feat: SingleSwapStrategyEncoder

- Had to take the implementation of the swap header encoding out of the main EVMStrategyEncoder trait, since it will now be difference for single and split swap strategies.
- Integration tests will be added in separate task/PR.


Took 7 seconds
This commit is contained in:
TAMARA LIPOWSKI
2025-03-26 16:05:54 +01:00
committed by Diana Carvalho
parent 3f6bc5643e
commit 11a05e4f18

View File

@@ -26,25 +26,6 @@ use crate::encoding::{
/// Encodes a solution using a specific strategy for execution on the EVM-compatible network.
pub trait EVMStrategyEncoder: StrategyEncoder {
/// Encodes information necessary for performing a single swap against a given executor for
/// a protocol.
fn encode_swap_header(
&self,
token_in: U8,
token_out: U8,
split: U24,
executor_address: Bytes,
protocol_data: Vec<u8>,
) -> Vec<u8> {
let mut encoded = Vec::new();
encoded.push(token_in.to_be_bytes_vec()[0]);
encoded.push(token_out.to_be_bytes_vec()[0]);
encoded.extend_from_slice(&split.to_be_bytes_vec());
encoded.extend(executor_address.to_vec());
encoded.extend(protocol_data);
encoded
}
/// Uses prefix-length encoding to efficient encode action data.
///
/// Prefix-length encoding is a data encoding method where the beginning of a data segment
@@ -61,6 +42,163 @@ pub trait EVMStrategyEncoder: StrategyEncoder {
}
}
/// Represents the encoder for a swap strategy which supports single swaps.
///
/// # Fields
/// * `swap_encoder_registry`: SwapEncoderRegistry, containing all possible swap encoders
/// * `permit2`: Permit2, responsible for managing permit2 operations and providing necessary
/// signatures and permit2 objects for calling the router
/// * `selector`: String, the selector for the swap function in the router contract
/// * `native_address`: Address of the chain's native token
/// * `wrapped_address`: Address of the chain's wrapped token
/// * `router_address`: Address of the router to be used to execute swaps
#[derive(Clone)]
pub struct SingleSwapStrategyEncoder {
swap_encoder_registry: SwapEncoderRegistry,
permit2: Option<Permit2>,
selector: String,
router_address: Bytes,
}
impl SingleSwapStrategyEncoder {
pub fn new(
blockchain: tycho_core::models::Chain,
swap_encoder_registry: SwapEncoderRegistry,
swapper_pk: Option<String>,
router_address: Bytes,
) -> Result<Self, EncodingError> {
let chain = Chain::from(blockchain);
let (permit2, selector) = if let Some(swapper_pk) = swapper_pk {
(Some(Permit2::new(swapper_pk, chain.clone())?), "singleSwapPermit2(uint256,address,address,uint256,bool,bool,uint256,address,((address,uint160,uint48,uint48),address,uint256),bytes,bytes)".to_string())
} else {
(
None,
"singleSwap(uint256,address,address,uint256,bool,bool,uint256,address,bytes)"
.to_string(),
)
};
Ok(Self { permit2, selector, swap_encoder_registry, router_address })
}
/// Encodes information necessary for performing a single swap against a given executor for
/// a protocol.
fn encode_swap_header(&self, executor_address: Bytes, protocol_data: Vec<u8>) -> Vec<u8> {
let mut encoded = Vec::new();
encoded.extend(executor_address.to_vec());
encoded.extend(protocol_data);
encoded
}
}
impl EVMStrategyEncoder for SingleSwapStrategyEncoder {}
impl StrategyEncoder for SingleSwapStrategyEncoder {
fn encode_strategy(&self, solution: Solution) -> Result<(Vec<u8>, Bytes), EncodingError> {
let grouped_swaps = group_swaps(solution.clone().swaps);
let number_of_groups = grouped_swaps.len();
if number_of_groups != 1 {
return Err(EncodingError::InvalidInput(format!(
"Executor strategy only supports exactly one swap for non-groupable protocols. Found {}",
number_of_groups
)))
}
let grouped_swap = grouped_swaps
.first()
.ok_or_else(|| EncodingError::FatalError("Swap grouping failed".to_string()))?;
if grouped_swap.split != 0f64 {
return Err(EncodingError::InvalidInput(
"Splits not supported for single swaps.".to_string(),
))
}
let min_amount_out = get_min_amount_for_solution(solution.clone());
let (mut unwrap, mut wrap) = (false, false);
if let Some(action) = solution.native_action.clone() {
match action {
NativeAction::Wrap => wrap = true,
NativeAction::Unwrap => unwrap = true,
}
}
let swap_encoder = self
.get_swap_encoder(&grouped_swap.protocol_system)
.ok_or_else(|| {
EncodingError::InvalidInput(format!(
"Swap encoder not found for protocol: {}",
grouped_swap.protocol_system
))
})?;
let mut grouped_protocol_data: Vec<u8> = vec![];
for swap in grouped_swap.swaps.iter() {
let encoding_context = EncodingContext {
receiver: self.router_address.clone(),
exact_out: solution.exact_out,
router_address: self.router_address.clone(),
group_token_in: grouped_swap.input_token.clone(),
group_token_out: grouped_swap.output_token.clone(),
};
let protocol_data = swap_encoder.encode_swap(swap.clone(), encoding_context.clone())?;
grouped_protocol_data.extend(protocol_data);
}
let swap_data = self.encode_swap_header(
Bytes::from_str(swap_encoder.executor_address())
.map_err(|_| EncodingError::FatalError("Invalid executor address".to_string()))?,
grouped_protocol_data,
);
let method_calldata = if let Some(permit2) = self.permit2.clone() {
let (permit, signature) = permit2.get_permit(
&self.router_address,
&solution.sender,
&solution.given_token,
