use std::{collections::HashSet, str::FromStr}; use alloy_primitives::{aliases::U24, FixedBytes, U256, U8}; use alloy_sol_types::SolValue; use tycho_core::{keccak256, Bytes}; use crate::encoding::{ errors::EncodingError, evm::{ approvals::permit2::Permit2, strategy_encoder::{group_swaps::group_swaps, strategy_validators::SplitSwapValidator}, swap_encoder::swap_encoder_registry::SwapEncoderRegistry, utils::{ biguint_to_u256, bytes_to_address, encode_input, get_min_amount_for_solution, get_token_position, percentage_to_uint24, }, }, models::{Chain, EncodingContext, NativeAction, Solution}, strategy_encoder::StrategyEncoder, swap_encoder::SwapEncoder, }; /// Encodes a solution using a specific strategy for execution on the EVM-compatible network. pub trait EVMStrategyEncoder: StrategyEncoder { /// Encodes information necessary for performing a single swap against a given executor for /// a protocol. fn encode_swap_header( &self, token_in: U8, token_out: U8, split: U24, executor_address: Bytes, executor_selector: FixedBytes<4>, protocol_data: Vec, ) -> Vec { let mut encoded = Vec::new(); encoded.push(token_in.to_be_bytes_vec()[0]); encoded.push(token_out.to_be_bytes_vec()[0]); encoded.extend_from_slice(&split.to_be_bytes_vec()); encoded.extend(executor_address.to_vec()); encoded.extend(executor_selector); encoded.extend(protocol_data); encoded } /// Encodes a selector string into its 4-byte representation. fn encode_executor_selector(&self, selector: &str) -> FixedBytes<4> { let hash = keccak256(selector.as_bytes()); FixedBytes::<4>::from([hash[0], hash[1], hash[2], hash[3]]) } /// Uses prefix-length encoding to efficient encode action data. /// /// Prefix-length encoding is a data encoding method where the beginning of a data segment /// (the "prefix") contains information about the length of the following data. fn ple_encode(&self, action_data_array: Vec>) -> Vec { let mut encoded_action_data: Vec = Vec::new(); for action_data in action_data_array { let args = (encoded_action_data, action_data.len() as u16, action_data); encoded_action_data = args.abi_encode_packed(); } encoded_action_data } } /// Represents the encoder for a swap strategy which supports single, sequential and split swaps. /// /// # Fields /// * `swap_encoder_registry`: SwapEncoderRegistry, containing all possible swap encoders /// * `permit2`: Permit2, responsible for managing permit2 operations and providing necessary /// signatures and permit2 objects for calling the router /// * `selector`: String, the selector for the swap function in the router contract /// * `native_address`: Address of the chain's native token /// * `wrapped_address`: Address of the chain's wrapped token /// * `split_swap_validator`: SplitSwapValidator, responsible for checking validity of split swap /// solutions #[derive(Clone)] pub struct SplitSwapStrategyEncoder { swap_encoder_registry: SwapEncoderRegistry, permit2: Permit2, selector: String, native_address: Bytes, wrapped_address: Bytes, split_swap_validator: SplitSwapValidator, } impl SplitSwapStrategyEncoder { pub fn new( signer_pk: String, blockchain: tycho_core::dto::Chain, swap_encoder_registry: SwapEncoderRegistry, ) -> Result { let chain = Chain::from(blockchain); let selector = "swap(uint256,address,address,uint256,bool,bool,uint256,address,((address,uint160,uint48,uint48),address,uint256),bytes,bytes)".to_string(); Ok(Self { permit2: Permit2::new(signer_pk, chain.clone())?, selector, swap_encoder_registry, native_address: chain.native_token()?, wrapped_address: chain.wrapped_token()?, split_swap_validator: SplitSwapValidator, }) } } impl EVMStrategyEncoder for SplitSwapStrategyEncoder {} impl StrategyEncoder for SplitSwapStrategyEncoder { fn encode_strategy( &self, solution: Solution, ) -> Result<(Vec, Bytes, Option), EncodingError> { self.split_swap_validator .validate_split_percentages(&solution.swaps)?; self.split_swap_validator .validate_swap_path( &solution.swaps, &solution.given_token, &solution.checked_token, &solution.native_action, &self.native_address, &self.wrapped_address, )?; let (permit, signature) = self.permit2.get_permit( &solution.router_address, &solution.sender, &solution.given_token, &solution.given_amount, )?; let min_amount_out = get_min_amount_for_solution(solution.clone()); // The tokens array is composed of the given token, the checked token and all the // intermediary tokens in