Merge pull request #120 from propeller-heads/router/tnl/ENG-4317-sequential-in

feat: Add sequential swap methods
This commit is contained in:
Tamara
2025-03-21 12:01:35 -04:00
committed by Diana Carvalho
8 changed files with 1660 additions and 962 deletions

View File

@@ -2,36 +2,42 @@
pragma solidity ^0.8.26;
library LibSwap {
/// Returns the InToken index into an array of tokens
function tokenInIndex(
bytes calldata swap
) internal pure returns (uint8 res) {
res = uint8(swap[0]);
/**
* @dev Returns arguments required to perform a single swap
*/
function decodeSingleSwap(bytes calldata swap)
internal
pure
returns (address executor, bytes calldata protocolData)
{
executor = address(uint160(bytes20(swap[0:20])));
protocolData = swap[20:];
}
/// The OutToken index into an array of tokens
function tokenOutIndex(
bytes calldata swap
) internal pure returns (uint8 res) {
res = uint8(swap[1]);
/**
* @dev Returns arguments required to perform a sequential swap
*/
function decodeSequentialSwap(bytes calldata swap)
internal
pure
returns (address executor, bytes calldata protocolData)
{
executor = address(uint160(bytes20(swap[0:20])));
protocolData = swap[20:];
}
/// The relative amount of token quantity routed into this swap
function splitPercentage(
bytes calldata swap
) internal pure returns (uint24 res) {
res = uint24(bytes3(swap[2:5]));
}
/// The address of the executor contract
function executor(bytes calldata swap) internal pure returns (address res) {
res = address(uint160(bytes20(swap[5:25])));
}
/// Remaining bytes are interpreted as protocol data
function protocolData(
bytes calldata swap
) internal pure returns (bytes calldata res) {
res = swap[25:];
/**
* @dev Returns arguments required to perform a split swap
*/
function decodeSplitSwap(bytes calldata swap)
internal
pure
returns (uint8 tokenInIndex, uint8 tokenOutIndex, uint24 split, address executor, bytes calldata protocolData)
{
tokenInIndex = uint8(swap[0]);
tokenOutIndex = uint8(swap[1]);
split = uint24(bytes3(swap[2:5]));
executor = address(uint160(bytes20(swap[5:25])));
protocolData = swap[25:];
}
}

View File

@@ -222,6 +222,112 @@ contract TychoRouter is AccessControl, Dispatcher, Pausable, ReentrancyGuard {
);
}
/**
* @notice Executes a swap operation based on a predefined swap graph with no split routes.
* This function enables multi-step swaps, optional ETH wrapping/unwrapping, and validates the output amount
* against a user-specified minimum. This function performs a transferFrom to retrieve tokens from the caller.
*
* @dev
* - If `wrapEth` is true, the contract wraps the provided native ETH into WETH and uses it as the sell token.
* - If `unwrapEth` is true, the contract converts the resulting WETH back into native ETH before sending it to the receiver.
* - Swaps are executed sequentially using the `_swap` function.
* - A fee is deducted from the output token if `fee > 0`, and the remaining amount is sent to the receiver.
* - Reverts with `TychoRouter__NegativeSlippage` if the output amount is less than `minAmountOut` and `minAmountOut` is greater than 0.
*
* @param amountIn The input token amount to be swapped.
* @param tokenIn The address of the input token. Use `address(0)` for native ETH
* @param tokenOut The address of the output token. Use `address(0)` for native ETH
* @param minAmountOut The minimum acceptable amount of the output token. Reverts if this condition is not met. This should always be set to avoid losing funds due to slippage.
* @param wrapEth If true, wraps the input token (native ETH) into WETH.
* @param unwrapEth If true, unwraps the resulting WETH into native ETH and sends it to the receiver.
* @param receiver The address to receive the output tokens.
* @param swaps Encoded swap graph data containing details of each swap.
*
* @return amountOut The total amount of the output token received by the receiver, after deducting fees if applicable.
*/
function sequentialSwap(
uint256 amountIn,
address tokenIn,
address tokenOut,
uint256 minAmountOut,
bool wrapEth,
bool unwrapEth,
address receiver,
bytes calldata swaps
) public payable whenNotPaused nonReentrant returns (uint256 amountOut) {
IERC20(tokenIn).safeTransferFrom(msg.sender, address(this), amountIn);
return _sequentialSwapChecked(
amountIn,
tokenIn,
tokenOut,
minAmountOut,
wrapEth,
unwrapEth,
receiver,
swaps
);
}
/**
* @notice Executes a swap operation based on a predefined swap graph with no split routes.
* This function enables multi-step swaps, optional ETH wrapping/unwrapping, and validates the output amount
* against a user-specified minimum.
*
* @dev
* - If `wrapEth` is true, the contract wraps the provided native ETH into WETH and uses it as the sell token.
* - If `unwrapEth` is true, the contract converts the resulting WETH back into native ETH before sending it to the receiver.
* - For ERC20 tokens, Permit2 is used to approve and transfer tokens from the caller to the router.
* - A fee is deducted from the output token if `fee > 0`, and the remaining amount is sent to the receiver.
* - Reverts with `TychoRouter__NegativeSlippage` if the output amount is less than `minAmountOut` and `minAmountOut` is greater than 0.
*
* @param amountIn The input token amount to be swapped.
* @param tokenIn The address of the input token. Use `address(0)` for native ETH
* @param tokenOut The address of the output token. Use `address(0)` for native ETH
* @param minAmountOut The minimum acceptable amount of the output token. Reverts if this condition is not met. This should always be set to avoid losing funds due to slippage.
* @param wrapEth If true, wraps the input token (native ETH) into WETH.
* @param unwrapEth If true, unwraps the resulting WETH into native ETH and sends it to the receiver.
* @param receiver The address to receive the output tokens.
* @param permitSingle A Permit2 structure containing token approval details for the input token. Ignored if `wrapEth` is true.
* @param signature A valid signature authorizing the Permit2 approval. Ignored if `wrapEth` is true.
* @param swaps Encoded swap graph data containing details of each swap.
*
* @return amountOut The total amount of the output token received by the receiver, after deducting fees if applicable.
*/
function sequentialSwapPermit2(
uint256 amountIn,
address tokenIn,
address tokenOut,
uint256 minAmountOut,
bool wrapEth,
bool unwrapEth,
address receiver,
IAllowanceTransfer.PermitSingle calldata permitSingle,
bytes calldata signature,
bytes calldata swaps
) external payable whenNotPaused nonReentrant returns (uint256 amountOut) {
// For native ETH, assume funds already in our router. Else, transfer and handle approval.
if (tokenIn != address(0)) {
permit2.permit(msg.sender, permitSingle, signature);
permit2.transferFrom(
msg.sender,
address(this),
uint160(amountIn),
permitSingle.details.token
);
}
return _sequentialSwapChecked(
amountIn,
tokenIn,
tokenOut,
minAmountOut,
wrapEth,
unwrapEth,
receiver,
swaps
);
}
/**
* @notice Executes a single swap operation.
* This function enables optional ETH wrapping/unwrapping, and validates the output amount against a user-specified minimum.
@@ -239,7 +345,6 @@ contract TychoRouter is AccessControl, Dispatcher, Pausable, ReentrancyGuard {
* @param minAmountOut The minimum acceptable amount of the output token. Reverts if this condition is not met. This should always be set to avoid losing funds due to slippage.
* @param wrapEth If true, wraps the input token (native ETH) into WETH.
* @param unwrapEth If true, unwraps the resulting WETH into native ETH and sends it to the receiver.
* @param nTokens The total number of tokens involved in the swap graph (used to initialize arrays for internal calculations).
* @param receiver The address to receive the output tokens.
* @param swapData Encoded swap details.
*
@@ -252,7 +357,6 @@ contract TychoRouter is AccessControl, Dispatcher, Pausable, ReentrancyGuard {
uint256 minAmountOut,
bool wrapEth,
bool unwrapEth,
uint256 nTokens,
address receiver,
bytes calldata swapData
) public payable whenNotPaused nonReentrant returns (uint256 amountOut) {
@@ -264,7 +368,6 @@ contract TychoRouter is AccessControl, Dispatcher, Pausable, ReentrancyGuard {
minAmountOut,
wrapEth,
unwrapEth,
nTokens,
receiver,
swapData
);
@@ -288,7 +391,6 @@ contract TychoRouter is AccessControl, Dispatcher, Pausable, ReentrancyGuard {
* @param minAmountOut The minimum acceptable amount of the output token. Reverts if this condition is not met. This should always be set to avoid losing funds due to slippage.
* @param wrapEth If true, wraps the input token (native ETH) into WETH.
* @param unwrapEth If true, unwraps the resulting WETH into native ETH and sends it to the receiver.
* @param nTokens The total number of tokens involved in the swap graph (used to initialize arrays for internal calculations).
* @param receiver The address to receive the output tokens.
* @param permitSingle A Permit2 structure containing token approval details for the input token. Ignored if `wrapEth` is true.
* @param signature A valid signature authorizing the Permit2 approval. Ignored if `wrapEth` is true.
@@ -303,7 +405,6 @@ contract TychoRouter is AccessControl, Dispatcher, Pausable, ReentrancyGuard {
uint256 minAmountOut,
bool wrapEth,
bool unwrapEth,
uint256 nTokens,
address receiver,
IAllowanceTransfer.PermitSingle calldata permitSingle,
bytes calldata signature,
@@ -327,7 +428,6 @@ contract TychoRouter is AccessControl, Dispatcher, Pausable, ReentrancyGuard {
minAmountOut,
wrapEth,
unwrapEth,
nTokens,
receiver,
swapData
);
@@ -417,7 +517,6 @@ contract TychoRouter is AccessControl, Dispatcher, Pausable, ReentrancyGuard {
uint256 minAmountOut,
bool wrapEth,
bool unwrapEth,
uint256 nTokens,
address receiver,
bytes calldata swap_
) internal returns (uint256 amountOut) {
@@ -438,8 +537,10 @@ contract TychoRouter is AccessControl, Dispatcher, Pausable, ReentrancyGuard {
? address(this).balance
: IERC20(tokenIn).balanceOf(address(this));
amountOut =
_callExecutor(swap_.executor(), amountIn, swap_.protocolData());
(address executor, bytes calldata protocolData) =
swap_.decodeSingleSwap();
amountOut = _callExecutor(executor, amountIn, protocolData);
uint256 currentBalance = tokenIn == address(0)
? address(this).balance
: IERC20(tokenIn).balanceOf(address(this));
@@ -472,6 +573,75 @@ contract TychoRouter is AccessControl, Dispatcher, Pausable, ReentrancyGuard {
}
}
/**
* @notice Internal implementation of the core swap logic shared between sequentialSwap() and sequentialSwapPermit2().
*
* @notice This function centralizes the swap execution logic.
* @notice For detailed documentation on parameters and behavior, see the documentation for
* sequentialSwap() and sequentialSwapPermit2() functions.
*
*/
function _sequentialSwapChecked(
uint256 amountIn,
address tokenIn,
address tokenOut,
uint256 minAmountOut,
bool wrapEth,
bool unwrapEth,
address receiver,
bytes calldata swaps
) internal returns (uint256 amountOut) {
if (receiver == address(0)) {
revert TychoRouter__AddressZero();
}
if (minAmountOut == 0) {
revert TychoRouter__UndefinedMinAmountOut();
}
// Assume funds are already in the router.
if (wrapEth) {
_wrapETH(amountIn);
tokenIn = address(_weth);
}
uint256 initialBalance = tokenIn == address(0)
? address(this).balance
: IERC20(tokenIn).balanceOf(address(this));
amountOut = _sequentialSwap(amountIn, swaps);
uint256 currentBalance = tokenIn == address(0)
? address(this).balance
: IERC20(tokenIn).balanceOf(address(this));
uint256 amountConsumed = initialBalance - currentBalance;
if (tokenIn != tokenOut && amountConsumed != amountIn) {
revert TychoRouter__AmountInDiffersFromConsumed(
amountIn, amountConsumed
);
}
if (fee > 0) {
uint256 feeAmount = (amountOut * fee) / 10000;
amountOut -= feeAmount;
IERC20(tokenOut).safeTransfer(feeReceiver, feeAmount);
}
if (amountOut < minAmountOut) {
revert TychoRouter__NegativeSlippage(amountOut, minAmountOut);
}
if (unwrapEth) {
_unwrapETH(amountOut);
}
if (tokenOut == address(0)) {
Address.sendValue(payable(receiver), amountOut);
} else {
IERC20(tokenOut).safeTransfer(receiver, amountOut);
}
}
/**
* @dev Executes sequential swaps as defined by the provided swap graph.
*
@@ -509,6 +679,8 @@ contract TychoRouter is AccessControl, Dispatcher, Pausable, ReentrancyGuard {
uint8 tokenInIndex = 0;
uint8 tokenOutIndex = 0;
uint24 split;
address executor;
bytes calldata protocolData;
bytes calldata swapData;
uint256[] memory remainingAmounts = new uint256[](nTokens);
@@ -519,17 +691,16 @@ contract TychoRouter is AccessControl, Dispatcher, Pausable, ReentrancyGuard {
while (swaps_.length > 0) {
(swapData, swaps_) = swaps_.next();
tokenInIndex = swapData.tokenInIndex();
tokenOutIndex = swapData.tokenOutIndex();
split = swapData.splitPercentage();
(tokenInIndex, tokenOutIndex, split, executor, protocolData) =
swapData.decodeSplitSwap();
currentAmountIn = split > 0
? (amounts[tokenInIndex] * split) / 0xffffff
: remainingAmounts[tokenInIndex];
currentAmountOut = _callExecutor(
swapData.executor(), currentAmountIn, swapData.protocolData()
);
currentAmountOut =
_callExecutor(executor, currentAmountIn, protocolData);
// Checks if the output token is the same as the input token
if (tokenOutIndex == 0) {
cyclicSwapAmountOut += currentAmountOut;
@@ -542,6 +713,31 @@ contract TychoRouter is AccessControl, Dispatcher, Pausable, ReentrancyGuard {
return tokenOutIndex == 0 ? cyclicSwapAmountOut : amounts[tokenOutIndex];
}
/**
* @dev Executes sequential swaps as defined by the provided swap graph.
*
* @param amountIn The initial amount of the sell token to be swapped.
* @param swaps_ Encoded swap graph data containing the details of each swap operation.
*
* @return calculatedAmount The total amount of the buy token obtained after all swaps have been executed.
*/
function _sequentialSwap(uint256 amountIn, bytes calldata swaps_)
internal
returns (uint256 calculatedAmount)
{
bytes calldata swap;
calculatedAmount = amountIn;
while (swaps_.length > 0) {
(swap, swaps_) = swaps_.next();
(address executor, bytes calldata protocolData) =
swap.decodeSingleSwap();
calculatedAmount =
_callExecutor(executor, calculatedAmount, protocolData);
}
}
/**
* @dev We use the fallback function to allow flexibility on callback.
*/

