095CC5A197A54140a24eFEF3A416".to_string(), protocol_system: "uniswap_v2".to_string(), ..Default::default() }, token_in: wbtc.clone(), token_out: usdc.clone(), split: 0f64, }; let encoder = SplitSwapStrategyEncoder::new(private_key, Chain::Ethereum).unwrap(); let solution = Solution { exact_out: false, given_token: weth, given_amount: BigUint::from_str("1_000000000000000000").unwrap(), checked_token: usdc, expected_amount: Some(BigUint::from_str("3_000_000000").unwrap()), check_amount: None, sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(), receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(), swaps: vec![swap_weth_dai, swap_weth_wbtc, swap_dai_usdc, swap_wbtc_usdc], ..Default::default() }; let router_address = Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(); let (calldata, _) = encoder .encode_strategy(solution, router_address) .unwrap(); let _hex_calldata = encode(&calldata); println!("{}", _hex_calldata); } }