between. The contract expects the tokens to be in this order. let solution_tokens: HashSet = vec![solution.given_token.clone(), solution.checked_token.clone()] .into_iter() .collect(); let grouped_swaps = group_swaps(solution.swaps); let intermediary_tokens: HashSet = grouped_swaps .iter() .flat_map(|grouped_swap| { vec![grouped_swap.input_token.clone(), grouped_swap.output_token.clone()] }) .collect(); let mut intermediary_tokens: Vec = intermediary_tokens .difference(&solution_tokens) .cloned() .collect(); // this is only to make the test deterministic (same index for the same token for different // runs) intermediary_tokens.sort(); let (mut unwrap, mut wrap) = (false, false); if let Some(action) = solution.native_action.clone() { match action { NativeAction::Wrap => wrap = true, NativeAction::Unwrap => unwrap = true, } } let mut tokens = Vec::with_capacity(2 + intermediary_tokens.len()); if wrap { tokens.push(self.wrapped_address.clone()); } else { tokens.push(solution.given_token.clone()); } tokens.extend(intermediary_tokens); if unwrap { tokens.push(self.wrapped_address.clone()); } else { tokens.push(solution.checked_token.clone()); } let mut swaps = vec![]; for grouped_swap in grouped_swaps.iter() { let swap_encoder = self .get_swap_encoder(&grouped_swap.protocol_system) .ok_or_else(|| { EncodingError::InvalidInput(format!( "Swap encoder not found for protocol: {}", grouped_swap.protocol_system )) })?; let encoding_context = EncodingContext { receiver: solution.router_address.clone(), exact_out: solution.exact_out, router_address: solution.router_address.clone(), }; let mut grouped_protocol_data: Vec = vec![]; for swap in grouped_swap.swaps.iter() { let protocol_data = swap_encoder.encode_swap(swap.clone(), encoding_context.clone())?; grouped_protocol_data.extend(protocol_data); } let swap_data = self.encode_swap_header( get_token_position(tokens.clone(), grouped_swap.input_token.clone())?, get_token_position(tokens.clone(), grouped_swap.output_token.clone())?, percentage_to_uint24(grouped_swap.split), Bytes::from_str(swap_encoder.executor_address()).map_err(|_| { EncodingError::FatalError("Invalid executor address".to_string()) })?, self.encode_executor_selector(swap_encoder.executor_selector()), grouped_protocol_data, ); swaps.push(swap_data); } let encoded_swaps = self.ple_encode(swaps); let method_calldata = ( biguint_to_u256(&solution.given_amount), bytes_to_address(&solution.given_token)?, bytes_to_address(&solution.checked_token)?, biguint_to_u256(&min_amount_out), wrap, unwrap, U256::from(tokens.len()), bytes_to_address(&solution.receiver)?, permit, signature.as_bytes().to_vec(), encoded_swaps, ) .abi_encode(); let contract_interaction = encode_input(&self.selector, method_calldata); Ok((contract_interaction, solution.router_address, None)) } fn get_swap_encoder(&self, protocol_system: &str) -> Option<&Box> { self.swap_encoder_registry .get_encoder(protocol_system) } fn clone_box(&self) -> Box { Box::new(self.clone()) } } /// This strategy encoder is used for solutions that are sent directly to the executor, bypassing /// the router. Only one solution with one swap is supported. /// /// # Fields /// * `swap_encoder_registry`: SwapEncoderRegistry, containing all possible swap encoders #[derive(Clone)] pub struct ExecutorStrategyEncoder { swap_encoder_registry: SwapEncoderRegistry, } impl ExecutorStrategyEncoder { pub fn new(swap_encoder_registry: SwapEncoderRegistry) -> Self { Self { swap_encoder_registry } } } impl EVMStrategyEncoder for ExecutorStrategyEncoder {} impl StrategyEncoder for ExecutorStrategyEncoder { fn encode_strategy( &self, solution: Solution, ) -> Result<(Vec, Bytes, Option), EncodingError> { let grouped_swaps = group_swaps(solution.clone().swaps); let number_of_groups = grouped_swaps.len(); if number_of_groups > 1 { return Err(EncodingError::InvalidInput(format!( "Executor strategy only supports one swap for non-groupable protocols. Found {}", number_of_groups ))) } let grouped_swap = grouped_swaps .first() .ok_or_else(|| EncodingError::FatalError("Swap grouping failed".to_string()))?; let receiver = solution.receiver; let router_address = solution.router_address; let swap_encoder = self .get_swap_encoder(&grouped_swap.protocol_system) .ok_or_else(|| { EncodingError::InvalidInput(format!