View File

@@ -7,7 +7,45 @@ import "../lib/LibSwap.sol";
contract LibSwapTest is Test {
using LibSwap for bytes;
function testSwap() public view {
function testSingleSwap() public view {
address executor = 0x1234567890123456789012345678901234567890;
bytes memory protocolData = abi.encodePacked(uint256(123));
bytes memory swap = abi.encodePacked(executor, protocolData);
this.assertSingleSwap(swap, executor, protocolData);
}
function assertSingleSwap(
bytes calldata swap,
address executor,
bytes calldata protocolData
) public pure {
(address decodedExecutor, bytes memory decodedProtocolData) =
swap.decodeSingleSwap();
assertEq(decodedExecutor, executor);
assertEq(decodedProtocolData, protocolData);
}
function testSequentialSwap() public view {
address executor = 0x1234567890123456789012345678901234567890;
bytes memory protocolData = abi.encodePacked(uint256(234));
bytes memory swap = abi.encodePacked(executor, protocolData);
this.assertSequentialSwap(swap, executor, protocolData);
}
function assertSequentialSwap(
bytes calldata swap,
address executor,
bytes calldata protocolData
) public pure {
(address decodedExecutor, bytes memory decodedProtocolData) =
swap.decodeSequentialSwap();
assertEq(decodedExecutor, executor);
assertEq(decodedProtocolData, protocolData);
}
function testSplitSwap() public view {
uint8 tokenInIndex = 1;
uint8 tokenOutIndex = 2;
uint24 split = 3;
@@ -17,20 +55,32 @@ contract LibSwapTest is Test {
bytes memory swap = abi.encodePacked(
tokenInIndex, tokenOutIndex, split, executor, protocolData
);
this.assertSwap(swap, tokenInIndex, tokenOutIndex, split, executor);
this.assertSplitSwap(
swap, tokenInIndex, tokenOutIndex, split, executor, protocolData
);
}
// This is necessary so that the compiler accepts bytes as a LibSwap.sol
function assertSwap(
// This is necessary so that the compiler accepts bytes as a LibSwap.sol for testing
// This is because this function takes calldata as input
function assertSplitSwap(
bytes calldata swap,
uint8 tokenInIndex,
uint8 tokenOutIndex,
uint24 split,
address executor
address executor,
bytes calldata protocolData
) public pure {
assert(swap.tokenInIndex() == tokenInIndex);
assert(swap.tokenOutIndex() == tokenOutIndex);
assert(swap.splitPercentage() == split);
assert(swap.executor() == executor);
(
uint8 decodedTokenInIndex,
uint8 decodedTokenOutIndex,
uint24 decodedSplit,
address decodedExecutor,
bytes memory decodedProtocolData
) = swap.decodeSplitSwap();
assertEq(decodedTokenInIndex, tokenInIndex);
assertEq(decodedTokenOutIndex, tokenOutIndex);
assertEq(decodedSplit, split);
assertEq(decodedExecutor, executor);
assertEq(decodedProtocolData, protocolData);
}
}

