// SPDX-License-Identifier: BUSL-1.1 pragma solidity ^0.8.26; import "../TestUtils.sol"; import "@src/executors/BebopExecutor.sol"; import {Constants} from "../Constants.sol"; import {Permit2TestHelper} from "../Permit2TestHelper.sol"; import {Test, console} from "forge-std/Test.sol"; import {StdCheats} from "forge-std/StdCheats.sol"; import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import {SafeERC20} from "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol"; contract MockToken is ERC20 { uint8 private _decimals; constructor(string memory name_, string memory symbol_, uint8 decimals_) ERC20(name_, symbol_) { _decimals = decimals_; } function mint(address to, uint256 amount) external { _mint(to, amount); } function decimals() public view virtual override returns (uint8) { return _decimals; } } contract BebopExecutorHarness is BebopExecutor, Test { using SafeERC20 for IERC20; constructor(address _bebopSettlement, address _permit2) BebopExecutor(_bebopSettlement, _permit2) {} // Expose the internal decodeData function for testing function decodeParams(bytes calldata data) external pure returns ( address tokenIn, address tokenOut, RestrictTransferFrom.TransferType transferType, BebopExecutor.OrderType orderType, uint256 filledTakerAmount, bytes memory quoteData, bytes memory makerSignaturesData, bool // approvalNeeded - unused in test harness ) { return _decodeData(data); } // Expose the internal getActualFilledTakerAmount function for testing function exposed_getActualFilledTakerAmount( uint256 givenAmount, uint256 orderTakerAmount, uint256 filledTakerAmount ) external pure returns (uint256 actualFilledTakerAmount) { return _getActualFilledTakerAmount( givenAmount, orderTakerAmount, filledTakerAmount ); } // Override to prank the taker address before calling the real settlement function _executeSingleRFQ( address tokenIn, address tokenOut, TransferType transferType, uint256 givenAmount, uint256 filledTakerAmount, bytes memory quoteData, bytes memory makerSignaturesData, bool ) internal virtual override returns (uint256 amountOut) { // Decode the order from quoteData IBebopSettlement.Single memory order = abi.decode(quoteData, (IBebopSettlement.Single)); // Decode the MakerSignature array (should contain exactly 1 signature for Single orders) IBebopSettlement.MakerSignature[] memory signatures = abi.decode(makerSignaturesData, (IBebopSettlement.MakerSignature[])); // Validate that there is exactly one maker signature if (signatures.length != 1) { revert BebopExecutor__InvalidInput(); } // Get the maker signature from the first and only element of the array IBebopSettlement.MakerSignature memory sig = signatures[0]; uint256 actualFilledTakerAmount = _getActualFilledTakerAmount( givenAmount, order.taker_amount, filledTakerAmount ); if (tokenIn != address(0)) { // Transfer tokens to executor _transfer(address(this), transferType, tokenIn, givenAmount); } // NOTE: NOT NEEDED FOR TESTING // // Approve Bebop settlement to spend tokens if needed // if (approvalNeeded) { // // slither-disable-next-line unused-return // IERC20(tokenIn).forceApprove(bebopSettlement, type(uint256).max); // } // NOTE: SETUP FOR TESTING // Record balances before swap to calculate amountOut uint256 balanceBefore = tokenOut == address(0) ? order.receiver.balance : IERC20(tokenOut).balanceOf(order.receiver); // Execute the swap with ETH value if needed uint256 ethValue = tokenIn == address(0) ? actualFilledTakerAmount : 0; // For testing: transfer tokens from executor to taker address // This simulates the taker having the tokens with approval if (tokenIn != address(0)) { IERC20(tokenIn).safeTransfer( order.taker_address, actualFilledTakerAmount ); // Approve settlement from taker's perspective // Stop any existing prank first vm.stopPrank(); vm.startPrank(order.taker_address); IERC20(tokenIn).forceApprove(bebopSettlement, type(uint256).max); vm.stopPrank(); } else { vm.stopPrank(); // For native ETH, send it to the taker address payable(order.taker_address).transfer(actualFilledTakerAmount); } // IMPORTANT: Prank as the taker address to pass the settlement validation