( "Swap encoder not found for protocol: {}", grouped_swap.protocol_system )) })?; let mut grouped_protocol_data: Vec = vec![]; for swap in grouped_swap.swaps.iter() { let encoding_context = EncodingContext { receiver: receiver.clone(), exact_out: solution.exact_out, router_address: router_address.clone(), }; let protocol_data = swap_encoder.encode_swap(swap.clone(), encoding_context.clone())?; grouped_protocol_data.extend(protocol_data); } let executor_address = Bytes::from_str(swap_encoder.executor_address()) .map_err(|_| EncodingError::FatalError("Invalid executor address".to_string()))?; Ok(( grouped_protocol_data, executor_address, Some( swap_encoder .executor_selector() .to_string(), ), )) } fn get_swap_encoder(&self, protocol_system: &str) -> Option<&Box> { self.swap_encoder_registry .get_encoder(protocol_system) } fn clone_box(&self) -> Box { Box::new(self.clone()) } } #[cfg(test)] mod tests { use std::str::FromStr; use alloy::hex::encode; use alloy_primitives::hex; use num_bigint::BigUint; use rstest::rstest; use tycho_core::{ dto::{Chain as TychoCoreChain, ProtocolComponent}, Bytes, }; use super::*; use crate::encoding::models::Swap; fn eth_chain() -> TychoCoreChain { TychoCoreChain::Ethereum } fn eth() -> Bytes { Bytes::from(hex!("0000000000000000000000000000000000000000").to_vec()) } fn weth() -> Bytes { Bytes::from(hex!("c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").to_vec()) } fn get_swap_encoder_registry() -> SwapEncoderRegistry { let eth_chain = eth_chain(); SwapEncoderRegistry::new(None, eth_chain).unwrap() } #[test] fn test_executor_strategy_encode() { let swap_encoder_registry = get_swap_encoder_registry(); let encoder = ExecutorStrategyEncoder::new(swap_encoder_registry); let token_in = weth(); let token_out = Bytes::from("0x6b175474e89094c44da98b954eedeac495271d0f"); let swap = Swap { component: ProtocolComponent { id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(), protocol_system: "uniswap_v2".to_string(), ..Default::default() }, token_in: token_in.clone(), token_out: token_out.clone(), split: 0f64, }; let solution = Solution { exact_out: false, given_token: token_in, given_amount: BigUint::from(1000000000000000000u64), expected_amount: Some(BigUint::from(1000000000000000000u64)), checked_token: token_out, checked_amount: None, sender: Bytes::from_str("0x0000000000000000000000000000000000000000").unwrap(), // The receiver was generated with `makeAddr("bob") using forge` receiver: Bytes::from_str("0x1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e").unwrap(), swaps: vec![swap], router_address: Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(), slippage: None, native_action: None, }; let (protocol_data, executor_address, selector) = encoder .encode_strategy(solution) .unwrap(); let hex_protocol_data = encode(&protocol_data); assert_eq!( executor_address, Bytes::from_str("0x5c2f5a71f67c01775180adc06909288b4c329308").unwrap() ); assert_eq!( hex_protocol_data, String::from(concat!( // in token "c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // component id "a478c2975ab1ea89e8196811f51a7b7ade33eb11", // receiver "1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e", // zero for one "00", )) ); assert_eq!(selector, Some("swap(uint256,bytes)".to_string())); } #[test] fn test_executor_strategy_encode_too_many_swaps() { let swap_encoder_registry = get_swap_encoder_registry(); let encoder = ExecutorStrategyEncoder::new(swap_encoder_registry); let token_in = weth(); let token_out = Bytes::from("0x6b175474e89094c44da98b954eedeac495271d0f"); let swap = Swap { component: ProtocolComponent { protocol_system: "uniswap_v2".to_string(), ..Default::default() }, token_in: token_in.clone(), token_out: token_out.clone(), split: 0f64, }; let solution = Solution { exact_out: false, given_token: token_in, given_amount: BigUint::from(1000000000000000000u64), expected_amount: Some(BigUint::from(1000000000000000000u64)), checked_token: token_out, checked_amount: None, sender: Bytes::from_str("0x0000000000000000000000000000000000000000").unwrap(), receiver: Bytes::from_str("0x1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e").unwrap(), swaps: vec![swap.clone(), swap], direct_execution: true, router_address: Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(), slippage: None, native_action: None, }; let result = encoder.encode_strategy(solution); assert!