View File

@@ -206,921 +206,10 @@ contract TychoRouterTest is TychoRouterTestSetup {
assertEq(IERC20(WETH_ADDR).balanceOf(tychoRouterAddr), 0);
}
function testSplitSwapSimple() public {
// Trade 1 WETH for DAI with 1 swap on Uniswap V2
// 1 WETH -> DAI
// (USV2)
uint256 amountIn = 1 ether;
deal(WETH_ADDR, tychoRouterAddr, amountIn);
bytes memory protocolData = encodeUniswapV2Swap(
WETH_ADDR, WETH_DAI_POOL, tychoRouterAddr, false
);
bytes memory swap = encodeSplitSwap(
uint8(0), uint8(1), uint24(0), address(usv2Executor), protocolData
);
bytes[] memory swaps = new bytes[](1);
swaps[0] = swap;
tychoRouter.exposedSplitSwap(amountIn, 2, pleEncode(swaps));
uint256 daiBalance = IERC20(DAI_ADDR).balanceOf(tychoRouterAddr);
assertEq(daiBalance, 2659881924818443699787);
assertEq(IERC20(WETH_ADDR).balanceOf(tychoRouterAddr), 0);
}
function testSplitSwapSimplePermit2() public {
// Trade 1 WETH for DAI with 1 swap on Uniswap V2 using Permit2
// 1 WETH -> DAI
// (USV2)
vm.startPrank(ALICE);
uint256 amountIn = 1 ether;
deal(WETH_ADDR, ALICE, amountIn);
(
IAllowanceTransfer.PermitSingle memory permitSingle,
bytes memory signature
) = handlePermit2Approval(WETH_ADDR, amountIn);
bytes memory protocolData = encodeUniswapV2Swap(
WETH_ADDR, WETH_DAI_POOL, tychoRouterAddr, false
);
bytes memory swap = encodeSplitSwap(
uint8(0), uint8(1), uint24(0), address(usv2Executor), protocolData
);
bytes[] memory swaps = new bytes[](1);
swaps[0] = swap;
tychoRouter.splitSwapPermit2(
amountIn,
WETH_ADDR,
DAI_ADDR,
2659881924818443699786,
false,
false,
2,
ALICE,
permitSingle,
signature,
pleEncode(swaps)
);
uint256 daiBalance = IERC20(DAI_ADDR).balanceOf(ALICE);
assertEq(daiBalance, 2659881924818443699787);
assertEq(IERC20(WETH_ADDR).balanceOf(ALICE), 0);
vm.stopPrank();
}
function testSplitSwapMultipleHops() public {
// Trade 1 WETH for USDC through DAI with 2 swaps on Uniswap V2
// 1 WETH -> DAI -> USDC
// (univ2) (univ2)
uint256 amountIn = 1 ether;
deal(WETH_ADDR, tychoRouterAddr, amountIn);
bytes[] memory swaps = new bytes[](2);
// WETH -> DAI
swaps[0] = encodeSplitSwap(
uint8(0),
uint8(1),
uint24(0),
address(usv2Executor),
encodeUniswapV2Swap(
WETH_ADDR, WETH_DAI_POOL, tychoRouterAddr, false
)
);
// DAI -> USDC
swaps[1] = encodeSplitSwap(
uint8(1),
uint8(2),
uint24(0),
address(usv2Executor),
encodeUniswapV2Swap(DAI_ADDR, DAI_USDC_POOL, tychoRouterAddr, true)
);
tychoRouter.exposedSplitSwap(amountIn, 3, pleEncode(swaps));
uint256 usdcBalance = IERC20(USDC_ADDR).balanceOf(tychoRouterAddr);
assertEq(usdcBalance, 2644659787);
assertEq(IERC20(WETH_ADDR).balanceOf(tychoRouterAddr), 0);
}
function testSplitSwapSplitHops() public {
// Trade 1 WETH for USDC through DAI and WBTC with 4 swaps on Uniswap V2
// -> DAI ->
// 1 WETH USDC
// -> WBTC ->
// (univ2) (univ2)
uint256 amountIn = 1 ether;
deal(WETH_ADDR, tychoRouterAddr, amountIn);
bytes[] memory swaps = new bytes[](4);
// WETH -> WBTC (60%)
swaps[0] = encodeSplitSwap(
uint8(0),
uint8(1),
(0xffffff * 60) / 100, // 60%
address(usv2Executor),
encodeUniswapV2Swap(
WETH_ADDR, WETH_WBTC_POOL, tychoRouterAddr, false
)
);
// WBTC -> USDC
swaps[1] = encodeSplitSwap(
uint8(1),
uint8(2),
uint24(0),
address(usv2Executor),
encodeUniswapV2Swap(
WBTC_ADDR, USDC_WBTC_POOL, tychoRouterAddr, true
)
);
// WETH -> DAI
swaps[2] = encodeSplitSwap(
uint8(0),
uint8(3),
uint24(0),
address(usv2Executor),
encodeUniswapV2Swap(
WETH_ADDR, WETH_DAI_POOL, tychoRouterAddr, false
)
);
// DAI -> USDC
swaps[3] = encodeSplitSwap(
uint8(3),
uint8(2),
uint24(0),
address(usv2Executor),
encodeUniswapV2Swap(DAI_ADDR, DAI_USDC_POOL, tychoRouterAddr, true)
);
tychoRouter.exposedSplitSwap(amountIn, 4, pleEncode(swaps));
uint256 usdcBalance = IERC20(USDC_ADDR).balanceOf(tychoRouterAddr);
assertEq(usdcBalance, 2615491639);
assertEq(IERC20(WETH_ADDR).balanceOf(tychoRouterAddr), 0);
}
function testSingleSwapChecked() public {
// Trade 1 WETH for DAI with 1 swap on Uniswap V2
// Does permit2 token approval and transfer
// Checks amount out at the end
uint256 amountIn = 1 ether;
deal(WETH_ADDR, ALICE, amountIn);
vm.startPrank(ALICE);
(
IAllowanceTransfer.PermitSingle memory permitSingle,
bytes memory signature
) = handlePermit2Approval(WETH_ADDR, amountIn);
bytes memory protocolData = encodeUniswapV2Swap(
WETH_ADDR, WETH_DAI_POOL, tychoRouterAddr, false
);
bytes memory swap = encodeSplitSwap(
uint8(0), uint8(1), uint24(0), address(usv2Executor), protocolData
);
uint256 minAmountOut = 2600 * 1e18;
uint256 amountOut = tychoRouter.singleSwapPermit2(
amountIn,
WETH_ADDR,
DAI_ADDR,
minAmountOut,
false,
false,
2,
ALICE,
permitSingle,
signature,
swap
);
uint256 expectedAmount = 2659881924818443699787;
assertEq(amountOut, expectedAmount);
uint256 daiBalance = IERC20(DAI_ADDR).balanceOf(ALICE);
assertEq(daiBalance, expectedAmount);
assertEq(IERC20(WETH_ADDR).balanceOf(ALICE), 0);
vm.stopPrank();
}
function testSplitSwapCheckedUndefinedMinAmount() public {
// Min amount should always be non-zero. If zero, swap attempt should revert.
uint256 amountIn = 1 ether;
deal(WETH_ADDR, ALICE, amountIn);
vm.startPrank(ALICE);
(
IAllowanceTransfer.PermitSingle memory permitSingle,
bytes memory signature
) = handlePermit2Approval(WETH_ADDR, amountIn);
bytes memory protocolData = encodeUniswapV2Swap(
WETH_ADDR, WETH_DAI_POOL, tychoRouterAddr, false
);
bytes memory swap = encodeSplitSwap(
uint8(0), uint8(1), uint24(0), address(usv2Executor), protocolData
);
bytes[] memory swaps = new bytes[](1);
swaps[0] = swap;
uint256 minAmountOut = 0;
vm.expectRevert(TychoRouter__UndefinedMinAmountOut.selector);
tychoRouter.splitSwapPermit2(
amountIn,
WETH_ADDR,
DAI_ADDR,
minAmountOut,
false,
false,
2,
ALICE,
permitSingle,
signature,
pleEncode(swaps)
);
vm.stopPrank();
}
function testSingleSwapCheckedNoPermit2() public {
// Trade 1 WETH for DAI with 1 swap on Uniswap V2
// Checks amount out at the end
uint256 amountIn = 1 ether;
deal(WETH_ADDR, ALICE, amountIn);
vm.startPrank(ALICE);
// Approve the tokenIn to be transferred to the router
IERC20(WETH_ADDR).approve(address(tychoRouterAddr), amountIn);
bytes memory protocolData = encodeUniswapV2Swap(
WETH_ADDR, WETH_DAI_POOL, tychoRouterAddr, false
);
bytes memory swap = encodeSplitSwap(
uint8(0), uint8(1), uint24(0), address(usv2Executor), protocolData
);
uint256 minAmountOut = 2600 * 1e18;
uint256 amountOut = tychoRouter.singleSwap(
amountIn,
WETH_ADDR,
DAI_ADDR,
minAmountOut,
false,
false,
2,
ALICE,
swap
);
uint256 expectedAmount = 2659881924818443699787;
assertEq(amountOut, expectedAmount);
uint256 daiBalance = IERC20(DAI_ADDR).balanceOf(ALICE);
assertEq(daiBalance, expectedAmount);
assertEq(IERC20(WETH_ADDR).balanceOf(ALICE), 0);
vm.stopPrank();
}
function testSplitSwapCheckedLessApprovalFailure() public {
// Trade 1 WETH for DAI with 1 swap on Uniswap V2
// Fails while transferring the tokenIn to the router due to insufficient approval
uint256 amountIn = 1 ether;
deal(WETH_ADDR, ALICE, amountIn);
vm.startPrank(ALICE);
// Approve less than the amountIn
IERC20(WETH_ADDR).approve(address(tychoRouterAddr), amountIn - 1);
bytes memory protocolData = encodeUniswapV2Swap(
WETH_ADDR, WETH_DAI_POOL, tychoRouterAddr, false
);
bytes memory swap = encodeSplitSwap(
uint8(0), uint8(1), uint24(0), address(usv2Executor), protocolData
);
bytes[] memory swaps = new bytes[](1);
swaps[0] = swap;
uint256 minAmountOut = 2600 * 1e18;
vm.expectRevert();
tychoRouter.splitSwap(
amountIn,
WETH_ADDR,
DAI_ADDR,
minAmountOut,
false,
false,
2,
ALICE,
pleEncode(swaps)
);
vm.stopPrank();
}
function testSplitSwapCheckedNegativeSlippageFailure() public {
// Trade 1 WETH for DAI with 1 swap on Uniswap V2
// Does permit2 token approval and transfer
// Checks amount out at the end and fails
uint256 amountIn = 1 ether;
deal(WETH_ADDR, ALICE, amountIn);
vm.startPrank(ALICE);
(
IAllowanceTransfer.PermitSingle memory permitSingle,
bytes memory signature
) = handlePermit2Approval(WETH_ADDR, amountIn);
bytes memory protocolData = encodeUniswapV2Swap(
WETH_ADDR, WETH_DAI_POOL, tychoRouterAddr, false
);
bytes memory swap = encodeSplitSwap(
uint8(0), uint8(1), uint24(0), address(usv2Executor), protocolData
);
bytes[] memory swaps = new bytes[](1);
swaps[0] = swap;
uint256 minAmountOut = 3000 * 1e18;
vm.expectRevert(
abi.encodeWithSelector(
TychoRouter__NegativeSlippage.selector,
2659881924818443699787, // actual amountOut
minAmountOut
)
);
tychoRouter.splitSwapPermit2(
amountIn,
WETH_ADDR,
DAI_ADDR,
minAmountOut,
false,
false,
2,
ALICE,
permitSingle,
signature,
pleEncode(swaps)
);
vm.stopPrank();
}
function testSplitSwapFee() public {
// Trade 1 WETH for DAI with 1 swap on Uniswap V2
// Does permit2 token approval and transfer
// Takes fee at the end
vm.startPrank(FEE_SETTER);
tychoRouter.setFee(100);
tychoRouter.setFeeReceiver(FEE_RECEIVER);
vm.stopPrank();
uint256 amountIn = 1 ether;
deal(WETH_ADDR, ALICE, amountIn);
vm.startPrank(ALICE);
(
IAllowanceTransfer.PermitSingle memory permitSingle,
bytes memory signature
) = handlePermit2Approval(WETH_ADDR, amountIn);
bytes memory protocolData = encodeUniswapV2Swap(
WETH_ADDR, WETH_DAI_POOL, tychoRouterAddr, false
);
bytes memory swap = encodeSplitSwap(
uint8(0), uint8(1), uint24(0), address(usv2Executor), protocolData
);
bytes[] memory swaps = new bytes[](1);
swaps[0] = swap;
uint256 amountOut = tychoRouter.splitSwapPermit2(
amountIn,
WETH_ADDR,
DAI_ADDR,
2633283105570259262780,
false,
false,
2,
ALICE,
permitSingle,
signature,
pleEncode(swaps)
);
uint256 expectedAmount = 2633283105570259262790;
assertEq(amountOut, expectedAmount);
uint256 daiBalance = IERC20(DAI_ADDR).balanceOf(ALICE);
assertEq(daiBalance, expectedAmount);
assertEq(IERC20(DAI_ADDR).balanceOf(FEE_RECEIVER), 26598819248184436997);
vm.stopPrank();
}
function testSplitSwapWrapETH() public {
// Trade 1 ETH (and wrap it) for DAI with 1 swap on Uniswap V2
uint256 amountIn = 1 ether;
deal(ALICE, amountIn);
vm.startPrank(ALICE);
IAllowanceTransfer.PermitSingle memory emptyPermitSingle =
IAllowanceTransfer.PermitSingle({
details: IAllowanceTransfer.PermitDetails({
token: address(0),
amount: 0,
expiration: 0,
nonce: 0
}),
spender: address(0),
sigDeadline: 0
});
bytes memory protocolData = encodeUniswapV2Swap(
WETH_ADDR, WETH_DAI_POOL, tychoRouterAddr, false
);
bytes memory swap = encodeSplitSwap(
uint8(0), uint8(1), uint24(0), address(usv2Executor), protocolData
);
bytes[] memory swaps = new bytes[](1);
swaps[0] = swap;
uint256 amountOut = tychoRouter.splitSwapPermit2{value: amountIn}(
amountIn,
address(0),
DAI_ADDR,
2659881924818443699780,
true,
false,
2,
ALICE,
emptyPermitSingle,
"",
pleEncode(swaps)
);
uint256 expectedAmount = 2659881924818443699787;
assertEq(amountOut, expectedAmount);
uint256 daiBalance = IERC20(DAI_ADDR).balanceOf(ALICE);
