// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.26; import "./TychoRouterTestSetup.sol"; import "./executors/UniswapV4Utils.sol"; contract TychoRouterTestProtocolIntegration is TychoRouterTestSetup { function testSingleSwapUSV4CallbackPermit2() public { vm.startPrank(ALICE); uint256 amountIn = 100 ether; deal(USDE_ADDR, ALICE, amountIn); ( IAllowanceTransfer.PermitSingle memory permitSingle, bytes memory signature ) = handlePermit2Approval(USDE_ADDR, tychoRouterAddr, amountIn); UniswapV4Executor.UniswapV4Pool[] memory pools = new UniswapV4Executor.UniswapV4Pool[](1); pools[0] = UniswapV4Executor.UniswapV4Pool({ intermediaryToken: USDT_ADDR, fee: uint24(100), tickSpacing: int24(1) }); bytes memory protocolData = UniswapV4Utils.encodeExactInput( USDE_ADDR, USDT_ADDR, true, RestrictTransferFrom.TransferType.TransferFrom, ALICE, pools ); bytes memory swap = encodeSingleSwap(address(usv4Executor), protocolData); tychoRouter.singleSwapPermit2( amountIn, USDE_ADDR, USDT_ADDR, 99943850, false, false, ALICE, permitSingle, signature, swap ); assertEq(IERC20(USDT_ADDR).balanceOf(ALICE), 99963618); vm.stopPrank(); } function testSplitSwapMultipleUSV4Callback() public { // This test has two uniswap v4 hops that will be executed inside of the V4 pool manager // USDE -> USDT -> WBTC uint256 amountIn = 100 ether; deal(USDE_ADDR, ALICE, amountIn); UniswapV4Executor.UniswapV4Pool[] memory pools = new UniswapV4Executor.UniswapV4Pool[](2); pools[0] = UniswapV4Executor.UniswapV4Pool({ intermediaryToken: USDT_ADDR, fee: uint24(100), tickSpacing: int24(1) }); pools[1] = UniswapV4Executor.UniswapV4Pool({ intermediaryToken: WBTC_ADDR, fee: uint24(3000), tickSpacing: int24(60) }); bytes memory protocolData = UniswapV4Utils.encodeExactInput( USDE_ADDR, WBTC_ADDR, true, RestrictTransferFrom.TransferType.TransferFrom, ALICE, pools ); bytes memory swap = encodeSingleSwap(address(usv4Executor), protocolData); vm.startPrank(ALICE); IERC20(USDE_ADDR).approve(tychoRouterAddr, amountIn); tychoRouter.singleSwap( amountIn, USDE_ADDR, WBTC_ADDR, 118280, false, false, ALICE, true, swap ); assertEq(IERC20(WBTC_ADDR).balanceOf(ALICE), 118281); } function testSingleUSV4IntegrationGroupedSwap() public { // Test created with calldata from our router encoder. // Performs a single swap from USDC to PEPE though ETH using two // consecutive USV4 pools. It's a single swap because it is a consecutive grouped swaps // // USDC ──(USV4)──> ETH ───(USV4)──> PEPE // deal(USDC_ADDR, ALICE, 1 ether); uint256 balanceBefore = IERC20(PEPE_ADDR).balanceOf(ALICE); // Approve permit2 vm.startPrank(ALICE); IERC20(USDC_ADDR).approve(PERMIT2_ADDRESS, type(uint256).max); bytes memory callData = loadCallDataFromFile( "test_single_encoding_strategy_usv4_grouped_swap" ); (bool success,) = tychoRouterAddr.call(callData); vm.stopPrank(); uint256 balanceAfter = IERC20(PEPE_ADDR).balanceOf(ALICE); assertTrue(success, "Call Failed"); assertEq(balanceAfter - balanceBefore, 123172000092711286554274694); } function testMultiProtocolIntegration() public { // Test created with calldata from our router encoder. // // DAI ─(USV2)─> WETH ─(bal)─> WBTC ─(curve)─> USDT ─(ekubo)─> ETH ─(USV4)─> USDC deal(DAI_ADDR, ALICE, 1500 ether); uint256 balanceBefore = address(ALICE).balance; // Approve permit2 