(result.is_err()); } #[test] fn test_executor_strategy_encode_grouped_swaps() { let swap_encoder_registry = get_swap_encoder_registry(); let encoder = ExecutorStrategyEncoder::new(swap_encoder_registry); let weth = weth(); let dai = Bytes::from("0x6b175474e89094c44da98b954eedeac495271d0f"); let usdc = Bytes::from("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48"); let swap_a = Swap { component: ProtocolComponent { id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(), protocol_system: "uniswap_v4".to_string(), ..Default::default() }, token_in: weth.clone(), token_out: dai.clone(), split: 0f64, }; let swap_b = Swap { component: ProtocolComponent { id: "0xAE461cA67B15dc8dc81CE7615e0320dA1A9aB8D5".to_string(), protocol_system: "uniswap_v4".to_string(), ..Default::default() }, token_in: dai.clone(), token_out: usdc.clone(), split: 0f64, }; let solution = Solution { exact_out: false, given_token: weth, given_amount: BigUint::from(1000000000000000000u64), expected_amount: Some(BigUint::from(1000000000000000000u64)), checked_token: usdc, checked_amount: None, sender: Bytes::from_str("0x0000000000000000000000000000000000000000").unwrap(), // The receiver was generated with `makeAddr("bob") using forge` receiver: Bytes::from_str("0x1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e").unwrap(), swaps: vec![swap_a, swap_b], direct_execution: true, router_address: Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(), slippage: None, native_action: None, }; let (protocol_data, executor_address, selector) = encoder .encode_strategy(solution) .unwrap(); let hex_protocol_data = encode(&protocol_data); assert_eq!( executor_address, Bytes::from_str("0x5c2f5a71f67c01775180adc06909288b4c329308").unwrap() ); assert_eq!( hex_protocol_data, String::from(concat!( // in token "c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // component id "a478c2975ab1ea89e8196811f51a7b7ade33eb11", // receiver "1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e", // zero for one "00", // in token "6b175474e89094c44da98b954eedeac495271d0f", // component id "ae461ca67b15dc8dc81ce7615e0320da1a9ab8d5", // receiver "1d96f2f6bef1202e4ce1ff6dad0c2cb002861d3e", // zero for one "01", )) ); assert_eq!(selector, Some("swap(uint256,bytes)".to_string())); } #[rstest] #[case::no_check_no_slippage( None, None, None, U256::from_str("0").unwrap(), )] #[case::with_check_no_slippage( None, None, Some(BigUint::from_str("3_000_000000000000000000").unwrap()), U256::from_str("3_000_000000000000000000").unwrap(), )] #[case::no_check_with_slippage( Some(BigUint::from_str("3_000_000000000000000000").unwrap()), Some(0.01f64), None, U256::from_str("2_970_000000000000000000").unwrap(), )] #[case::with_check_and_slippage( Some(BigUint::from_str("3_000_000000000000000000").unwrap()), Some(0.01f64), Some(BigUint::from_str("2_999_000000000000000000").unwrap()), U256::from_str("2_999_000000000000000000").unwrap(), )] fn test_split_swap_strategy_encoder_simple_route( #[case] expected_amount: Option, #[case] slippage: Option, #[case] checked_amount: Option, #[case] expected_min_amount: U256, ) { // Performs a single swap from WETH to DAI on a USV2 pool, with no grouping optimizations. // Set up a mock private key for signing let private_key = "0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string(); let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap(); let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap(); let swap = Swap { component: ProtocolComponent { id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(), protocol_system: "uniswap_v2".to_string(), ..Default::default() }, token_in: weth.clone(), token_out: dai.clone(), split: 0f64, }; let swap_encoder_registry = get_swap_encoder_registry(); let encoder = SplitSwapStrategyEncoder::new(private_key, eth_chain(), swap_encoder_registry).unwrap(); let solution = Solution { exact_out: false, given_token: weth, given_amount: BigUint::from_str("1_000000000000000000").unwrap(), checked_token: dai, expected_amount, slippage, checked_amount, sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(), receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(), router_address: Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(), swaps: vec![swap], ..Default::default() }; let (calldata, _, _) = encoder .encode_strategy(solution) .unwrap(); let expected_min_amount_encoded = hex::encode(U256::abi_encode(&expected_min_amount)); let expected_input = [ "4860f9ed", // Function selector "0000000000000000000000000000000000000000000000000de0b6b3a7640000", // amount out "000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in "0000000000000000000000006b175474e89094c44da98b954eedeac495271d0f", // token out &expected_min_amount_encoded, // min amount out "0000000000000000000000000000000000000000000000000000000000000000", // wrap "0000000000000000000000000000000000000000000000000000000000000000", // unwrap "0000000000000000000000000000000000000000000000000000000000000002", // tokens length "000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver ] .join(""); // after this there is the permit and because of the deadlines (that depend on block time) // it's hard to assert // "000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in // "0000000000000000000000000000000000000000000000000de0b6b3a7640000", // amount in // "0000000000000000000000000000000000000000000000000000000067c205fe", // expiration // "0000000000000000000000000000000000000000000000000000000000000000", // nonce // "0000000000000000000000002c6a3cd97c6283b95ac8c5a4459ebb0d5fd404f4", // spender // "00000000000000000000000000000000000000000000000000000000679a8006", // deadline // offset of signature (from start of call data to beginning of length indication) // "0000000000000000000000000000000000000000000000000000000000000200", // offset of ple encoded swaps (from start of call data to beginning of length indication) // "0000000000000000000000000000000000000000000000000000000000000280", // length of signature without padding // "0000000000000000000000000000000000000000000000000000000000000041", // signature + padding // "a031b63a01ef5d25975663e5d6c420ef498e3a5968b593cdf846c6729a788186", // "1ddaf79c51453cd501d321ee541d13593e3a266be44103eefdf6e76a032d2870", // "1b00000000000000000000000000000000000000000000000000000000000000" let expected_swaps = String::from(concat!( // length of ple encoded swaps without padding "000000000000000000000000000000000000000000000000000000000000005c", // ple encoded swaps "005a", // Swap header "00", // token in index "01", // token out index "000000", // split // Swap data "5c2f5a71f67c01775180adc06909288b4c329308", // executor address "bd0625ab", // selector "c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in "a478c2975ab1ea89e8196811f51a7b7ade33eb11", // component id "3ede3eca2a72b3aecc820e955b36f38437d01395", // receiver "00", // zero2one "00", // exact out "000000", // padding )); let hex_calldata = encode(&calldata); assert_eq!(hex_calldata[..520], expected_input); assert_eq!(hex_calldata[1288..], expected_swaps); } #[test] fn test_split_swap_strategy_encoder_simple_route_wrap() { // Performs a single swap from WETH to DAI on a USV2 pool, wrapping ETH // Note: This test does not assert anything. It is only used to obtain integration test // data for our router solidity test. // Set up a mock private key for signing let private_key = "0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string(); let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap(); let swap = Swap { component: ProtocolComponent { id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(), protocol_system: "uniswap_v2".to_string(), ..Default::default() }, token_in: weth(), token_out: dai.clone(), split: 0f64, }; let swap_encoder_registry = get_swap_encoder_registry(); let encoder = SplitSwapStrategyEncoder::new(private_key, eth_chain(), swap_encoder_registry).unwrap(); let solution = Solution { exact_out: false, given_token: eth(), given_amount: BigUint::from_str("1_000000000000000000").unwrap(), checked_token: dai, expected_amount: Some(BigUint::from_str("3_000_000000000000000000").unwrap()), checked_amount: None, sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(), receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(), router_address: Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(), swaps: vec![swap], native_action: Some(NativeAction::Wrap), ..Default::default() }; let (calldata, _, _) = encoder .encode_strategy(solution) .unwrap(); let hex_calldata = encode(&calldata); println!