assertEq(daiBalance, expectedAmount);
assertEq(ALICE.balance, 0);
vm.stopPrank();
}
function testSplitSwapUnwrapETH() public {
// Trade 3k DAI for WETH with 1 swap on Uniswap V2 and unwrap it at the end
uint256 amountIn = 3_000 * 10 ** 18;
deal(DAI_ADDR, ALICE, amountIn);
vm.startPrank(ALICE);
(
IAllowanceTransfer.PermitSingle memory permitSingle,
bytes memory signature
) = handlePermit2Approval(DAI_ADDR, amountIn);
bytes memory protocolData =
encodeUniswapV2Swap(DAI_ADDR, WETH_DAI_POOL, tychoRouterAddr, true);
bytes memory swap = encodeSplitSwap(
uint8(0), uint8(1), uint24(0), address(usv2Executor), protocolData
);
bytes[] memory swaps = new bytes[](1);
swaps[0] = swap;
uint256 amountOut = tychoRouter.splitSwapPermit2(
amountIn,
DAI_ADDR,
address(0),
1120007305574805920,
false,
true,
2,
ALICE,
permitSingle,
signature,
pleEncode(swaps)
);
uint256 expectedAmount = 1120007305574805922; // 1.12 ETH
assertEq(amountOut, expectedAmount);
assertEq(ALICE.balance, expectedAmount);
vm.stopPrank();
}
function testSplitSwapSingleUSV3() public {
// Trade 1 WETH for DAI with 1 swap on Uniswap V3
// 1 WETH -> DAI
// (USV3)
uint256 amountIn = 10 ** 18;
deal(WETH_ADDR, tychoRouterAddr, amountIn);
uint256 expAmountOut = 1205_128428842122129186; //Swap 1 WETH for 1205.12 DAI
bool zeroForOne = false;
bytes memory protocolData = encodeUniswapV3Swap(
WETH_ADDR, DAI_ADDR, tychoRouterAddr, DAI_WETH_USV3, zeroForOne
);
bytes memory swap = encodeSplitSwap(
uint8(0), uint8(1), uint24(0), address(usv3Executor), protocolData
);
bytes[] memory swaps = new bytes[](1);
swaps[0] = swap;
tychoRouter.exposedSplitSwap(amountIn, 2, pleEncode(swaps));
uint256 finalBalance = IERC20(DAI_ADDR).balanceOf(tychoRouterAddr);
assertGe(finalBalance, expAmountOut);
}
function testSplitSwapSingleUSV3Permit2() public {
// Trade 1 WETH for DAI with 1 swap on Uniswap V3 using Permit2
// 1 WETH -> DAI
// (USV3)
vm.startPrank(ALICE);
uint256 amountIn = 10 ** 18;
deal(WETH_ADDR, ALICE, amountIn);
(
IAllowanceTransfer.PermitSingle memory permitSingle,
bytes memory signature
) = handlePermit2Approval(WETH_ADDR, amountIn);
uint256 expAmountOut = 1205_128428842122129186; //Swap 1 WETH for 1205.12 DAI
bool zeroForOne = false;
bytes memory protocolData = encodeUniswapV3Swap(
WETH_ADDR, DAI_ADDR, tychoRouterAddr, DAI_WETH_USV3, zeroForOne
);
bytes memory swap = encodeSplitSwap(
uint8(0), uint8(1), uint24(0), address(usv3Executor), protocolData
);
bytes[] memory swaps = new bytes[](1);
swaps[0] = swap;
tychoRouter.splitSwapPermit2(
amountIn,
WETH_ADDR,
DAI_ADDR,
expAmountOut - 1,
false,
false,
2,
ALICE,
permitSingle,
signature,
pleEncode(swaps)
);
uint256 finalBalance = IERC20(DAI_ADDR).balanceOf(ALICE);
assertGe(finalBalance, expAmountOut);
vm.stopPrank();
}
function testEmptySwapsRevert() public {
uint256 amountIn = 10 ** 18;
bytes memory swaps = "";
vm.expectRevert(TychoRouter__EmptySwaps.selector);
tychoRouter.exposedSplitSwap(amountIn, 2, swaps);
}
function testSplitSwapAmountInNotFullySpent() public {
// Trade 1 WETH for DAI with 1 swap on Uniswap V2
// Has invalid data as input! There is only one swap with 60% of the input amount
uint256 amountIn = 1 ether;
deal(WETH_ADDR, ALICE, amountIn);
vm.startPrank(ALICE);
(
IAllowanceTransfer.PermitSingle memory permitSingle,
bytes memory signature
) = handlePermit2Approval(WETH_ADDR, amountIn);
bytes memory protocolData = encodeUniswapV2Swap(
WETH_ADDR, WETH_DAI_POOL, tychoRouterAddr, false
);
bytes memory swap = encodeSplitSwap(
uint8(0),
uint8(1),
(0xffffff * 60) / 100, // 60%
address(usv2Executor),
protocolData
);
bytes[] memory swaps = new bytes[](1);
swaps[0] = swap;
vm.expectRevert(
abi.encodeWithSelector(
TychoRouter__AmountInDiffersFromConsumed.selector,
1000000000000000000,
600000000000000000
)
);
tychoRouter.splitSwapPermit2(
amountIn,
WETH_ADDR,
DAI_ADDR,
1,
false,
false,
2,
ALICE,
permitSingle,
signature,
pleEncode(swaps)
);
vm.stopPrank();
}
function testSplitSwapSingleUSV4Callback() public {
uint256 amountIn = 100 ether;
deal(USDE_ADDR, tychoRouterAddr, amountIn);
UniswapV4Executor.UniswapV4Pool[] memory pools =
new UniswapV4Executor.UniswapV4Pool[](1);
pools[0] = UniswapV4Executor.UniswapV4Pool({
intermediaryToken: USDT_ADDR,
fee: uint24(100),
tickSpacing: int24(1)
});
bytes memory protocolData = UniswapV4Utils.encodeExactInput(
USDE_ADDR, USDT_ADDR, true, address(usv4Executor), pools
);
bytes memory swap = encodeSplitSwap(
uint8(0), uint8(1), uint24(0), address(usv4Executor), protocolData
);
bytes[] memory swaps = new bytes[](1);
swaps[0] = swap;
tychoRouter.exposedSplitSwap(amountIn, 2, pleEncode(swaps));
assertEq(IERC20(USDT_ADDR).balanceOf(tychoRouterAddr), 99943852);
}
function testSplitSwapSingleUSV4CallbackPermit2() public {
vm.startPrank(ALICE);
uint256 amountIn = 100 ether;
deal(USDE_ADDR, ALICE, amountIn);
(
IAllowanceTransfer.PermitSingle memory permitSingle,
bytes memory signature
) = handlePermit2Approval(USDE_ADDR, amountIn);
UniswapV4Executor.UniswapV4Pool[] memory pools =
new UniswapV4Executor.UniswapV4Pool[](1);
pools[0] = UniswapV4Executor.UniswapV4Pool({
intermediaryToken: USDT_ADDR,
fee: uint24(100),
tickSpacing: int24(1)
});
bytes memory protocolData = UniswapV4Utils.encodeExactInput(
USDE_ADDR, USDT_ADDR, true, address(usv4Executor), pools
);
bytes memory swap = encodeSplitSwap(
uint8(0), uint8(1), uint24(0), address(usv4Executor), protocolData
);
bytes[] memory swaps = new bytes[](1);
swaps[0] = swap;
tychoRouter.splitSwapPermit2(
amountIn,
USDE_ADDR,
USDT_ADDR,
99943850,
false,
false,
2,
ALICE,
permitSingle,
signature,
pleEncode(swaps)
);
assertEq(IERC20(USDT_ADDR).balanceOf(ALICE), 99943852);
vm.stopPrank();
}
function testSplitSwapMultipleUSV4Callback() public {
// This test has two uniswap v4 hops that will be executed inside of the V4 pool manager
// USDE -> USDT -> WBTC
uint256 amountIn = 100 ether;
deal(USDE_ADDR, tychoRouterAddr, amountIn);
UniswapV4Executor.UniswapV4Pool[] memory pools =
new UniswapV4Executor.UniswapV4Pool[](2);
pools[0] = UniswapV4Executor.UniswapV4Pool({
intermediaryToken: USDT_ADDR,
fee: uint24(100),
tickSpacing: int24(1)
});
pools[1] = UniswapV4Executor.UniswapV4Pool({
intermediaryToken: WBTC_ADDR,
fee: uint24(3000),
tickSpacing: int24(60)
});
bytes memory protocolData = UniswapV4Utils.encodeExactInput(
USDE_ADDR, WBTC_ADDR, true, address(usv4Executor), pools
);
bytes memory swap = encodeSplitSwap(
uint8(0), uint8(1), uint24(0), address(usv4Executor), protocolData
);
bytes[] memory swaps = new bytes[](1);
swaps[0] = swap;
tychoRouter.exposedSplitSwap(amountIn, 2, pleEncode(swaps));
assertEq(IERC20(WBTC_ADDR).balanceOf(tychoRouterAddr), 102718);
}
function testCyclicSequentialSwap() public {
// This test has start and end tokens that are the same
// The flow is:
// USDC -> WETH -> USDC using two pools
uint256 amountIn = 100 * 10 ** 6;
deal(USDC_ADDR, tychoRouterAddr, amountIn);
bytes memory usdcWethV3Pool1ZeroOneData = encodeUniswapV3Swap(
USDC_ADDR, WETH_ADDR, tychoRouterAddr, USDC_WETH_USV3, true
);
bytes memory usdcWethV3Pool2OneZeroData = encodeUniswapV3Swap(
WETH_ADDR, USDC_ADDR, tychoRouterAddr, USDC_WETH_USV3_2, false
);
bytes[] memory swaps = new bytes[](2);
// USDC -> WETH
swaps[0] = encodeSplitSwap(
uint8(0),
uint8(1),
uint24(0),
address(usv3Executor),
usdcWethV3Pool1ZeroOneData
);
// WETH -> USDC
swaps[1] = encodeSplitSwap(
uint8(1),
uint8(0),
uint24(0),
address(usv3Executor),
usdcWethV3Pool2OneZeroData
);
tychoRouter.exposedSplitSwap(amountIn, 2, pleEncode(swaps));
assertEq(IERC20(USDC_ADDR).balanceOf(tychoRouterAddr), 99889294);
}
function testSplitInputCyclicSwap() public {
// This test has start and end tokens that are the same
// The flow is:
// ┌─ (USV3, 60% split) ──> WETH ─┐
// │ │
// USDC ──────┤ ├──(USV2)──> USDC
// │ │
// └─ (USV3, 40% split) ──> WETH ─┘
uint256 amountIn = 100 * 10 ** 6;
deal(USDC_ADDR, tychoRouterAddr, amountIn);
bytes memory usdcWethV3Pool1ZeroOneData = encodeUniswapV3Swap(
USDC_ADDR, WETH_ADDR, tychoRouterAddr, USDC_WETH_USV3, true
);
bytes memory usdcWethV3Pool2ZeroOneData = encodeUniswapV3Swap(
USDC_ADDR, WETH_ADDR, tychoRouterAddr, USDC_WETH_USV3_2, true
);
bytes memory wethUsdcV2OneZeroData = encodeUniswapV2Swap(
WETH_ADDR, USDC_WETH_USV2, tychoRouterAddr, false
);
bytes[] memory swaps = new bytes[](3);
// USDC -> WETH (60% split)
swaps[0] = encodeSplitSwap(
uint8(0),
uint8(1),
(0xffffff * 60) / 100, // 60%
address(usv3Executor),
usdcWethV3Pool1ZeroOneData
);
// USDC -> WETH (40% remainder)
swaps[1] = encodeSplitSwap(
uint8(0),
uint8(1),
uint24(0),
address(usv3Executor),
usdcWethV3Pool2ZeroOneData
);
// WETH -> USDC
swaps[2] = encodeSplitSwap(
uint8(1),
uint8(0),
uint24(0),
address(usv2Executor),
wethUsdcV2OneZeroData
);
tychoRouter.exposedSplitSwap(amountIn, 2, pleEncode(swaps));
assertEq(IERC20(USDC_ADDR).balanceOf(tychoRouterAddr), 99574171);
}
function testSplitOutputCyclicSwap() public {
// This test has start and end tokens that are the same
// The flow is:
// ┌─── (USV3, 60% split) ───┐
// │ │
// USDC ──(USV2) ── WETH──| ├─> USDC
// │ │
// └─── (USV3, 40% split) ───┘
uint256 amountIn = 100 * 10 ** 6;
deal(USDC_ADDR, tychoRouterAddr, amountIn);
bytes memory usdcWethV2Data = encodeUniswapV2Swap(
USDC_ADDR, USDC_WETH_USV2, tychoRouterAddr, true
);
bytes memory usdcWethV3Pool1OneZeroData = encodeUniswapV3Swap(
WETH_ADDR, USDC_ADDR, tychoRouterAddr, USDC_WETH_USV3, false
);
bytes memory usdcWethV3Pool2OneZeroData = encodeUniswapV3Swap(
WETH_ADDR, USDC_ADDR, tychoRouterAddr, USDC_WETH_USV3_2, false
);
bytes[] memory swaps = new bytes[](3);
// USDC -> WETH
swaps[0] = encodeSplitSwap(
uint8(0), uint8(1), uint24(0), address(usv2Executor), usdcWethV2Data
);
// WETH -> USDC
swaps[1] = encodeSplitSwap(
uint8(1),
uint8(0),
(0xffffff * 60) / 100,
address(usv3Executor),
usdcWethV3Pool1OneZeroData
);
// WETH -> USDC
swaps[2] = encodeSplitSwap(
uint8(1),
uint8(0),
uint24(0),
address(usv3Executor),
usdcWethV3Pool2OneZeroData
);
tychoRouter.exposedSplitSwap(amountIn, 2, pleEncode(swaps));
assertEq(IERC20(USDC_ADDR).balanceOf(tychoRouterAddr), 99525908);
}
// Base Network Tests
// Make sure to set the RPC_URL to base network
function testSplitSwapSingleBase() public {
vm.skip(true);
vm.rollFork(26857267);
uint256 amountIn = 10 * 10 ** 6;
deal(BASE_USDC, tychoRouterAddr, amountIn);
bytes memory protocolData = encodeUniswapV2Swap(
BASE_USDC, USDC_MAG7_POOL, tychoRouterAddr, true
);
bytes memory swap = encodeSplitSwap(
uint8(0), uint8(1), uint24(0), address(usv2Executor), protocolData
);
bytes[] memory swaps = new bytes[](1);
swaps[0] = swap;
tychoRouter.exposedSplitSwap(amountIn, 2, pleEncode(swaps));
assertGt(IERC20(BASE_MAG7).balanceOf(tychoRouterAddr), 1379830606);
}
}