vm.stopPrank(); vm.startPrank(order.taker_address); // Set block timestamp to ensure order is valid regardless of fork block uint256 currentTimestamp = block.timestamp; vm.warp(order.expiry - 1); // Set timestamp to just before expiry // Use swapSingle - tokens are now in taker's wallet with approval // slither-disable-next-line arbitrary-send-eth IBebopSettlement(bebopSettlement).swapSingle{value: ethValue}( order, sig, actualFilledTakerAmount ); // Restore original timestamp vm.warp(currentTimestamp); vm.stopPrank(); // NOTE: END SETUP FOR TESTING // Calculate actual amount received uint256 balanceAfter = tokenOut == address(0) ? order.receiver.balance : IERC20(tokenOut).balanceOf(order.receiver); amountOut = balanceAfter - balanceBefore; } // Override to execute aggregate orders through the real settlement function _executeAggregateRFQ( address tokenIn, address tokenOut, TransferType transferType, uint256 givenAmount, uint256 filledTakerAmount, bytes memory quoteData, bytes memory makerSignaturesData, bool // approvalNeeded - unused in test harness ) internal virtual override returns (uint256 amountOut) { // Decode the Aggregate order IBebopSettlement.Aggregate memory order = abi.decode(quoteData, (IBebopSettlement.Aggregate)); // Decode the MakerSignature array (can contain multiple signatures for Aggregate orders) IBebopSettlement.MakerSignature[] memory signatures = abi.decode(makerSignaturesData, (IBebopSettlement.MakerSignature[])); // Aggregate orders should have at least one signature if (signatures.length == 0) { revert BebopExecutor__InvalidInput(); } // For aggregate orders, calculate total taker amount across all amounts of the 2D array uint256 totalTakerAmount; for (uint256 i = 0; i < order.taker_amounts.length; i++) { for (uint256 j = 0; j < order.taker_amounts[i].length; j++) { totalTakerAmount += order.taker_amounts[i][j]; } } uint256 actualFilledTakerAmount = _getActualFilledTakerAmount( givenAmount, totalTakerAmount, filledTakerAmount ); if (tokenIn != address(0)) { // Transfer tokens to executor _transfer(address(this), transferType, tokenIn, givenAmount); } // NOTE: NOT NEEDED FOR TESTING // // Approve Bebop settlement to spend tokens if needed // if (approvalNeeded) { // // slither-disable-next-line unused-return // IERC20(tokenIn).forceApprove(bebopSettlement, type(uint256).max); // } // NOTE: SETUP FOR TESTING // Record balances before swap to calculate amountOut uint256 balanceBefore = tokenOut == address(0) ? order.receiver.balance : IERC20(tokenOut).balanceOf(order.receiver); // Execute the swap with ETH value if needed uint256 ethValue = tokenIn == address(0) ? actualFilledTakerAmount : 0; // For testing: transfer tokens from executor to taker address // This simulates the taker having the tokens with approval if (tokenIn != address(0)) { IERC20(tokenIn).safeTransfer( order.taker_address, actualFilledTakerAmount ); // Approve settlement from taker's perspective // Stop any existing prank first vm.stopPrank(); vm.startPrank(order.taker_address); IERC20(tokenIn).forceApprove(bebopSettlement, type(uint256).max); vm.stopPrank(); } else { vm.stopPrank(); // For native ETH, send it to the taker address payable(order.taker_address).transfer(actualFilledTakerAmount); } // IMPORTANT: Prank as the taker address to pass the settlement validation vm.stopPrank(); vm.startPrank(order.taker_address); // Set block timestamp to ensure order is valid regardless of fork block uint256 currentTimestamp = block.timestamp; vm.warp(order.expiry - 1); // Set timestamp to just before expiry // Use swapAggregate - tokens are now in taker's wallet with approval // slither-disable-next-line arbitrary-send-eth IBebopSettlement(bebopSettlement).swapAggregate{value: ethValue}( order, signatures, actualFilledTakerAmount ); // Restore original timestamp vm.warp(currentTimestamp); vm.stopPrank(); // NOTE: END SETUP FOR TESTING // Calculate actual amount received uint256 balanceAfter = tokenOut == address(0) ? order.receiver.balance : IERC20(tokenOut).balanceOf(order.receiver); amountOut = balanceAfter - balanceBefore; } } contract BebopExecutorTest is Constants, Permit2TestHelper, TestUtils { using SafeERC20 for IERC20; BebopExecutorHarness bebopExecutor; IERC20 WETH = IERC20(WETH_ADDR); IERC20 USDC = IERC20(USDC_ADDR); IERC20 DAI = IERC20(DAI_ADDR); IERC20 WBTC = IERC20(WBTC_ADDR); IERC20 ONDO = IERC20(ONDO_ADDR); IERC20 USDT = IERC20(USDT_ADDR); // Test data structures for mainnet fork tests struct SingleOrderTestData { uint256 forkBlock; IBebopSettlement.Single order; bytes signature; uint256 amountIn; uint256 filledTakerAmount; // 0 means fill entire order uint256 expectedAmountOut; address sender; address receiver; } struct AggregateOrderTestData { uint256 forkBlock; IBebopSettlement.Aggregate order; bytes[] signatures; // Multiple signatures for multiple makers uint256[] amountsIn; uint256[] filledTakerAmounts; // 0 in array means fill entire amount for that token uint256[] expectedAmountsOut; address sender; address receiver; } function setUp() public { // Fork will be created in individual tests to allow different fork blocks } function testDecodeParams() public { // Fork to ensure consistent setup vm.createSelectFork(vm.rpcUrl("mainnet"), 22667985); // Deploy Bebop executor harness with real settlement contract bebopExecutor = new BebopExecutorHarness(BEBOP_SETTLEMENT, PERMIT2_ADDRESS); bytes memory quoteData = hex"1234567890abcdef"; bytes memory signature = hex"aabbccdd"; // Create ABI-encoded MakerSignature array IBebopSettlement.MakerSignature[] memory signatures = new IBebopSettlement.MakerSignature[](1); signatures[0] = IBebopSettlement.MakerSignature({ signatureBytes: signature, flags: uint256(1) // EIP712 signature type }); bytes memory makerSignaturesData = abi.encode(signatures); uint256 filledTakerAmount = 1e18; // 1 WETH bytes memory params = abi.encodePacked( WETH_ADDR, USDC_ADDR, uint8(RestrictTransferFrom.TransferType.Transfer), uint8(0), // OrderType.Single filledTakerAmount, uint32(quoteData.length), quoteData, uint32(makerSignaturesData.length), makerSignaturesData, uint8(1) // approvalNeeded: true ); ( address tokenIn, address tokenOut, RestrictTransferFrom.TransferType transferType, BebopExecutor.OrderType orderType, uint256 decodedFilledTakerAmount, bytes memory decodedQuoteData, bytes memory decodedMakerSignaturesData, bool decodedApprovalNeeded ) = bebopExecutor.decodeParams(params); assertEq(tokenIn, WETH_ADDR); assertEq(tokenOut, USDC_ADDR); assertEq( uint8(transferType), uint8(RestrictTransferFrom.TransferType.Transfer) ); assertEq(uint8(orderType), uint8(BebopExecutor.OrderType.Single)); assertEq(decodedFilledTakerAmount, filledTakerAmount); assertEq(keccak256(decodedQuoteData), keccak256(quoteData)); assertEq( keccak256(decodedMakerSignaturesData), keccak256(makerSignaturesData) ); assertTrue(decodedApprovalNeeded); // Approval needed should be true // Also verify we can decode the signatures back IBebopSettlement.MakerSignature[] memory decodedSignatures = abi.decode( decodedMakerSignaturesData, (IBebopSettlement.MakerSignature[]) ); assertEq(decodedSignatures.length, 1); assertEq( keccak256(decodedSignatures[0].signatureBytes), keccak256(signature) ); assertEq(decodedSignatures[0].flags, 1); // EIP712 } // Single Order Tests function testSingleOrder() public { // Fork at the right block first vm.createSelectFork(vm.rpcUrl("mainnet"), 22667985); // Deploy Bebop executor harness that uses vm.prank bebopExecutor = new BebopExecutorHarness(BEBOP_SETTLEMENT, PERMIT2_ADDRESS); // Create test data from real mainnet transaction // https://etherscan.io/tx/0x6279bc970273b6e526e86d9b69133c2ca1277e697ba25375f5e6fc4df50c0c94 address originalTakerAddress = 0xc5564C13A157E6240659fb81882A28091add8670; // Using the original order data with the real settlement contract SingleOrderTestData memory testData = SingleOrderTestData({ forkBlock: 22667985, order: IBebopSettlement.Single({ expiry: 1749483840, taker_address: originalTakerAddress, // Original taker address from the real order maker_address: 0xCe79b081c0c924cb67848723ed3057234d10FC6b, maker_nonce: 1749483765992417, taker_token: USDC_ADDR, maker_token: ONDO_ADDR, taker_amount: 200000000, maker_amount: 237212396774431060000, receiver: originalTakerAddress, packed_commands: 