("{}", hex_calldata); } #[test] fn test_split_swap_strategy_encoder_simple_route_unwrap() { // Performs a single swap from DAI to WETH on a USV2 pool, unwrapping ETH at the end // Note: This test does not assert anything. It is only used to obtain integration test // data for our router solidity test. // Set up a mock private key for signing let private_key = "0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string(); let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap(); let swap = Swap { component: ProtocolComponent { id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(), protocol_system: "uniswap_v2".to_string(), ..Default::default() }, token_in: dai.clone(), token_out: weth(), split: 0f64, }; let swap_encoder_registry = get_swap_encoder_registry(); let encoder = SplitSwapStrategyEncoder::new(private_key, eth_chain(), swap_encoder_registry).unwrap(); let solution = Solution { exact_out: false, given_token: dai, given_amount: BigUint::from_str("3_000_000000000000000000").unwrap(), checked_token: eth(), expected_amount: Some(BigUint::from_str("1_000000000000000000").unwrap()), checked_amount: None, sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(), receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(), router_address: Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(), swaps: vec![swap], native_action: Some(NativeAction::Unwrap), ..Default::default() }; let (calldata, _, _) = encoder .encode_strategy(solution) .unwrap(); let hex_calldata = encode(&calldata); println!("{}", hex_calldata); } #[test] fn test_split_swap_strategy_encoder_complex_route() { // Note: This test does not assert anything. It is only used to obtain integration test // data for our router solidity test. // // Performs a split swap from WETH to USDC though WBTC and DAI using USV2 pools // // ┌──(USV2)──> WBTC ───(USV2)──> USDC // WETH ─┤ // └──(USV2)──> DAI ───(USV2)──> USDC // // Set up a mock private key for signing let private_key = "0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string(); let weth = weth(); let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap(); let wbtc = Bytes::from_str("0x2260fac5e5542a773aa44fbcfedf7c193bc2c599").unwrap(); let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap(); let swap_weth_dai = Swap { component: ProtocolComponent { id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(), protocol_system: "uniswap_v2".to_string(), ..Default::default() }, token_in: weth.clone(), token_out: dai.clone(), split: 0.5f64, }; let swap_weth_wbtc = Swap { component: ProtocolComponent { id: "0xBb2b8038a1640196FbE3e38816F3e67Cba72D940".to_string(), protocol_system: "uniswap_v2".to_string(), ..Default::default() }, token_in: weth.clone(), token_out: wbtc.clone(), // This represents the remaining 50%, but to avoid any rounding errors we set this to // 0 to signify "the remainder of the WETH value". It should still be very close to 50% split: 0f64, }; let swap_dai_usdc = Swap { component: ProtocolComponent { id: "0xAE461cA67B15dc8dc81CE7615e0320dA1A9aB8D5".to_string(), protocol_system: "uniswap_v2".to_string(), ..Default::default() }, token_in: dai.clone(), token_out: usdc.clone(), split: 0f64, }; let swap_wbtc_usdc = Swap { component: ProtocolComponent { id: "0x004375Dff511095CC5A197A54140a24eFEF3A416".to_string(), protocol_system: "uniswap_v2".to_string(), ..Default::default() }, token_in: wbtc.clone(), token_out: usdc.clone(), split: 0f64, }; let swap_encoder_registry = get_swap_encoder_registry(); let encoder = SplitSwapStrategyEncoder::new(private_key, eth_chain(), swap_encoder_registry).unwrap(); let solution = Solution { exact_out: false, given_token: weth, given_amount: BigUint::from_str("1_000000000000000000").unwrap(), checked_token: usdc, expected_amount: Some(BigUint::from_str("3_000_000000").unwrap()), checked_amount: None, sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(), receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(), router_address: Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(), swaps: vec![swap_weth_dai, swap_weth_wbtc, swap_dai_usdc, swap_wbtc_usdc], ..Default::default() }; let (calldata, _, _) = encoder .encode_strategy(solution) .unwrap(); let _hex_calldata = encode(&calldata); println!