View File

@@ -0,0 +1,344 @@
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.26;
import "@src/executors/UniswapV4Executor.sol";
import {TychoRouter} from "@src/TychoRouter.sol";
import "./TychoRouterTestSetup.sol";
import "./executors/UniswapV4Utils.sol";
import {SafeCallback} from "@uniswap/v4-periphery/src/base/SafeCallback.sol";
contract TychoRouterSequentialSwapTest is TychoRouterTestSetup {
bytes32 public constant FEE_SETTER_ROLE =
0xe6ad9a47fbda1dc18de1eb5eeb7d935e5e81b4748f3cfc61e233e64f88182060;
function _getSequentialSwaps() internal view returns (bytes[] memory) {
// Trade 1 WETH for USDC through DAI with 2 swaps on Uniswap V2
// 1 WETH -> DAI -> USDC
// (univ2) (univ2)
bytes[] memory swaps = new bytes[](2);
// WETH -> DAI
swaps[0] = encodeSequentialSwap(
address(usv2Executor),
encodeUniswapV2Swap(
WETH_ADDR, WETH_DAI_POOL, tychoRouterAddr, false
)
);
// DAI -> USDC
swaps[1] = encodeSequentialSwap(
address(usv2Executor),
encodeUniswapV2Swap(DAI_ADDR, DAI_USDC_POOL, tychoRouterAddr, true)
);
return swaps;
}
function testSequentialSwapInternalMethod() public {
// Trade 1 WETH for USDC through DAI - see _getSequentialSwaps for more info
uint256 amountIn = 1 ether;
deal(WETH_ADDR, tychoRouterAddr, amountIn);
bytes[] memory swaps = _getSequentialSwaps();
tychoRouter.exposedSequentialSwap(amountIn, pleEncode(swaps));
uint256 usdcBalance = IERC20(USDC_ADDR).balanceOf(tychoRouterAddr);
assertEq(usdcBalance, 2644659787);
assertEq(IERC20(WETH_ADDR).balanceOf(tychoRouterAddr), 0);
}
function testSequentialSwapPermit2() public {
// Trade 1 WETH for USDC through DAI - see _getSequentialSwaps for more info
uint256 amountIn = 1 ether;
deal(WETH_ADDR, ALICE, amountIn);
vm.startPrank(ALICE);
(
IAllowanceTransfer.PermitSingle memory permitSingle,
bytes memory signature
) = handlePermit2Approval(WETH_ADDR, amountIn);
bytes[] memory swaps = _getSequentialSwaps();
tychoRouter.sequentialSwapPermit2(
amountIn,
WETH_ADDR,
USDC_ADDR,
1000_000000, // min amount
false,
false,
ALICE,
permitSingle,
signature,
pleEncode(swaps)
);
uint256 usdcBalance = IERC20(USDC_ADDR).balanceOf(ALICE);
assertEq(usdcBalance, 2644659787);
assertEq(IERC20(WETH_ADDR).balanceOf(tychoRouterAddr), 0);
}
function testSequentialSwapNoPermit2() public {
// Trade 1 WETH for USDC through DAI - see _getSequentialSwaps for more info
uint256 amountIn = 1 ether;
deal(WETH_ADDR, ALICE, amountIn);
vm.startPrank(ALICE);
IERC20(WETH_ADDR).approve(tychoRouterAddr, amountIn);
bytes[] memory swaps = _getSequentialSwaps();
tychoRouter.sequentialSwap(
amountIn,
WETH_ADDR,
USDC_ADDR,
1000_000000, // min amount
false,
false,
ALICE,
pleEncode(swaps)
);
uint256 usdcBalance = IERC20(USDC_ADDR).balanceOf(ALICE);
assertEq(usdcBalance, 2644659787);
assertEq(IERC20(WETH_ADDR).balanceOf(tychoRouterAddr), 0);
}
function testSequentialSwapUndefinedMinAmount() public {
// Trade 1 WETH for USDC through DAI - see _getSequentialSwaps for more info
uint256 amountIn = 1 ether;
deal(WETH_ADDR, ALICE, amountIn);
vm.startPrank(ALICE);
IERC20(WETH_ADDR).approve(tychoRouterAddr, amountIn);
bytes[] memory swaps = _getSequentialSwaps();
vm.expectRevert(TychoRouter__UndefinedMinAmountOut.selector);
tychoRouter.sequentialSwap(
amountIn,
WETH_ADDR,
USDC_ADDR,
0, // min amount
false,
false,
ALICE,
pleEncode(swaps)
);
}
function testSequentialSwapInsufficientApproval() public {
// Trade 1 WETH for USDC through DAI - see _getSequentialSwaps for more info
uint256 amountIn = 1 ether;
deal(WETH_ADDR, ALICE, amountIn);
vm.startPrank(ALICE);
IERC20(WETH_ADDR).approve(tychoRouterAddr, amountIn - 1);
bytes[] memory swaps = _getSequentialSwaps();
vm.expectRevert();
tychoRouter.sequentialSwap(
amountIn,
WETH_ADDR,
USDC_ADDR,
0, // min amount
false,
false,
ALICE,
pleEncode(swaps)
);
}
function testSequentialSwapNegativeSlippageFailure() public {
// Trade 1 WETH for USDC through DAI - see _getSequentialSwaps for more info
uint256 amountIn = 1 ether;
deal(WETH_ADDR, ALICE, amountIn);
vm.startPrank(ALICE);
(
IAllowanceTransfer.PermitSingle memory permitSingle,
bytes memory signature
) = handlePermit2Approval(WETH_ADDR, amountIn);
bytes[] memory swaps = _getSequentialSwaps();
uint256 minAmountOut = 3000 * 1e18;
vm.expectRevert(
abi.encodeWithSelector(
TychoRouter__NegativeSlippage.selector,
2644659787, // actual amountOut
minAmountOut
)
);
tychoRouter.sequentialSwapPermit2(
amountIn,
WETH_ADDR,
DAI_ADDR,
minAmountOut,
false,
false,
ALICE,
permitSingle,
signature,
pleEncode(swaps)
);
vm.stopPrank();
}
function testSequentialSwapFee() public {
// Trade 1 WETH for USDC
// Takes 1% fee at the end
vm.startPrank(FEE_SETTER);
tychoRouter.setFee(100);
tychoRouter.setFeeReceiver(FEE_RECEIVER);
vm.stopPrank();
uint256 amountIn = 1 ether;
deal(WETH_ADDR, ALICE, amountIn);
vm.startPrank(ALICE);
(
IAllowanceTransfer.PermitSingle memory permitSingle,
bytes memory signature
) = handlePermit2Approval(WETH_ADDR, amountIn);
bytes[] memory swaps = _getSequentialSwaps();
uint256 amountOut = tychoRouter.sequentialSwapPermit2(
amountIn,
WETH_ADDR,
USDC_ADDR,
1000_000000,
false,
false,
ALICE,
permitSingle,
signature,
pleEncode(swaps)
);
uint256 expectedAmount = 2618213190;
assertEq(amountOut, expectedAmount);
uint256 usdcBalance = IERC20(USDC_ADDR).balanceOf(ALICE);
assertEq(usdcBalance, expectedAmount);
assertEq(IERC20(USDC_ADDR).balanceOf(FEE_RECEIVER), 26446597);
vm.stopPrank();
}
function testSequentialSwapWrapETH() public {
uint256 amountIn = 1 ether;
deal(ALICE, amountIn);
vm.startPrank(ALICE);
IAllowanceTransfer.PermitSingle memory emptyPermitSingle =
IAllowanceTransfer.PermitSingle({
details: IAllowanceTransfer.PermitDetails({
token: address(0),
amount: 0,
expiration: 0,
nonce: 0
}),
spender: address(0),
sigDeadline: 0
});
bytes[] memory swaps = _getSequentialSwaps();
uint256 amountOut = tychoRouter.sequentialSwapPermit2{value: amountIn}(
amountIn,
address(0),
USDC_ADDR,
1000_000000,
true,
false,
ALICE,
emptyPermitSingle,
"",
pleEncode(swaps)
);
uint256 expectedAmount = 2644659787;
assertEq(amountOut, expectedAmount);
uint256 usdcBalance = IERC20(USDC_ADDR).balanceOf(ALICE);
assertEq(usdcBalance, expectedAmount);
assertEq(ALICE.balance, 0);
vm.stopPrank();
}
function testSequentialSwapUnwrapETH() public {
// Trade 3k DAI for WETH with 1 swap on Uniswap V2 and unwrap it at the end
uint256 amountIn = 3_000 * 10 ** 6;
deal(USDC_ADDR, ALICE, amountIn);
vm.startPrank(ALICE);
(
IAllowanceTransfer.PermitSingle memory permitSingle,
bytes memory signature
) = handlePermit2Approval(USDC_ADDR, amountIn);
bytes[] memory swaps = new bytes[](2);
// USDC -> DAI
swaps[0] = encodeSequentialSwap(
address(usv2Executor),
encodeUniswapV2Swap(
USDC_ADDR, DAI_USDC_POOL, tychoRouterAddr, false
)
);
// DAI -> WETH
swaps[1] = encodeSequentialSwap(
address(usv2Executor),
encodeUniswapV2Swap(DAI_ADDR, WETH_DAI_POOL, tychoRouterAddr, true)
);
uint256 amountOut = tychoRouter.sequentialSwapPermit2(
amountIn,
USDC_ADDR,
address(0),
1 * 10 ** 18, // min amount
false,
true,
ALICE,
permitSingle,
signature,
pleEncode(swaps)
);
uint256 expectedAmount = 1111174255471849849; // 1.11 ETH
assertEq(amountOut, expectedAmount);
assertEq(ALICE.balance, expectedAmount);
vm.stopPrank();
}
function testCyclicSequentialSwap() public {
// This test has start and end tokens that are the same
// The flow is:
// USDC --(USV3)--> WETH --(USV3)--> USDC
uint256 amountIn = 100 * 10 ** 6;
deal(USDC_ADDR, tychoRouterAddr, amountIn);
bytes memory usdcWethV3Pool1ZeroOneData = encodeUniswapV3Swap(
USDC_ADDR, WETH_ADDR, tychoRouterAddr, USDC_WETH_USV3, true
);
bytes memory usdcWethV3Pool2OneZeroData = encodeUniswapV3Swap(
WETH_ADDR, USDC_ADDR, tychoRouterAddr, USDC_WETH_USV3_2, false
);
bytes[] memory swaps = new bytes[](2);
// USDC -> WETH
swaps[0] = encodeSequentialSwap(
address(usv3Executor), usdcWethV3Pool1ZeroOneData
);
// WETH -> USDC
swaps[1] = encodeSequentialSwap(
address(usv3Executor), usdcWethV3Pool2OneZeroData
);
tychoRouter.exposedSequentialSwap(amountIn, pleEncode(swaps));
assertEq(IERC20(USDC_ADDR).balanceOf(tychoRouterAddr), 99889294);
}
}

