// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.26; import "../../src/executors/UniswapV4Executor.sol"; import "../TestUtils.sol"; import "./UniswapV4Utils.sol"; import "@src/executors/UniswapV4Executor.sol"; import {Constants} from "../Constants.sol"; import {SafeCallback} from "@uniswap/v4-periphery/src/base/SafeCallback.sol"; import {Test} from "../../lib/forge-std/src/Test.sol"; contract UniswapV4ExecutorExposed is UniswapV4Executor { constructor(IPoolManager _poolManager, address _permit2) UniswapV4Executor(_poolManager, _permit2) {} function decodeData(bytes calldata data) external pure returns ( address tokenIn, address tokenOut, bool zeroForOne, bool transferFromNeeded, bool transferNeeded, address receiver, UniswapV4Pool[] memory pools ) { return _decodeData(data); } } contract UniswapV4ExecutorTest is Constants, TestUtils { using SafeERC20 for IERC20; UniswapV4ExecutorExposed uniswapV4Exposed; IERC20 USDE = IERC20(USDE_ADDR); IERC20 USDT = IERC20(USDT_ADDR); address poolManager = 0x000000000004444c5dc75cB358380D2e3dE08A90; function setUp() public { uint256 forkBlock = 21817316; vm.createSelectFork(vm.rpcUrl("mainnet"), forkBlock); uniswapV4Exposed = new UniswapV4ExecutorExposed( IPoolManager(poolManager), PERMIT2_ADDRESS ); } function testDecodeParams() public view { bool zeroForOne = true; uint24 pool1Fee = 500; int24 tickSpacing1 = 60; uint24 pool2Fee = 1000; int24 tickSpacing2 = -10; bool transferFromNeeded = false; bool transferNeeded = true; UniswapV4Executor.UniswapV4Pool[] memory pools = new UniswapV4Executor.UniswapV4Pool[](2); pools[0] = UniswapV4Executor.UniswapV4Pool({ intermediaryToken: USDT_ADDR, fee: pool1Fee, tickSpacing: tickSpacing1 }); pools[1] = UniswapV4Executor.UniswapV4Pool({ intermediaryToken: USDE_ADDR, fee: pool2Fee, tickSpacing: tickSpacing2 }); bytes memory data = UniswapV4Utils.encodeExactInput( USDE_ADDR, USDT_ADDR, zeroForOne, transferFromNeeded, transferNeeded, ALICE, pools ); ( address tokenIn, address tokenOut, bool zeroForOneDecoded, bool transferFromNeededDecoded, bool transferNeededDecoded, address receiver, UniswapV4Executor.UniswapV4Pool[] memory decodedPools ) = uniswapV4Exposed.decodeData(data); assertEq(tokenIn, USDE_ADDR); assertEq(tokenOut, USDT_ADDR); assertEq(zeroForOneDecoded, zeroForOne); assertEq(transferFromNeededDecoded, transferFromNeeded); assertEq(transferNeededDecoded, transferNeeded); assertEq(receiver, ALICE); assertEq(decodedPools.length, 2); assertEq(decodedPools[0].intermediaryToken, USDT_ADDR); assertEq(decodedPools[0].fee, pool1Fee); assertEq(decodedPools[0].tickSpacing, tickSpacing1); assertEq(decodedPools[1].intermediaryToken, USDE_ADDR); assertEq(decodedPools[1].fee, pool2Fee); assertEq(decodedPools[1].tickSpacing, tickSpacing2); } function testSingleSwap() public { uint256 amountIn = 100 ether; deal(USDE_ADDR, address(uniswapV4Exposed), amountIn); uint256 usdeBalanceBeforePool = USDE.balanceOf(poolManager); uint256 usdeBalanceBeforeSwapExecutor = USDE.balanceOf(address(uniswapV4Exposed)); UniswapV4Executor.UniswapV4Pool[] memory pools = new UniswapV4Executor.UniswapV4Pool[](1); pools[0] = UniswapV4Executor.UniswapV4Pool({ intermediaryToken: USDT_ADDR, fee: uint24(100), tickSpacing: int24(1) }); bytes memory data = UniswapV4Utils.encodeExactInput( USDE_ADDR, USDT_ADDR, true, false, true, ALICE, pools ); uint256 amountOut = uniswapV4Exposed.swap(amountIn, data); assertEq(USDE.balanceOf(poolManager), usdeBalanceBeforePool + amountIn); assertEq( USDE.balanceOf(address(uniswapV4Exposed)), usdeBalanceBeforeSwapExecutor - amountIn ); assertTrue(USDT.balanceOf(ALICE) == amountOut); } function testSingleSwapIntegration() public { // USDE -> USDT bytes memory protocolData = loadCallDataFromFile("test_encode_uniswap_v4_simple_swap"); uint256 amountIn = 100 ether; deal(USDE_ADDR, address(uniswapV4Exposed), amountIn); uint256 usdeBalanceBeforePool = USDE.balanceOf(poolManager); uint256 usdeBalanceBeforeSwapExecutor = USDE.balanceOf(address(uniswapV4Exposed)); uint256 amountOut = uniswapV4Exposed.swap(amountIn, protocolData); assertEq(USDE.balanceOf(poolManager), usdeBalanceBeforePool + amountIn); assertEq( USDE.balanceOf(ALICE), usdeBalanceBeforeSwapExecutor - amountIn ); assertTrue(USDT.balanceOf(ALICE) == amountOut); } function testMultipleSwap() public { // USDE -> USDT -> WBTC uint256 amountIn = 100 ether; deal(USDE_ADDR, address(uniswapV4Exposed), amountIn); uint256 usdeBalanceBeforePool = USDE.balanceOf(poolManager); uint256 usdeBalanceBeforeSwapExecutor = USDE.balanceOf(address(uniswapV4Exposed)); UniswapV4Executor.UniswapV4Pool[] memory pools = new UniswapV4Executor.UniswapV4Pool[](2); pools[0] = UniswapV4Executor.UniswapV4Pool({ intermediaryToken: USDT_ADDR, fee: uint24(100), tickSpacing: int24(1) }); pools[1] = UniswapV4Executor.UniswapV4Pool({ intermediaryToken: WBTC_ADDR, fee: uint24(3000), tickSpacing: int24(60) }); bytes memory data = UniswapV4Utils.encodeExactInput( USDE_ADDR, WBTC_ADDR, true, false, true, ALICE, pools ); uint256 amountOut = uniswapV4Exposed.swap(amountIn, data); assertEq(USDE.balanceOf(poolManager), usdeBalanceBeforePool + amountIn); assertEq( USDE.balanceOf(address(uniswapV4Exposed)), usdeBalanceBeforeSwapExecutor - amountIn ); assertTrue(IERC20(WBTC_ADDR).balanceOf(ALICE) == amountOut); } function testMultipleSwapIntegration() public { // USDE -> USDT -> WBTC bytes memory protocolData = loadCallDataFromFile("test_encode_uniswap_v4_sequential_swap"); uint256 amountIn = 100 ether; deal(USDE_ADDR, address(uniswapV4Exposed), amountIn); uint256 usdeBalanceBeforePool = USDE.balanceOf(poolManager); uint256 usdeBalanceBeforeSwapExecutor = USDE.balanceOf(address(uniswapV4Exposed)); uint256 amountOut = uniswapV4Exposed.swap(amountIn, protocolData); assertEq(USDE.balanceOf(poolManager), usdeBalanceBeforePool + amountIn); assertEq( USDE.balanceOf(address(uniswapV4Exposed)), usdeBalanceBeforeSwapExecutor - amountIn ); assertTrue(IERC20(WBTC_ADDR).balanceOf(ALICE) == amountOut); } }