0, flags: 51915842898789398998206002334703507894664330885127600393944965515693155942400 }), signature: hex"eb5419631614978da217532a40f02a8f2ece37d8cfb94aaa602baabbdefb56b474f4c2048a0f56502caff4ea7411d99eed6027cd67dc1088aaf4181dcb0df7051c", amountIn: 200000000, filledTakerAmount: 0, expectedAmountOut: 237212396774431060000, sender: originalTakerAddress, receiver: originalTakerAddress }); // Setup: fund the original taker and have them approve the test contract (acting as router) deal(USDC_ADDR, originalTakerAddress, testData.amountIn); // Also fund the maker with ONDO tokens and have them approve the settlement deal( ONDO_ADDR, testData.order.maker_address, testData.order.maker_amount ); vm.prank(testData.order.maker_address); ONDO.approve(BEBOP_SETTLEMENT, testData.order.maker_amount); // Original taker approves the test contract (router) to spend their USDC vm.prank(originalTakerAddress); USDC.approve(address(this), testData.amountIn); // Test contract (router) pulls tokens from original taker and sends to executor USDC.transferFrom( originalTakerAddress, address(bebopExecutor), testData.amountIn ); // Record initial balances uint256 ondoBefore = ONDO.balanceOf(originalTakerAddress); // Execute the swap (executor already has the tokens) bytes memory quoteData = abi.encode(testData.order); IBebopSettlement.MakerSignature[] memory signatures = new IBebopSettlement.MakerSignature[](1); signatures[0] = IBebopSettlement.MakerSignature({ signatureBytes: testData.signature, flags: uint256(0) // ETH_SIGN }); bytes memory makerSignaturesData = abi.encode(signatures); bytes memory params = abi.encodePacked( USDC_ADDR, ONDO_ADDR, uint8(RestrictTransferFrom.TransferType.Transfer), uint8(BebopExecutor.OrderType.Single), testData.filledTakerAmount, uint32(quoteData.length), quoteData, uint32(makerSignaturesData.length), makerSignaturesData, uint8(1) // approvalNeeded: true ); uint256 amountOut = bebopExecutor.swap(testData.amountIn, params); // Verify results assertEq(amountOut, testData.expectedAmountOut, "Incorrect amount out"); assertEq( ONDO.balanceOf(originalTakerAddress) - ondoBefore, testData.expectedAmountOut, "ONDO balance mismatch" ); assertEq( USDC.balanceOf(address(bebopExecutor)), 0, "USDC left in executor" ); assertEq( ONDO.balanceOf(address(bebopExecutor)), 0, "ONDO left in executor" ); } function testSingleOrder_PartialFill() public { // Fork at the right block first vm.createSelectFork(vm.rpcUrl("mainnet"), 22667985); // Deploy Bebop executor harness that uses vm.prank bebopExecutor = new BebopExecutorHarness(BEBOP_SETTLEMENT, PERMIT2_ADDRESS); // Test partial fill - only fill half of the order address originalTakerAddress = 0xc5564C13A157E6240659fb81882A28091add8670; // Using the same order but only filling half SingleOrderTestData memory testData = SingleOrderTestData({ forkBlock: 22667985, order: IBebopSettlement.Single({ expiry: 1749483840, taker_address: originalTakerAddress, maker_address: 0xCe79b081c0c924cb67848723ed3057234d10FC6b, maker_nonce: 1749483765992417, taker_token: USDC_ADDR, maker_token: ONDO_ADDR, taker_amount: 200000000, // 200 USDC total order maker_amount: 237212396774431060000, // Total ONDO for full order receiver: originalTakerAddress, packed_commands: 0, flags: 51915842898789398998206002334703507894664330885127600393944965515693155942400 }), signature: hex"eb5419631614978da217532a40f02a8f2ece37d8cfb94aaa602baabbdefb56b474f4c2048a0f56502caff4ea7411d99eed6027cd67dc1088aaf4181dcb0df7051c", amountIn: 100000000, // Only provide 100 USDC (half) filledTakerAmount: 100000000, // Explicitly fill only 100 USDC expectedAmountOut: 118606198387215530000, // Expected proportional ONDO output (half of 237.21) sender: originalTakerAddress, receiver: originalTakerAddress }); // Setup: fund the original taker with partial amount deal(USDC_ADDR, originalTakerAddress, testData.amountIn); // Fund the maker with FULL amount (they need enough for any partial fill) deal( ONDO_ADDR, testData.order.maker_address, testData.order.maker_amount ); vm.prank(testData.order.maker_address); ONDO.approve(BEBOP_SETTLEMENT, testData.order.maker_amount); // Original taker approves