("{}", _hex_calldata); } #[test] fn test_split_encoding_strategy_usv4() { // Performs a split swap from WETH to USDC though WBTC using two consecutive USV4 pools // // WETH ──(USV4)──> WBTC ───(USV4)──> USDC // // Set up a mock private key for signing let private_key = "0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string(); let weth = weth(); let wbtc = Bytes::from_str("0x2260fac5e5542a773aa44fbcfedf7c193bc2c599").unwrap(); let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap(); let swap_weth_wbtc = Swap { component: ProtocolComponent { id: "0xBb2b8038a1640196FbE3e38816F3e67Cba72D940".to_string(), protocol_system: "uniswap_v4".to_string(), ..Default::default() }, token_in: weth.clone(), token_out: wbtc.clone(), // This represents the remaining 50%, but to avoid any rounding errors we set this to // 0 to signify "the remainder of the WETH value". It should still be very close to 50% split: 0f64, }; let swap_wbtc_usdc = Swap { component: ProtocolComponent { id: "0xAE461cA67B15dc8dc81CE7615e0320dA1A9aB8D5".to_string(), protocol_system: "uniswap_v4".to_string(), ..Default::default() }, token_in: wbtc.clone(), token_out: usdc.clone(), split: 0f64, }; let swap_encoder_registry = get_swap_encoder_registry(); let encoder = SplitSwapStrategyEncoder::new(private_key, eth_chain(), swap_encoder_registry).unwrap(); let solution = Solution { exact_out: false, given_token: weth, given_amount: BigUint::from_str("1_000000000000000000").unwrap(), checked_token: usdc, expected_amount: Some(BigUint::from_str("3_000_000000").unwrap()), checked_amount: None, slippage: None, sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(), receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(), router_address: Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(), swaps: vec![swap_weth_wbtc, swap_wbtc_usdc], ..Default::default() }; let (calldata, _, _) = encoder .encode_strategy(solution) .unwrap(); let expected_input = [ "4860f9ed", // Function selector "0000000000000000000000000000000000000000000000000de0b6b3a7640000", // amount out "000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in "000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token out "0000000000000000000000000000000000000000000000000000000000000000", // min amount out "0000000000000000000000000000000000000000000000000000000000000000", // wrap "0000000000000000000000000000000000000000000000000000000000000000", // unwrap // tokens length (not including intermediary tokens of USV4-optimized swaps) "0000000000000000000000000000000000000000000000000000000000000002", "000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver ] .join(""); // after this there is the permit and because of the deadlines (that depend on block time) // it's hard to assert // "000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in // "0000000000000000000000000000000000000000000000000de0b6b3a7640000", // amount in // "0000000000000000000000000000000000000000000000000000000067c205fe", // expiration // "0000000000000000000000000000000000000000000000000000000000000000", // nonce // "0000000000000000000000002c6a3cd97c6283b95ac8c5a4459ebb0d5fd404f4", // spender // "00000000000000000000000000000000000000000000000000000000679a8006", // deadline // offset of signature (from start of call data to beginning of length indication) // "0000000000000000000000000000000000000000000000000000000000000200", // offset of ple encoded swaps (from start of call data to beginning of length indication) // "0000000000000000000000000000000000000000000000000000000000000280", // length of signature without padding // "0000000000000000000000000000000000000000000000000000000000000041", // signature + padding // "a031b63a01ef5d25975663e5d6c420ef498e3a5968b593cdf846c6729a788186", // "1ddaf79c51453cd501d321ee541d13593e3a266be44103eefdf6e76a032d2870", // "1b00000000000000000000000000000000000000000000000000000000000000" let expected_swaps = String::from(concat!( // length of ple encoded swaps without padding "0000000000000000000000000000000000000000000000000000000000000099", // ple encoded swaps "0097", // Swap length "00", // token in index "01", // token out index "000000", // split // Swap data header "5c2f5a71f67c01775180adc06909288b4c329308", // executor address "bd0625ab", // selector // First swap protocol data "c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in "bb2b8038a1640196fbe3e38816f3e67cba72d940", // component id "3ede3eca2a72b3aecc820e955b36f38437d01395", // receiver "00", // zero2one // Second swap protocol data "2260fac5e5542a773aa44fbcfedf7c193bc2c599", // token in "ae461ca67b15dc8dc81ce7615e0320da1a9ab8d5", // component id "3ede3eca2a72b3aecc820e955b36f38437d01395", // receiver "01", // zero2one "00000000000000", // padding )); let hex_calldata = encode(&calldata); assert_eq!(hex_calldata[..520], expected_input); assert_eq!(hex_calldata[1288..], expected_swaps); } }