vm.startPrank(ALICE); IERC20(DAI_ADDR).approve(PERMIT2_ADDRESS, type(uint256).max); bytes memory callData = loadCallDataFromFile("test_multi_protocol"); (bool success,) = tychoRouterAddr.call(callData); vm.stopPrank(); uint256 balanceAfter = address(ALICE).balance; assertTrue(success, "Call Failed"); assertEq(balanceAfter - balanceBefore, 732214216964381330); } function testSingleUSV4IntegrationInputETH() public { // Test created with calldata from our router encoder. // Performs a single swap from ETH to PEPE without wrapping or unwrapping // // ETH ───(USV4)──> PEPE // deal(ALICE, 1 ether); uint256 balanceBefore = IERC20(PEPE_ADDR).balanceOf(ALICE); bytes memory callData = loadCallDataFromFile("test_single_encoding_strategy_usv4_eth_in"); (bool success,) = tychoRouterAddr.call{value: 1 ether}(callData); vm.stopPrank(); uint256 balanceAfter = IERC20(PEPE_ADDR).balanceOf(ALICE); assertTrue(success, "Call Failed"); assertEq(balanceAfter - balanceBefore, 235610487387677804636755778); } function testSingleUSV4IntegrationOutputETH() public { // Test created with calldata from our router encoder. // Performs a single swap from USDC to ETH without wrapping or unwrapping // // USDC ───(USV4)──> ETH // deal(USDC_ADDR, ALICE, 3000_000000); uint256 balanceBefore = ALICE.balance; // Approve permit2 vm.startPrank(ALICE); IERC20(USDC_ADDR).approve(PERMIT2_ADDRESS, type(uint256).max); bytes memory callData = loadCallDataFromFile("test_single_encoding_strategy_usv4_eth_out"); (bool success,) = tychoRouterAddr.call(callData); vm.stopPrank(); uint256 balanceAfter = ALICE.balance; assertTrue(success, "Call Failed"); console.logUint(balanceAfter - balanceBefore); assertEq(balanceAfter - balanceBefore, 1474406268748155809); } function testSingleMaverickIntegration() public { deal(GHO_ADDR, ALICE, 1 ether); uint256 balanceBefore = IERC20(USDC_ADDR).balanceOf(ALICE); vm.startPrank(ALICE); IERC20(GHO_ADDR).approve(tychoRouterAddr, type(uint256).max); bytes memory callData = loadCallDataFromFile("test_single_encoding_strategy_maverick"); (bool success,) = tychoRouterAddr.call(callData); uint256 balanceAfter = IERC20(USDC_ADDR).balanceOf(ALICE); assertTrue(success, "Call Failed"); assertGe(balanceAfter - balanceBefore, 999725); assertEq(IERC20(WETH_ADDR).balanceOf(tychoRouterAddr), 0); } function testSingleEkuboIntegration() public { vm.stopPrank(); deal(ALICE, 1 ether); uint256 balanceBefore = IERC20(USDC_ADDR).balanceOf(ALICE); // Approve permit2 vm.startPrank(ALICE); bytes memory callData = loadCallDataFromFile("test_single_encoding_strategy_ekubo"); (bool success,) = tychoRouterAddr.call{value: 1 ether}(callData); uint256 balanceAfter = IERC20(USDC_ADDR).balanceOf(ALICE); assertTrue(success, "Call Failed"); assertGe(balanceAfter - balanceBefore, 26173932); assertEq(IERC20(WETH_ADDR).balanceOf(tychoRouterAddr), 0); } function testSingleCurveIntegration() public { deal(UWU_ADDR, ALICE, 1 ether); vm.startPrank(ALICE); IERC20(UWU_ADDR).approve(tychoRouterAddr, type(uint256).max); bytes memory callData = loadCallDataFromFile("test_single_encoding_strategy_curve"); (bool success,) = tychoRouterAddr.call(callData); assertTrue(success, "Call Failed"); assertEq(IERC20(WETH_ADDR).balanceOf(ALICE), 2877855391767); vm.stopPrank(); } function