the test contract (router) to spend their USDC vm.prank(originalTakerAddress); USDC.approve(address(this), testData.amountIn); // Test contract (router) pulls tokens from original taker and sends to executor USDC.transferFrom( originalTakerAddress, address(bebopExecutor), testData.amountIn ); // Record initial balances uint256 ondoBefore = ONDO.balanceOf(originalTakerAddress); // Execute the partial swap (executor already has the tokens) bytes memory quoteData = abi.encode(testData.order); IBebopSettlement.MakerSignature[] memory signatures = new IBebopSettlement.MakerSignature[](1); signatures[0] = IBebopSettlement.MakerSignature({ signatureBytes: testData.signature, flags: uint256(0) // ETH_SIGN }); bytes memory makerSignaturesData = abi.encode(signatures); bytes memory params = abi.encodePacked( USDC_ADDR, ONDO_ADDR, uint8(RestrictTransferFrom.TransferType.Transfer), uint8(BebopExecutor.OrderType.Single), testData.filledTakerAmount, // Partial fill amount uint32(quoteData.length), quoteData, uint32(makerSignaturesData.length), makerSignaturesData, uint8(1) // approvalNeeded: true ); uint256 amountOut = bebopExecutor.swap(testData.amountIn, params); // Verify partial fill results assertEq( amountOut, testData.expectedAmountOut, "Incorrect partial amount out" ); assertEq( ONDO.balanceOf(originalTakerAddress) - ondoBefore, testData.expectedAmountOut, "ONDO balance mismatch" ); // Verify no tokens left in executor assertEq( USDC.balanceOf(address(bebopExecutor)), 0, "USDC left in executor" ); assertEq( ONDO.balanceOf(address(bebopExecutor)), 0, "ONDO left in executor" ); } // Aggregate Order Tests function testAggregateOrder() public { // Fork at a suitable block for aggregate order testing vm.createSelectFork(vm.rpcUrl("mainnet"), 21370890); // Deploy Bebop executor harness that uses vm.prank bebopExecutor = new BebopExecutorHarness(BEBOP_SETTLEMENT, PERMIT2_ADDRESS); // Store the initial ETH balance (dust from forked state) uint256 initialExecutorBalance = address(bebopExecutor).balance; // Create test data from real mainnet transaction // https://etherscan.io/tx/0xec88410136c287280da87d0a37c1cb745f320406ca3ae55c678dec11996c1b1c address originalTakerAddress = 0x7078B12Ca5B294d95e9aC16D90B7D38238d8F4E6; // Create the 2D arrays for tokens and amounts address[][] memory takerTokens = new address[][](2); takerTokens[0] = new address[](1); takerTokens[0][0] = WETH_ADDR; // WETH for first maker takerTokens[1] = new address[](1); takerTokens[1][0] = WETH_ADDR; // WETH for second maker address[][] memory makerTokens = new address[][](2); makerTokens[0] = new address[](1); makerTokens[0][0] = USDC_ADDR; // USDC from first maker makerTokens[1] = new address[](1); makerTokens[1][0] = USDC_ADDR; // USDC from second maker uint256[][] memory takerAmounts = new uint256[][](2); takerAmounts[0] = new uint256[](1); takerAmounts[0][0] = 5812106401997138; // First maker takes ~0.0058 ETH takerAmounts[1] = new uint256[](1); takerAmounts[1][0] = 4037893598002862; // Second maker takes ~0.0040 ETH uint256[][] memory makerAmounts = new uint256[][](2); makerAmounts[0] = new uint256[](1); makerAmounts[0][0] = 10607211; // First maker gives ~10.6 USDC makerAmounts[1] = new uint256[](1); makerAmounts[1][0] = 7362350; // Second maker gives ~7.36 USDC // Create makers array address[] memory makerAddresses = new address[](2); makerAddresses[0] = 0x67336Cec42645F55059EfF241Cb02eA5cC52fF86; makerAddresses[1] = 0xBF19CbF0256f19f39A016a86Ff3551ecC6f2aAFE; // Create maker nonces array uint256[] memory makerNonces = new uint256[](2); makerNonces[0] = 1746367197308; makerNonces[1] = 15460096; // Create the aggregate order IBebopSettlement.Aggregate memory order = IBebopSettlement.Aggregate({ expiry: 1746367285, taker_address: originalTakerAddress, maker_addresses: makerAddresses, maker_nonces: makerNonces, taker_tokens: takerTokens, maker_tokens: makerTokens, taker_amounts: takerAmounts, maker_amounts: makerAmounts, receiver: originalTakerAddress, commands: hex"00040004", flags: 95769172144825922628485191511070792431742484643425438763224908097896054784000 }); // Total amounts uint256 totalTakerAmount = takerAmounts[0][0] + takerAmounts[1][0]; // 0.00985 ETH total uint256 totalMakerAmount = makerAmounts[0][0] + makerAmounts[1][0]; // 17.969561 USDC total // Fund makers with USDC and approve settlement deal(USDC_ADDR, makerAddresses[0], makerAmounts[0][0]); deal(USDC_ADDR, makerAddresses[1], makerAmounts[1][0]); vm.prank(makerAddresses[0]); USDC.approve(BEBOP_SETTLEMENT, makerAmounts[0][0]); vm.prank(makerAddresses[1]); USDC.approve(BEBOP_SETTLEMENT, makerAmounts[1][0]); // ETH will be sent directly with the swap call // Fund the test contract with ETH to send with the swap vm.deal(address(this), totalTakerAmount); // Record initial balances uint256 usdcBefore = USDC.balanceOf(originalTakerAddress); // Create maker signatures IBebopSettlement.MakerSignature[] memory signatures = new IBebopSettlement.MakerSignature[](2); signatures[0] = IBebopSettlement.MakerSignature({ signatureBytes: hex"d5abb425f9bac1f44d48705f41a8ab9cae207517be8553d2c03b06a88995f2f351ab8ce7627a87048178d539dd64fd2380245531a0c8e43fdc614652b1f32fc71c", flags: 0 // ETH_SIGN }); signatures[1] = IBebopSettlement.MakerSignature({ signatureBytes: hex"f38c698e48a3eac48f184bc324fef0b135ee13705ab38cc0bbf5a792f21002f051e445b9e7d57cf24c35e17629ea35b3263591c4abf8ca87ffa44b41301b89c41b", flags: 0 // ETH_SIGN }); // Encode order and signatures bytes memory quoteData = abi.encode(order); bytes memory makerSignaturesData = abi.encode(signatures); // Create packed params for executor with native ETH as input bytes memory params = abi.encodePacked( address(0), // tokenIn: native ETH USDC_ADDR, // tokenOut uint8(RestrictTransferFrom.TransferType.Transfer), uint8(BebopExecutor.OrderType.Aggregate), uint256(0), // filledTakerAmount: 0 for full fill uint32(quoteData.length), quoteData, uint32(makerSignaturesData.length), makerSignaturesData, uint8(0) // approvalNeeded: false for native ETH ); // Execute the aggregate swap with ETH value uint256 amountOut = bebopExecutor.swap{value: totalTakerAmount}( totalTakerAmount, params ); // Verify results assertEq(amountOut, totalMakerAmount, "Incorrect amount out"); assertEq( USDC.balanceOf(originalTakerAddress) - usdcBefore, totalMakerAmount, "USDC balance mismatch" ); assertEq( USDC.balanceOf(address(bebopExecutor)), 0, "USDC left in executor" ); assertEq( address(bebopExecutor).balance, initialExecutorBalance, "ETH left in executor should match initial dust amount" ); } function testAggregateOrder_PartialFill() public { // Fork at a suitable block for aggregate order testing vm.createSelectFork(vm.rpcUrl("mainnet"), 21370890); // Deploy Bebop executor harness that uses vm.prank bebopExecutor = new BebopExecutorHarness(BEBOP_SETTLEMENT, PERMIT2_ADDRESS); // Store the initial ETH balance (dust from forked state) uint256 initialExecutorBalance = address(bebopExecutor).balance; // Same aggregate order as before, but with partial fill address originalTakerAddress = 0x7078B12Ca5B294d95e9aC16D90B7D38238d8F4E6; // Create the 2D arrays for tokens and amounts address[][] memory takerTokens = new address[][](2); takerTokens[0] = new address[](1); takerTokens[0][0] = WETH_ADDR; takerTokens[1] = new address[](1); takerTokens[1][0] = WETH_ADDR; address[][] memory makerTokens = new address[][](2); makerTokens[0] = new address[](1); makerTokens[0][0] = USDC_ADDR; makerTokens[1] = new address[](1); makerTokens[1][0] = USDC_ADDR; uint256[][] memory takerAmounts = new uint256[][](2); takerAmounts[0] = new uint256[](1); takerAmounts[0][0] = 5812106401997138; takerAmounts[1] = new uint256[](1); takerAmounts[1][0] = 4037893598002862; uint256[][] memory makerAmounts = new uint256[][](2); makerAmounts[0] = new uint256[](1); makerAmounts[0][0] = 10607211; makerAmounts[1] = new uint256[](1); makerAmounts[1][0] = 7362350; // Create makers array address[] memory makerAddresses = new address[](2); makerAddresses[0] = 0x67336Cec42645F55059EfF241Cb02eA5cC52fF86; makerAddresses[1] = 0xBF19CbF0256f19f39A016a86Ff3551ecC6f2aAFE; // Create maker nonces array uint256[] memory makerNonces = new uint256[](2); makerNonces[0] = 1746367197308; makerNonces[1] = 15460096; // Create the aggregate order