View File

@@ -0,0 +1,307 @@
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.26;
import "@src/executors/UniswapV4Executor.sol";
import {TychoRouter} from "@src/TychoRouter.sol";
import "./TychoRouterTestSetup.sol";
import "./executors/UniswapV4Utils.sol";
import {SafeCallback} from "@uniswap/v4-periphery/src/base/SafeCallback.sol";
contract TychoRouterSingleSwapTest is TychoRouterTestSetup {
bytes32 public constant FEE_SETTER_ROLE =
0xe6ad9a47fbda1dc18de1eb5eeb7d935e5e81b4748f3cfc61e233e64f88182060;
function testSingleSwapPermit2() public {
// Trade 1 WETH for DAI with 1 swap on Uniswap V2 using Permit2
// 1 WETH -> DAI
// (USV2)
vm.startPrank(ALICE);
uint256 amountIn = 1 ether;
deal(WETH_ADDR, ALICE, amountIn);
(
IAllowanceTransfer.PermitSingle memory permitSingle,
bytes memory signature
) = handlePermit2Approval(WETH_ADDR, amountIn);
bytes memory protocolData = encodeUniswapV2Swap(
WETH_ADDR, WETH_DAI_POOL, tychoRouterAddr, false
);
bytes memory swap =
encodeSingleSwap(address(usv2Executor), protocolData);
tychoRouter.singleSwapPermit2(
amountIn,
WETH_ADDR,
DAI_ADDR,
2659881924818443699786,
false,
false,
ALICE,
permitSingle,
signature,
swap
);
uint256 daiBalance = IERC20(DAI_ADDR).balanceOf(ALICE);
assertEq(daiBalance, 2659881924818443699787);
assertEq(IERC20(WETH_ADDR).balanceOf(ALICE), 0);
vm.stopPrank();
}
function testSingleSwapNoPermit2() public {
// Trade 1 WETH for DAI with 1 swap on Uniswap V2
// Checks amount out at the end
uint256 amountIn = 1 ether;
deal(WETH_ADDR, ALICE, amountIn);
vm.startPrank(ALICE);
// Approve the tokenIn to be transferred to the router
IERC20(WETH_ADDR).approve(address(tychoRouterAddr), amountIn);
bytes memory protocolData = encodeUniswapV2Swap(
WETH_ADDR, WETH_DAI_POOL, tychoRouterAddr, false
);
bytes memory swap =
encodeSingleSwap(address(usv2Executor), protocolData);
uint256 minAmountOut = 2600 * 1e18;
uint256 amountOut = tychoRouter.singleSwap(
amountIn,
WETH_ADDR,
DAI_ADDR,
minAmountOut,
false,
false,
ALICE,
swap
);
uint256 expectedAmount = 2659881924818443699787;
assertEq(amountOut, expectedAmount);
uint256 daiBalance = IERC20(DAI_ADDR).balanceOf(ALICE);
assertEq(daiBalance, expectedAmount);
assertEq(IERC20(WETH_ADDR).balanceOf(ALICE), 0);
vm.stopPrank();
}
function testSingleSwapUndefinedMinAmount() public {
// Trade 1 WETH for DAI with 1 swap on Uniswap V2
// Checks amount out at the end
uint256 amountIn = 1 ether;
deal(WETH_ADDR, ALICE, amountIn);
vm.startPrank(ALICE);
IERC20(WETH_ADDR).approve(address(tychoRouterAddr), amountIn);
bytes memory protocolData = encodeUniswapV2Swap(
WETH_ADDR, WETH_DAI_POOL, tychoRouterAddr, false
);
bytes memory swap =
encodeSingleSwap(address(usv2Executor), protocolData);
vm.expectRevert(TychoRouter__UndefinedMinAmountOut.selector);
tychoRouter.singleSwap(
amountIn, WETH_ADDR, DAI_ADDR, 0, false, false, ALICE, swap
);
}
function testSingleSwapInsufficientApproval() public {
// Trade 1 WETH for DAI with 1 swap on Uniswap V2
// Checks amount out at the end
uint256 amountIn = 1 ether;
deal(WETH_ADDR, ALICE, amountIn);
vm.startPrank(ALICE);
IERC20(WETH_ADDR).approve(address(tychoRouterAddr), amountIn - 1);
bytes memory protocolData = encodeUniswapV2Swap(
WETH_ADDR, WETH_DAI_POOL, tychoRouterAddr, false
);
bytes memory swap =
encodeSingleSwap(address(usv2Executor), protocolData);
uint256 minAmountOut = 2600 * 1e18;
vm.expectRevert();
tychoRouter.singleSwap(
amountIn,
WETH_ADDR,
DAI_ADDR,
minAmountOut,
false,
false,
ALICE,
swap
);
}
function testSingleSwapNegativeSlippageFailure() public {
// Trade 1 WETH for DAI with 1 swap on Uniswap V2
// Checks amount out at the end
uint256 amountIn = 1 ether;
deal(WETH_ADDR, ALICE, amountIn);
vm.startPrank(ALICE);
// Approve the tokenIn to be transferred to the router
IERC20(WETH_ADDR).approve(address(tychoRouterAddr), amountIn);
bytes memory protocolData = encodeUniswapV2Swap(
WETH_ADDR, WETH_DAI_POOL, tychoRouterAddr, false
);
bytes memory swap =
encodeSingleSwap(address(usv2Executor), protocolData);
uint256 minAmountOut = 5600 * 1e18;
vm.expectRevert(
abi.encodeWithSelector(
TychoRouter__NegativeSlippage.selector,
2659881924818443699787, // actual amountOut
minAmountOut
)
);
tychoRouter.singleSwap(
amountIn,
WETH_ADDR,
DAI_ADDR,
minAmountOut,
false,
false,
ALICE,
swap
);
}
function testSingleSwapFee() public {
// Trade 1 WETH for DAI with 1 swap on Uniswap V2
// Takes 1% fee at the end
vm.startPrank(FEE_SETTER);
tychoRouter.setFee(100);
tychoRouter.setFeeReceiver(FEE_RECEIVER);
vm.stopPrank();
uint256 amountIn = 1 ether;
deal(WETH_ADDR, ALICE, amountIn);
vm.startPrank(ALICE);
// Approve the tokenIn to be transferred to the router
IERC20(WETH_ADDR).approve(address(tychoRouterAddr), amountIn);
bytes memory protocolData = encodeUniswapV2Swap(
WETH_ADDR, WETH_DAI_POOL, tychoRouterAddr, false
);
bytes memory swap =
encodeSingleSwap(address(usv2Executor), protocolData);
uint256 minAmountOut = 2600 * 1e18;
uint256 amountOut = tychoRouter.singleSwap(
amountIn,
WETH_ADDR,
DAI_ADDR,
minAmountOut,
false,
false,
ALICE,
swap
);
uint256 expectedAmount = 2633283105570259262790;
assertEq(amountOut, expectedAmount);
uint256 usdcBalance = IERC20(DAI_ADDR).balanceOf(ALICE);
assertEq(usdcBalance, expectedAmount);
assertEq(IERC20(DAI_ADDR).balanceOf(FEE_RECEIVER), 26598819248184436997);
vm.stopPrank();
}
function testSingleSwapWrapETH() public {
uint256 amountIn = 1 ether;
deal(ALICE, amountIn);
vm.startPrank(ALICE);
IAllowanceTransfer.PermitSingle memory emptyPermitSingle =
IAllowanceTransfer.PermitSingle({
details: IAllowanceTransfer.PermitDetails({
token: address(0),
amount: 0,
expiration: 0,
nonce: 0
}),
spender: address(0),
sigDeadline: 0
});
bytes memory protocolData = encodeUniswapV2Swap(
WETH_ADDR, WETH_DAI_POOL, tychoRouterAddr, false
);
bytes memory swap =
encodeSingleSwap(address(usv2Executor), protocolData);
uint256 amountOut = tychoRouter.singleSwapPermit2{value: amountIn}(
amountIn,
address(0),
DAI_ADDR,
1000_000000,
true,
false,
ALICE,
emptyPermitSingle,
"",
swap
);
uint256 expectedAmount = 2659881924818443699787;
assertEq(amountOut, expectedAmount);
uint256 daiBalance = IERC20(DAI_ADDR).balanceOf(ALICE);
assertEq(daiBalance, expectedAmount);
assertEq(ALICE.balance, 0);
vm.stopPrank();
}
function testSingleSwapUnwrapETH() public {
// DAI -> WETH with unwrapping to ETH
uint256 amountIn = 3000 ether;
deal(DAI_ADDR, ALICE, amountIn);
vm.startPrank(ALICE);
(
IAllowanceTransfer.PermitSingle memory permitSingle,
bytes memory signature
) = handlePermit2Approval(DAI_ADDR, amountIn);
bytes memory protocolData =
encodeUniswapV2Swap(DAI_ADDR, WETH_DAI_POOL, tychoRouterAddr, true);
bytes memory swap =
encodeSingleSwap(address(usv2Executor), protocolData);
uint256 amountOut = tychoRouter.singleSwapPermit2(
amountIn,
DAI_ADDR,
address(0),
1000_000000,
false,
true,
ALICE,
permitSingle,
signature,
swap
);
uint256 expectedAmount = 1120007305574805922;
assertEq(amountOut, expectedAmount);
assertEq(ALICE.balance, expectedAmount);
vm.stopPrank();
}
}