testSingleSwapUSV3Permit2() public { // Trade 1 WETH for DAI with 1 swap on Uniswap V3 using Permit2 // Tests entire USV3 flow including callback // 1 WETH -> DAI // (USV3) vm.startPrank(ALICE); uint256 amountIn = 10 ** 18; deal(WETH_ADDR, ALICE, amountIn); ( IAllowanceTransfer.PermitSingle memory permitSingle, bytes memory signature ) = handlePermit2Approval(WETH_ADDR, tychoRouterAddr, amountIn); uint256 expAmountOut = 1205_128428842122129186; //Swap 1 WETH for 1205.12 DAI bool zeroForOne = false; bytes memory protocolData = encodeUniswapV3Swap( WETH_ADDR, DAI_ADDR, ALICE, DAI_WETH_USV3, zeroForOne, RestrictTransferFrom.TransferType.TransferFrom ); bytes memory swap = encodeSingleSwap(address(usv3Executor), protocolData); tychoRouter.singleSwapPermit2( amountIn, WETH_ADDR, DAI_ADDR, expAmountOut - 1, false, false, ALICE, permitSingle, signature, swap ); uint256 finalBalance = IERC20(DAI_ADDR).balanceOf(ALICE); assertGe(finalBalance, expAmountOut); vm.stopPrank(); } function testSingleBebopIntegration() public { // The calldata swaps 200 USDC for ONDO // The receiver in the order is 0xc5564C13A157E6240659fb81882A28091add8670 address orderReceiver = 0xc5564C13A157E6240659fb81882A28091add8670; deal(USDC_ADDR, ALICE, 200 * 10 ** 6); // 200 USDC uint256 expAmountOut = 237212396774431060000; // Expected ONDO amount from calldata // Fund the maker with ONDO and approve settlement deal( ONDO_ADDR, 0xCe79b081c0c924cb67848723ed3057234d10FC6b, expAmountOut ); vm.prank(0xCe79b081c0c924cb67848723ed3057234d10FC6b); IERC20(ONDO_ADDR).approve(BEBOP_SETTLEMENT, expAmountOut); vm.startPrank(ALICE); IERC20(USDC_ADDR).approve(tychoRouterAddr, type(uint256).max); bytes memory callData = loadCallDataFromFile("test_single_encoding_strategy_bebop"); (bool success,) = tychoRouterAddr.call(callData); // Check the receiver's balance (not ALICE, since the order specifies a different receiver) uint256 finalBalance = IERC20(ONDO_ADDR).balanceOf(orderReceiver); assertTrue(success, "Call Failed"); assertGe(finalBalance, expAmountOut); assertEq(IERC20(USDC_ADDR).balanceOf(tychoRouterAddr), 0); vm.stopPrank(); } function testBebopAggregateIntegration() public { // Setup: Alice has USDC, wants WETH (through multiple makers) deal(USDC_ADDR, ALICE, 1000 * 10 ** 6); uint256 expAmountOut = 400000000000000000; // 0.4 WETH // Fund the two makers from the calldata with WETH address maker1 = 0x1111111111111111111111111111111111111111; address maker2 = 0x2222222222222222222222222222222222222222; // Maker 1 provides 0.24 WETH, Maker 2 provides 0.16 WETH deal(WETH_ADDR, maker1, 240000000000000000); deal(WETH_ADDR, maker2, 160000000000000000); // Makers approve settlement contract vm.prank(maker1); IERC20(WETH_ADDR).approve(BEBOP_SETTLEMENT, type(uint256).max); vm.prank(maker2); IERC20(WETH_ADDR).approve(BEBOP_SETTLEMENT, type(uint256).max); vm.startPrank(ALICE); IERC20(USDC_ADDR).approve(tychoRouterAddr, type(uint256).max); bytes memory callData = loadCallDataFromFile( "test_single_encoding_strategy_bebop_aggregate" ); (bool success,) = tychoRouterAddr.call(callData); uint256 finalBalance = IERC20(WETH_ADDR).balanceOf(ALICE); assertTrue(success, "Call Failed"); assertGe(finalBalance, expAmountOut); assertEq(IERC20(USDC_ADDR).balanceOf(tychoRouterAddr), 0); vm.stopPrank(); } }