IBebopSettlement.Aggregate memory order = IBebopSettlement.Aggregate({ expiry: 1746367285, taker_address: originalTakerAddress, maker_addresses: makerAddresses, maker_nonces: makerNonces, taker_tokens: takerTokens, maker_tokens: makerTokens, taker_amounts: takerAmounts, maker_amounts: makerAmounts, receiver: originalTakerAddress, commands: hex"00040004", flags: 95769172144825922628485191511070792431742484643425438763224908097896054784000 }); // Total amounts uint256 totalTakerAmount = takerAmounts[0][0] + takerAmounts[1][0]; uint256 totalMakerAmount = makerAmounts[0][0] + makerAmounts[1][0]; // We'll do a 50% partial fill uint256 partialFillAmount = totalTakerAmount / 2; uint256 expectedPartialOutput = totalMakerAmount / 2; // Fund makers with FULL amounts (they need enough for any partial fill) deal(USDC_ADDR, makerAddresses[0], makerAmounts[0][0]); deal(USDC_ADDR, makerAddresses[1], makerAmounts[1][0]); vm.prank(makerAddresses[0]); USDC.approve(BEBOP_SETTLEMENT, makerAmounts[0][0]); vm.prank(makerAddresses[1]); USDC.approve(BEBOP_SETTLEMENT, makerAmounts[1][0]); // ETH will be sent directly with the swap call // Fund the test contract with ETH to send with the swap vm.deal(address(this), partialFillAmount); // Record initial balances uint256 usdcBefore = USDC.balanceOf(originalTakerAddress); // Create maker signatures IBebopSettlement.MakerSignature[] memory signatures = new IBebopSettlement.MakerSignature[](2); signatures[0] = IBebopSettlement.MakerSignature({ signatureBytes: hex"d5abb425f9bac1f44d48705f41a8ab9cae207517be8553d2c03b06a88995f2f351ab8ce7627a87048178d539dd64fd2380245531a0c8e43fdc614652b1f32fc71c", flags: 0 }); signatures[1] = IBebopSettlement.MakerSignature({ signatureBytes: hex"f38c698e48a3eac48f184bc324fef0b135ee13705ab38cc0bbf5a792f21002f051e445b9e7d57cf24c35e17629ea35b3263591c4abf8ca87ffa44b41301b89c41b", flags: 0 }); // Encode order and signatures bytes memory quoteData = abi.encode(order); bytes memory makerSignaturesData = abi.encode(signatures); // Create packed params for executor with partial fill amount bytes memory params = abi.encodePacked( address(0), // tokenIn: native ETH USDC_ADDR, uint8(RestrictTransferFrom.TransferType.Transfer), uint8(BebopExecutor.OrderType.Aggregate), partialFillAmount, // Specify partial fill amount uint32(quoteData.length), quoteData, uint32(makerSignaturesData.length), makerSignaturesData, uint8(0) // approvalNeeded: false for native ETH ); // Execute the partial aggregate swap with ETH value uint256 amountOut = bebopExecutor.swap{value: partialFillAmount}( partialFillAmount, params ); // Verify results - should be proportional to the partial fill assertEq( amountOut, expectedPartialOutput, "Incorrect partial amount out" ); assertEq( USDC.balanceOf(originalTakerAddress) - usdcBefore, expectedPartialOutput, "USDC balance mismatch for partial fill" ); assertEq( USDC.balanceOf(address(bebopExecutor)), 0, "USDC left in executor" ); assertEq( address(bebopExecutor).balance, initialExecutorBalance, "ETH left in executor should match initial dust amount" ); } function testInvalidDataLength() public { // Fork to ensure consistent setup vm.createSelectFork(vm.rpcUrl("mainnet"), 22667985); // Deploy Bebop executor with real settlement contract bebopExecutor = new BebopExecutorHarness(BEBOP_SETTLEMENT, PERMIT2_ADDRESS); bytes memory quoteData = hex"1234567890abcdef"; bytes memory signature = hex"aabbccdd"; // Create ABI-encoded MakerSignature array IBebopSettlement.MakerSignature[] memory signatures = new IBebopSettlement.MakerSignature[](1); signatures[0] = IBebopSettlement.MakerSignature({ signatureBytes: signature, flags: uint256(1) // EIP712 signature type }); bytes memory makerSignaturesData = abi.encode(signatures); // Create params with correct length first uint256 filledTakerAmount = 1e18; bytes memory validParams = abi.encodePacked( WETH_ADDR, USDC_ADDR, uint8(RestrictTransferFrom.TransferType.Transfer), uint8(0), // OrderType.Single filledTakerAmount, uint32(quoteData.length), quoteData, uint32(makerSignaturesData.length), makerSignaturesData, uint8(1) // approvalNeeded: true ); // Verify valid params work