&solution.given_amount,
)?;
(
biguint_to_u256(&solution.given_amount),
bytes_to_address(&solution.given_token)?,
bytes_to_address(&solution.checked_token)?,
biguint_to_u256(&min_amount_out),
wrap,
unwrap,
bytes_to_address(&solution.receiver)?,
permit,
signature.as_bytes().to_vec(),
swap_data,
)
.abi_encode()
} else {
(
biguint_to_u256(&solution.given_amount),
bytes_to_address(&solution.given_token)?,
bytes_to_address(&solution.checked_token)?,
biguint_to_u256(&min_amount_out),
wrap,
unwrap,
bytes_to_address(&solution.receiver)?,
swap_data,
)
.abi_encode()
};
let contract_interaction = encode_input(&self.selector, method_calldata);
Ok((contract_interaction, self.router_address.clone()))
}
fn get_swap_encoder(&self, protocol_system: &str) -> Option<&Box<dyn SwapEncoder>> {
self.swap_encoder_registry
.get_encoder(protocol_system)
}
fn clone_box(&self) -> Box<dyn StrategyEncoder> {
Box::new(self.clone())
}
}
/// Represents the encoder for a swap strategy which supports single, sequential and split swaps.
///
/// # Fields
@@ -126,7 +264,27 @@ impl SplitSwapStrategyEncoder {
router_address: tycho_router_address,
})
}
/// Encodes information necessary for performing a single swap against a given executor for
/// a protocol as part of a split swap solution.
fn encode_swap_header(
&self,
token_in: U8,
token_out: U8,
split: U24,
executor_address: Bytes,
protocol_data: Vec<u8>,
) -> Vec<u8> {
let mut encoded = Vec::new();
encoded.push(token_in.to_be_bytes_vec()[0]);
encoded.push(token_out.to_be_bytes_vec()[0]);
encoded.extend_from_slice(&split.to_be_bytes_vec());
encoded.extend(executor_address.to_vec());
encoded.extend(protocol_data);
encoded
}
}
impl EVMStrategyEncoder for SplitSwapStrategyEncoder {}
impl StrategyEncoder for SplitSwapStrategyEncoder {
@@ -708,8 +866,110 @@ mod tests {
assert_eq!(hex_calldata[1288..], expected_swaps);
}
#[rstest]
#[case::with_check_no_slippage(
None,
None,
Some(BigUint::from_str("2659881924818443699787").unwrap()),
U256::from_str("2659881924818443699787").unwrap(),
)]
#[case::no_check_with_slippage(
Some(BigUint::from_str("3_000_000000000000000000").unwrap()),
Some(0.01f64),
None,
U256::from_str("2_970_000000000000000000").unwrap(),
)]
#[case::with_check_and_slippage(
Some(BigUint::from_str("3_000_000000000000000000").unwrap()),
Some(0.01f64),
Some(BigUint::from_str("2_999_000000000000000000").unwrap()),
U256::from_str("2_999_000000000000000000").unwrap(),
)]
fn test_single_swap_strategy_encoder(
#[case] expected_amount: Option<BigUint>,
#[case] slippage: Option<f64>,
#[case] checked_amount: Option<BigUint>,
#[case] expected_min_amount: U256,
) {
// Performs a single swap from WETH to DAI on a USV2 pool, with no grouping optimizations.
// Set up a mock private key for signing
let private_key =
"0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string();
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let swap = Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: dai.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SingleSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
Some(private_key),
Bytes::from("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395"),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: weth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: dai,
expected_amount,
slippage,
checked_amount,
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
router_address: Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(),
swaps: vec![swap],
..Default::default()
};
let (calldata, _) = encoder
.encode_strategy(solution)
.unwrap();
let expected_min_amount_encoded = hex::encode(U256::abi_encode(&expected_min_amount));
let expected_input = [
"c378044e", // Function selector
"0000000000000000000000000000000000000000000000000de0b6b3a7640000", // amount out
"000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"0000000000000000000000006b175474e89094c44da98b954eedeac495271d0f", // token out
&expected_min_amount_encoded, // min amount out
"0000000000000000000000000000000000000000000000000000000000000000", // wrap
"0000000000000000000000000000000000000000000000000000000000000000", // unwrap
"000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
]
.join("");
// after this there is the permit and because of the deadlines (that depend on block time)
// it's hard to assert
let expected_swap = String::from(concat!(
// length of swap bytes
"0000000000000000000000000000000000000000000000000000000000000051",
"f6c5be66fff9dc69962d73da0a617a827c382329", // executor address
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"a478c2975ab1ea89e8196811f51a7b7ade33eb11", // component id
"3ede3eca2a72b3aecc820e955b36f38437d01395", // receiver
"00", // zero2one
"00", // exact out
"0000000000000000000000000000", // padding
));
let hex_calldata = encode(&calldata);
assert_eq!(hex_calldata[..456], expected_input);
assert_eq!(hex_calldata[1224..], expected_swap);
}
#[test]
fn test_split_swap_strategy_encoder_simple_route_wrap() {
fn test_single_swap_strategy_encoder_wrap() {
// Performs a single swap from WETH to DAI on a USV2 pool, wrapping ETH
// Note: This test does not assert anything. It is only used to obtain integration test
// data for our router solidity test.