View File

@@ -0,0 +1,683 @@
// SPDX-License-Identifier: BUSL-1.1
pragma solidity ^0.8.26;
import "@src/executors/UniswapV4Executor.sol";
import {TychoRouter} from "@src/TychoRouter.sol";
import "./TychoRouterTestSetup.sol";
import "./executors/UniswapV4Utils.sol";
import {SafeCallback} from "@uniswap/v4-periphery/src/base/SafeCallback.sol";
contract TychoRouterSplitSwapTest is TychoRouterTestSetup {
bytes32 public constant FEE_SETTER_ROLE =
0xe6ad9a47fbda1dc18de1eb5eeb7d935e5e81b4748f3cfc61e233e64f88182060;
function _getSplitSwaps() private view returns (bytes[] memory) {
// Trade 1 WETH for USDC through DAI and WBTC with 4 swaps on Uniswap V2
// -> DAI ->
// 1 WETH USDC
// -> WBTC ->
// (univ2) (univ2)
bytes[] memory swaps = new bytes[](4);
// WETH -> WBTC (60%)
swaps[0] = encodeSplitSwap(
uint8(0),
uint8(1),
(0xffffff * 60) / 100, // 60%
address(usv2Executor),
encodeUniswapV2Swap(
WETH_ADDR, WETH_WBTC_POOL, tychoRouterAddr, false
)
);
// WBTC -> USDC
swaps[1] = encodeSplitSwap(
uint8(1),
uint8(2),
uint24(0),
address(usv2Executor),
encodeUniswapV2Swap(
WBTC_ADDR, USDC_WBTC_POOL, tychoRouterAddr, true
)
);
// WETH -> DAI
swaps[2] = encodeSplitSwap(
uint8(0),
uint8(3),
uint24(0),
address(usv2Executor),
encodeUniswapV2Swap(
WETH_ADDR, WETH_DAI_POOL, tychoRouterAddr, false
)
);
// DAI -> USDC
swaps[3] = encodeSplitSwap(
uint8(3),
uint8(2),
uint24(0),
address(usv2Executor),
encodeUniswapV2Swap(DAI_ADDR, DAI_USDC_POOL, tychoRouterAddr, true)
);
return swaps;
}
function testSplitSwapInternalMethod() public {
// Trade 1 WETH for USDC through DAI and WBTC - see _getSplitSwaps for more info
uint256 amountIn = 1 ether;
deal(WETH_ADDR, tychoRouterAddr, amountIn);
bytes[] memory swaps = _getSplitSwaps();
tychoRouter.exposedSplitSwap(amountIn, 4, pleEncode(swaps));
uint256 usdcBalance = IERC20(USDC_ADDR).balanceOf(tychoRouterAddr);
assertEq(usdcBalance, 2615491639);
assertEq(IERC20(WETH_ADDR).balanceOf(tychoRouterAddr), 0);
}
function testSplitSwapPermit2() public {
// Trade 1 WETH for USDC through DAI and WBTC - see _getSplitSwaps for more info
uint256 amountIn = 1 ether;
deal(WETH_ADDR, ALICE, amountIn);
vm.startPrank(ALICE);
(
IAllowanceTransfer.PermitSingle memory permitSingle,
bytes memory signature
) = handlePermit2Approval(WETH_ADDR, amountIn);
bytes[] memory swaps = _getSplitSwaps();
tychoRouter.splitSwapPermit2(
amountIn,
WETH_ADDR,
USDC_ADDR,
1, // min amount
false,
false,
4,
ALICE,
permitSingle,
signature,
pleEncode(swaps)
);
uint256 usdcBalance = IERC20(USDC_ADDR).balanceOf(ALICE);
assertEq(usdcBalance, 2615491639);
assertEq(IERC20(WETH_ADDR).balanceOf(tychoRouterAddr), 0);
}
function testSplitSwapNoPermit2() public {
// Trade 1 WETH for USDC through DAI and WBTC - see _getSplitSwaps for more info
uint256 amountIn = 1 ether;
deal(WETH_ADDR, ALICE, amountIn);
vm.startPrank(ALICE);
IERC20(WETH_ADDR).approve(address(tychoRouterAddr), amountIn);
bytes[] memory swaps = _getSplitSwaps();
tychoRouter.splitSwap(
amountIn,
WETH_ADDR,
USDC_ADDR,
1000_000000, // min amount
false,
false,
4,
ALICE,
pleEncode(swaps)
);
uint256 usdcBalance = IERC20(USDC_ADDR).balanceOf(ALICE);
assertEq(usdcBalance, 2615491639);
assertEq(IERC20(WETH_ADDR).balanceOf(tychoRouterAddr), 0);
}
function testSplitSwapUndefinedMinAmount() public {
// Min amount should always be non-zero. If zero, swap attempt should revert.
uint256 amountIn = 1 ether;
deal(WETH_ADDR, ALICE, amountIn);
vm.startPrank(ALICE);
IERC20(WETH_ADDR).approve(address(tychoRouterAddr), amountIn);
bytes[] memory swaps = _getSplitSwaps();
vm.expectRevert(TychoRouter__UndefinedMinAmountOut.selector);
tychoRouter.splitSwap(
amountIn,
WETH_ADDR,
USDC_ADDR,
0, // min amount
false,
false,
4,
ALICE,
pleEncode(swaps)
);
vm.stopPrank();
}
function testSplitSwapInsufficientApproval() public {
// Trade 1 WETH for USDC through DAI and WBTC - see _getSplitSwaps for more info
uint256 amountIn = 1 ether;
deal(WETH_ADDR, ALICE, amountIn);
vm.startPrank(ALICE);
// Approve less than the amountIn
IERC20(WETH_ADDR).approve(address(tychoRouterAddr), amountIn - 1);
bytes[] memory swaps = _getSplitSwaps();
vm.expectRevert();
tychoRouter.splitSwap(
amountIn,
WETH_ADDR,
USDC_ADDR,
1000_000000, // min amount
false,
false,
2,
ALICE,
pleEncode(swaps)
);
vm.stopPrank();
}
function testSplitSwapNegativeSlippageFailure() public {
// Trade 1 WETH for USDC through DAI and WBTC - see _getSplitSwaps for more info
uint256 amountIn = 1 ether;
deal(WETH_ADDR, ALICE, amountIn);
vm.startPrank(ALICE);
(
IAllowanceTransfer.PermitSingle memory permitSingle,
bytes memory signature
) = handlePermit2Approval(WETH_ADDR, amountIn);
bytes[] memory swaps = _getSplitSwaps();
uint256 minAmountOut = 3000 * 1e18;
vm.expectRevert(
abi.encodeWithSelector(
TychoRouter__NegativeSlippage.selector,
2615491639, // actual amountOut
minAmountOut
)
);
tychoRouter.splitSwapPermit2(
amountIn,
WETH_ADDR,
DAI_ADDR,
minAmountOut,
false,
false,
4,
ALICE,
permitSingle,
signature,
pleEncode(swaps)
);
vm.stopPrank();
}
function testSplitSwapFee() public {
// Trade 1 WETH for DAI with 1 swap on Uniswap V2
// Does permit2 token approval and transfer
// Takes fee at the end
vm.startPrank(FEE_SETTER);
tychoRouter.setFee(100);
tychoRouter.setFeeReceiver(FEE_RECEIVER);
vm.stopPrank();
uint256 amountIn = 1 ether;
deal(WETH_ADDR, ALICE, amountIn);
vm.startPrank(ALICE);
(
IAllowanceTransfer.PermitSingle memory permitSingle,
bytes memory signature
) = handlePermit2Approval(WETH_ADDR, amountIn);
bytes memory protocolData = encodeUniswapV2Swap(
WETH_ADDR, WETH_DAI_POOL, tychoRouterAddr, false
);
bytes memory swap = encodeSplitSwap(
uint8(0), uint8(1), uint24(0), address(usv2Executor), protocolData
);
bytes[] memory swaps = new bytes[](1);
swaps[0] = swap;
uint256 amountOut = tychoRouter.splitSwapPermit2(
amountIn,
WETH_ADDR,
DAI_ADDR,
2633283105570259262780,
false,
false,
2,
ALICE,
permitSingle,
signature,
pleEncode(swaps)
);
uint256 expectedAmount = 2633283105570259262790;
assertEq(amountOut, expectedAmount);
uint256 daiBalance = IERC20(DAI_ADDR).balanceOf(ALICE);
assertEq(daiBalance, expectedAmount);
assertEq(IERC20(DAI_ADDR).balanceOf(FEE_RECEIVER), 26598819248184436997);
vm.stopPrank();
}
function testSplitSwapWrapETH() public {
// Trade 1 ETH (and wrap it) for DAI with 1 swap on Uniswap V2
uint256 amountIn = 1 ether;
deal(ALICE, amountIn);
vm.startPrank(ALICE);
IAllowanceTransfer.PermitSingle memory emptyPermitSingle =
IAllowanceTransfer.PermitSingle({
details: IAllowanceTransfer.PermitDetails({
token: address(0),
amount: 0,
expiration: 0,
nonce: 0
}),
spender: address(0),
sigDeadline: 0
});
bytes memory protocolData = encodeUniswapV2Swap(
WETH_ADDR, WETH_DAI_POOL, tychoRouterAddr, false
);
bytes memory swap = encodeSplitSwap(
uint8(0), uint8(1), uint24(0), address(usv2Executor), protocolData
);
bytes[] memory swaps = new bytes[](1);
swaps[0] = swap;
uint256 amountOut = tychoRouter.splitSwapPermit2{value: amountIn}(
amountIn,
address(0),
DAI_ADDR,
2659881924818443699780,
true,
false,
2,
ALICE,
emptyPermitSingle,
"",
pleEncode(swaps)
);
uint256 expectedAmount = 2659881924818443699787;
assertEq(amountOut, expectedAmount);
uint256 daiBalance = IERC20(DAI_ADDR).balanceOf(ALICE);
assertEq(daiBalance, expectedAmount);
assertEq(ALICE.balance, 0);
vm.stopPrank();
}
function testSplitSwapUnwrapETH() public {
// Trade 3k DAI for WETH with 1 swap on Uniswap V2 and unwrap it at the end
uint256 amountIn = 3_000 * 10 ** 18;
deal(DAI_ADDR, ALICE, amountIn);
vm.startPrank(ALICE);
(
IAllowanceTransfer.PermitSingle memory permitSingle,
bytes memory signature
) = handlePermit2Approval(DAI_ADDR, amountIn);
bytes memory protocolData =
encodeUniswapV2Swap(DAI_ADDR, WETH_DAI_POOL, tychoRouterAddr, true);
bytes memory swap = encodeSplitSwap(
uint8(0), uint8(1), uint24(0), address(usv2Executor), protocolData
);
bytes[] memory swaps = new bytes[](1);
swaps[0] = swap;
uint256 amountOut = tychoRouter.splitSwapPermit2(
amountIn,
DAI_ADDR,
address(0),
1120007305574805920,
false,
true,
2,
ALICE,
permitSingle,
signature,
pleEncode(swaps)
);
uint256 expectedAmount = 1120007305574805922; // 1.12 ETH
assertEq(amountOut, expectedAmount);
assertEq(ALICE.balance, expectedAmount);