bebopExecutor.decodeParams(validParams); // Add extra bytes at the end, this should fail bytes memory invalidParams = abi.encodePacked(validParams, hex"ff"); vm.expectRevert(BebopExecutor.BebopExecutor__InvalidDataLength.selector); bebopExecutor.decodeParams(invalidParams); // Try with insufficient data, should fail bytes memory tooShortParams = abi.encodePacked( WETH_ADDR, USDC_ADDR, uint8(RestrictTransferFrom.TransferType.Transfer) ); // Missing rest of the data vm.expectRevert(BebopExecutor.BebopExecutor__InvalidDataLength.selector); bebopExecutor.decodeParams(tooShortParams); } // Integration tests function testSwapSingleIntegration() public { // Fork at the right block first vm.createSelectFork(vm.rpcUrl("mainnet"), 22667985); // Deploy Bebop executor harness bebopExecutor = new BebopExecutorHarness(BEBOP_SETTLEMENT, PERMIT2_ADDRESS); // Load encoded data from test_encode_bebop_single (USDC → ONDO swap) bytes memory protocolData = loadCallDataFromFile("test_encode_bebop_single"); // Deal 200 USDC to the executor uint256 amountIn = 200000000; // 200 USDC deal(USDC_ADDR, address(bebopExecutor), amountIn); // Fund the maker with ONDO and approve settlement address maker = 0xCe79b081c0c924cb67848723ed3057234d10FC6b; uint256 expectedAmountOut = 237212396774431060000; // 237.21 ONDO deal(ONDO_ADDR, maker, expectedAmountOut); vm.prank(maker); ONDO.approve(BEBOP_SETTLEMENT, expectedAmountOut); // Record receiver's initial ONDO balance address receiver = 0xc5564C13A157E6240659fb81882A28091add8670; uint256 ondoBefore = ONDO.balanceOf(receiver); // Execute the swap uint256 amountOut = bebopExecutor.swap(amountIn, protocolData); // Verify results assertEq(amountOut, expectedAmountOut, "Incorrect amount out"); assertEq( ONDO.balanceOf(receiver) - ondoBefore, expectedAmountOut, "ONDO balance mismatch" ); assertEq( USDC.balanceOf(address(bebopExecutor)), 0, "USDC left in executor" ); assertEq( ONDO.balanceOf(address(bebopExecutor)), 0, "ONDO left in executor" ); } function testSwapAggregateIntegration() public { // Fork at a suitable block for aggregate order testing vm.createSelectFork(vm.rpcUrl("mainnet"), 21370890); // Deploy Bebop executor harness bebopExecutor = new BebopExecutorHarness(BEBOP_SETTLEMENT, PERMIT2_ADDRESS); // Store the initial ETH balance (dust from forked state) uint256 initialExecutorBalance = address(bebopExecutor).balance; // Based on real transaction: https://etherscan.io/tx/0xec88410136c287280da87d0a37c1cb745f320406ca3ae55c678dec11996c1b1c address orderTaker = 0x7078B12Ca5B294d95e9aC16D90B7D38238d8F4E6; // This is both taker and receiver in the order uint256 ethAmount = 9850000000000000; // 0.00985 WETH uint256 expAmountOut = 17969561; // 17.969561 USDC expected output // Fund the two makers from the real transaction with USDC address maker1 = 0x67336Cec42645F55059EfF241Cb02eA5cC52fF86; address maker2 = 0xBF19CbF0256f19f39A016a86Ff3551ecC6f2aAFE; deal(USDC_ADDR, maker1, 10607211); // Maker 1 provides 10.607211 USDC deal(USDC_ADDR, maker2, 7362350); // Maker 2 provides 7.362350 USDC // Makers approve settlement contract vm.prank(maker1); IERC20(USDC_ADDR).approve(BEBOP_SETTLEMENT, type(uint256).max); vm.prank(maker2); IERC20(USDC_ADDR).approve(BEBOP_SETTLEMENT, type(uint256).max); // Fund ALICE with ETH as it will send the transaction vm.deal(ALICE, ethAmount); vm.startPrank(ALICE); // Load encoded data from test_encode_bebop_aggregate (ETH → USDC multi-maker swap) bytes memory protocolData = loadCallDataFromFile("test_encode_bebop_aggregate"); // Record initial USDC balance uint256 usdcBefore = IERC20(USDC_ADDR).balanceOf(orderTaker); // Execute the swap with native ETH uint256 amountOut = bebopExecutor.swap{value: ethAmount}(ethAmount, protocolData); // Verify results assertEq(amountOut, expAmountOut, "Incorrect amount out"); assertEq( IERC20(USDC_ADDR).balanceOf(orderTaker) - usdcBefore, expAmountOut, "USDC balance mismatch" ); assertEq( IERC20(USDC_ADDR).balanceOf(address(bebopExecutor)), 0, "USDC left in executor" ); assertEq( address(bebopExecutor).balance, initialExecutorBalance, "ETH left in executor should match initial dust amount" ); vm.stopPrank(); } }