@@ -761,7 +1021,56 @@ mod tests {
}
#[test]
fn test_split_swap_strategy_encoder_simple_route_unwrap() {
fn test_split_swap_strategy_encoder_wrap() {
// Performs a single swap from WETH to DAI on a USV2 pool, wrapping ETH
// Note: This test does not assert anything. It is only used to obtain integration test
// data for our router solidity test.
// Set up a mock private key for signing
let private_key =
"0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let swap = Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth(),
token_out: dai.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder =
SplitSwapStrategyEncoder::new(eth_chain(), swap_encoder_registry, Some(private_key))
.unwrap();
let solution = Solution {
exact_out: false,
given_token: eth(),
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: dai,
expected_amount: None,
checked_amount: Some(BigUint::from_str("2659881924818443699787").unwrap()),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
router_address: Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(),
swaps: vec![swap],
native_action: Some(NativeAction::Wrap),
..Default::default()
};
let (calldata, _) = encoder
.encode_strategy(solution)
.unwrap();
let hex_calldata = encode(&calldata);
println!("{}", hex_calldata);
}
#[test]
fn test_split_swap_strategy_encoder_unwrap() {
// Performs a single swap from DAI to WETH on a USV2 pool, unwrapping ETH at the end
// Note: This test does not assert anything. It is only used to obtain integration test
// data for our router solidity test.
@@ -1112,7 +1421,86 @@ mod tests {
}
#[test]
fn test_split_swap_strategy_encoder_simple_route_no_permit2() {
fn test_single_swap_strategy_encoder_no_permit2() {
// Performs a single swap from WETH to DAI on a USV2 pool, without permit2 and no grouping
// optimizations.
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let dai = Bytes::from_str("0x6b175474e89094c44da98b954eedeac495271d0f").unwrap();
let expected_amount = Some(BigUint::from_str("2_650_000000000000000000").unwrap());
let slippage = Some(0.01f64);
let checked_amount = Some(BigUint::from_str("2_640_000000000000000000").unwrap());
let expected_min_amount = U256::from_str("2_640_000000000000000000").unwrap();
let swap = Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: dai.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SingleSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
None,
Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: weth,
given_amount: BigUint::from_str("1_000000000000000000").unwrap(),
checked_token: dai,
expected_amount,
slippage,
checked_amount,
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
router_address: Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(),
swaps: vec![swap],
..Default::default()
};
let (calldata, _) = encoder
.encode_strategy(solution)
.unwrap();
let expected_min_amount_encoded = hex::encode(U256::abi_encode(&expected_min_amount));
let expected_input = [
"0f6cbbe8", // Function selector
"0000000000000000000000000000000000000000000000000de0b6b3a7640000", // amount out
"000000000000000000000000c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"0000000000000000000000006b175474e89094c44da98b954eedeac495271d0f", // token out
&expected_min_amount_encoded, // min amount out
"0000000000000000000000000000000000000000000000000000000000000000", // wrap
"0000000000000000000000000000000000000000000000000000000000000000", // unwrap
"000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
"0000000000000000000000000000000000000000000000000000000000000100", // offset of swap bytes
"0000000000000000000000000000000000000000000000000000000000000051", // length of swap bytes without padding
// Swap data
"f6c5be66fff9dc69962d73da0a617a827c382329", // executor address
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"a478c2975ab1ea89e8196811f51a7b7ade33eb11", // component id
"3ede3eca2a72b3aecc820e955b36f38437d01395", // receiver
"00", // zero2one
"00", // exact out
"0000000000000000000000000000", // padding
]
.join("");
let hex_calldata = encode(&calldata);
assert_eq!(hex_calldata, expected_input);
println!("{}", hex_calldata);
}
#[test]
fn test_split_swap_strategy_encoder_no_permit2() {
// Performs a single swap from WETH to DAI on a USV2 pool, without permit2 and no grouping
// optimizations.
@@ -1326,7 +1714,7 @@ mod tests {
}
#[test]
fn test_cyclic_sequential_swap() {
fn test_cyclic_sequential_swap_split_strategy() {
// This test has start and end tokens that are the same
// The flow is:
// USDC -> WETH -> USDC using two pools