vm.stopPrank();
}
function testSplitSwapSingleUSV3Permit2() public {
// Trade 1 WETH for DAI with 1 swap on Uniswap V3 using Permit2
// Tests entire USV3 flow including callback
// 1 WETH -> DAI
// (USV3)
vm.startPrank(ALICE);
uint256 amountIn = 10 ** 18;
deal(WETH_ADDR, ALICE, amountIn);
(
IAllowanceTransfer.PermitSingle memory permitSingle,
bytes memory signature
) = handlePermit2Approval(WETH_ADDR, amountIn);
uint256 expAmountOut = 1205_128428842122129186; //Swap 1 WETH for 1205.12 DAI
bool zeroForOne = false;
bytes memory protocolData = encodeUniswapV3Swap(
WETH_ADDR, DAI_ADDR, tychoRouterAddr, DAI_WETH_USV3, zeroForOne
);
bytes memory swap = encodeSplitSwap(
uint8(0), uint8(1), uint24(0), address(usv3Executor), protocolData
);
bytes[] memory swaps = new bytes[](1);
swaps[0] = swap;
tychoRouter.splitSwapPermit2(
amountIn,
WETH_ADDR,
DAI_ADDR,
expAmountOut - 1,
false,
false,
2,
ALICE,
permitSingle,
signature,
pleEncode(swaps)
);
uint256 finalBalance = IERC20(DAI_ADDR).balanceOf(ALICE);
assertGe(finalBalance, expAmountOut);
vm.stopPrank();
}
function testEmptySwapsRevert() public {
uint256 amountIn = 10 ** 18;
bytes memory swaps = "";
vm.expectRevert(TychoRouter__EmptySwaps.selector);
tychoRouter.exposedSplitSwap(amountIn, 2, swaps);
}
function testSplitSwapAmountInNotFullySpent() public {
// Trade 1 WETH for DAI with 1 swap on Uniswap V2
// Has invalid data as input! There is only one swap with 60% of the input amount
uint256 amountIn = 1 ether;
deal(WETH_ADDR, ALICE, amountIn);
vm.startPrank(ALICE);
(
IAllowanceTransfer.PermitSingle memory permitSingle,
bytes memory signature
) = handlePermit2Approval(WETH_ADDR, amountIn);
bytes memory protocolData = encodeUniswapV2Swap(
WETH_ADDR, WETH_DAI_POOL, tychoRouterAddr, false
);
bytes memory swap = encodeSplitSwap(
uint8(0),
uint8(1),
(0xffffff * 60) / 100, // 60%
address(usv2Executor),
protocolData
);
bytes[] memory swaps = new bytes[](1);
swaps[0] = swap;
vm.expectRevert(
abi.encodeWithSelector(
TychoRouter__AmountInDiffersFromConsumed.selector,
1000000000000000000,
600000000000000000
)
);
tychoRouter.splitSwapPermit2(
amountIn,
WETH_ADDR,
DAI_ADDR,
1,
false,
false,
2,
ALICE,
permitSingle,
signature,
pleEncode(swaps)
);
vm.stopPrank();
}
function testSplitSwapSingleUSV4CallbackPermit2() public {
vm.startPrank(ALICE);
uint256 amountIn = 100 ether;
deal(USDE_ADDR, ALICE, amountIn);
(
IAllowanceTransfer.PermitSingle memory permitSingle,
bytes memory signature
) = handlePermit2Approval(USDE_ADDR, amountIn);
UniswapV4Executor.UniswapV4Pool[] memory pools =
new UniswapV4Executor.UniswapV4Pool[](1);
pools[0] = UniswapV4Executor.UniswapV4Pool({
intermediaryToken: USDT_ADDR,
fee: uint24(100),
tickSpacing: int24(1)
});
bytes memory protocolData = UniswapV4Utils.encodeExactInput(
USDE_ADDR, USDT_ADDR, true, address(usv4Executor), pools
);
bytes memory swap = encodeSplitSwap(
uint8(0), uint8(1), uint24(0), address(usv4Executor), protocolData
);
bytes[] memory swaps = new bytes[](1);
swaps[0] = swap;
tychoRouter.splitSwapPermit2(
amountIn,
USDE_ADDR,
USDT_ADDR,
99943850,
false,
false,
2,
ALICE,
permitSingle,
signature,
pleEncode(swaps)
);
assertEq(IERC20(USDT_ADDR).balanceOf(ALICE), 99943852);
vm.stopPrank();
}
function testSplitSwapMultipleUSV4Callback() public {
// This test has two uniswap v4 hops that will be executed inside of the V4 pool manager
// USDE -> USDT -> WBTC
uint256 amountIn = 100 ether;
deal(USDE_ADDR, tychoRouterAddr, amountIn);
UniswapV4Executor.UniswapV4Pool[] memory pools =
new UniswapV4Executor.UniswapV4Pool[](2);
pools[0] = UniswapV4Executor.UniswapV4Pool({
intermediaryToken: USDT_ADDR,
fee: uint24(100),
tickSpacing: int24(1)
});
pools[1] = UniswapV4Executor.UniswapV4Pool({
intermediaryToken: WBTC_ADDR,
fee: uint24(3000),
tickSpacing: int24(60)
});
bytes memory protocolData = UniswapV4Utils.encodeExactInput(
USDE_ADDR, WBTC_ADDR, true, address(usv4Executor), pools
);
bytes memory swap = encodeSplitSwap(
uint8(0), uint8(1), uint24(0), address(usv4Executor), protocolData
);
bytes[] memory swaps = new bytes[](1);
swaps[0] = swap;
tychoRouter.exposedSplitSwap(amountIn, 2, pleEncode(swaps));
assertEq(IERC20(WBTC_ADDR).balanceOf(tychoRouterAddr), 102718);
}
function testSplitInputCyclicSwapInternalMethod() public {
// This test has start and end tokens that are the same
// The flow is:
// ┌─ (USV3, 60% split) ──> WETH ─┐
// │ │
// USDC ──────┤ ├──(USV2)──> USDC
// │ │
// └─ (USV3, 40% split) ──> WETH ─┘
uint256 amountIn = 100 * 10 ** 6;
deal(USDC_ADDR, tychoRouterAddr, amountIn);
bytes memory usdcWethV3Pool1ZeroOneData = encodeUniswapV3Swap(
USDC_ADDR, WETH_ADDR, tychoRouterAddr, USDC_WETH_USV3, true
);
bytes memory usdcWethV3Pool2ZeroOneData = encodeUniswapV3Swap(
USDC_ADDR, WETH_ADDR, tychoRouterAddr, USDC_WETH_USV3_2, true
);
bytes memory wethUsdcV2OneZeroData = encodeUniswapV2Swap(
WETH_ADDR, USDC_WETH_USV2, tychoRouterAddr, false
);
bytes[] memory swaps = new bytes[](3);
// USDC -> WETH (60% split)
swaps[0] = encodeSplitSwap(
uint8(0),
uint8(1),
(0xffffff * 60) / 100, // 60%
address(usv3Executor),
usdcWethV3Pool1ZeroOneData
);
// USDC -> WETH (40% remainder)
swaps[1] = encodeSplitSwap(
uint8(0),
uint8(1),
uint24(0),
address(usv3Executor),
usdcWethV3Pool2ZeroOneData
);
// WETH -> USDC
swaps[2] = encodeSplitSwap(
uint8(1),
uint8(0),
uint24(0),
address(usv2Executor),
wethUsdcV2OneZeroData
);
tychoRouter.exposedSplitSwap(amountIn, 2, pleEncode(swaps));
assertEq(IERC20(USDC_ADDR).balanceOf(tychoRouterAddr), 99574171);
}
function testSplitOutputCyclicSwapInternalMethod() public {
// This test has start and end tokens that are the same
// The flow is:
// ┌─── (USV3, 60% split) ───┐
// │ │
// USDC ──(USV2) ── WETH──| ├─> USDC
// │ │
// └─── (USV3, 40% split) ───┘
uint256 amountIn = 100 * 10 ** 6;
deal(USDC_ADDR, tychoRouterAddr, amountIn);
bytes memory usdcWethV2Data = encodeUniswapV2Swap(
USDC_ADDR, USDC_WETH_USV2, tychoRouterAddr, true
);
bytes memory usdcWethV3Pool1OneZeroData = encodeUniswapV3Swap(
WETH_ADDR, USDC_ADDR, tychoRouterAddr, USDC_WETH_USV3, false
);
bytes memory usdcWethV3Pool2OneZeroData = encodeUniswapV3Swap(
WETH_ADDR, USDC_ADDR, tychoRouterAddr, USDC_WETH_USV3_2, false
);
bytes[] memory swaps = new bytes[](3);
// USDC -> WETH
swaps[0] = encodeSplitSwap(
uint8(0), uint8(1), uint24(0), address(usv2Executor), usdcWethV2Data
);
// WETH -> USDC
swaps[1] = encodeSplitSwap(
uint8(1),
uint8(0),
(0xffffff * 60) / 100,
address(usv3Executor),
usdcWethV3Pool1OneZeroData
);
// WETH -> USDC
swaps[2] = encodeSplitSwap(
uint8(1),
uint8(0),
uint24(0),
address(usv3Executor),
usdcWethV3Pool2OneZeroData
);
tychoRouter.exposedSplitSwap(amountIn, 2, pleEncode(swaps));
assertEq(IERC20(USDC_ADDR).balanceOf(tychoRouterAddr), 99525908);
}
// Base Network Tests
// Make sure to set the RPC_URL to base network
function testSplitSwapInternalMethodBase() public {
vm.skip(true);
vm.rollFork(26857267);
uint256 amountIn = 10 * 10 ** 6;
deal(BASE_USDC, tychoRouterAddr, amountIn);
bytes memory protocolData = encodeUniswapV2Swap(
BASE_USDC, USDC_MAG7_POOL, tychoRouterAddr, true
);
bytes memory swap = encodeSplitSwap(
uint8(0), uint8(1), uint24(0), address(usv2Executor), protocolData
);
bytes[] memory swaps = new bytes[](1);
swaps[0] = swap;
tychoRouter.exposedSplitSwap(amountIn, 2, pleEncode(swaps));
assertGt(IERC20(BASE_MAG7).balanceOf(tychoRouterAddr), 1379830606);
}
}

View File

@@ -29,6 +29,13 @@ contract TychoRouterExposed is TychoRouter {
) external returns (uint256) {
return _splitSwap(amountIn, nTokens, swaps);
}
function exposedSequentialSwap(uint256 amountIn, bytes calldata swaps)
external
returns (uint256)
{
return _sequentialSwap(amountIn, swaps);
}
}
contract TychoRouterTestSetup is Constants {
@@ -181,6 +188,22 @@ contract TychoRouterTestSetup is Constants {
}
}
function encodeSingleSwap(address executor, bytes memory protocolData)
internal
pure
returns (bytes memory)
{
return abi.encodePacked(executor, protocolData);
}
function encodeSequentialSwap(address executor, bytes memory protocolData)
internal
pure
returns (bytes memory)
{
return abi.encodePacked(executor, protocolData);
}
function encodeSplitSwap(
uint8 tokenInIndex,
uint8 tokenOutIndex,