Merge remote-tracking branch 'origin/main' into ekubo

This commit is contained in:
die-herdplatte
2025-03-20 09:59:19 +01:00
13 changed files with 1081 additions and 22 deletions

View File

@@ -1,3 +1,58 @@
## [0.66.1](https://github.com/propeller-heads/tycho-execution/compare/0.66.0...0.66.1) (2025-03-19)
### Bug Fixes
* Slippage precision calculation ([d644b63](https://github.com/propeller-heads/tycho-execution/commit/d644b63851a63babadfb909af97c5bf80dd03376))
## [0.66.0](https://github.com/propeller-heads/tycho-execution/compare/0.65.1...0.66.0) (2025-03-14)
### Features
* Add check to don't support cyclical swaps with native actions ([27c9c53](https://github.com/propeller-heads/tycho-execution/commit/27c9c53889687b890bb4e4e01329f6a67ae7957c))
* Add validation for cyclical trades ([f62a9d2](https://github.com/propeller-heads/tycho-execution/commit/f62a9d28c0683490d841439d6a0543370d238387))
### Bug Fixes
* Add individual tests for each case ([e96bcdf](https://github.com/propeller-heads/tycho-execution/commit/e96bcdfd0f7f1951ef711efe8a3e45c5bb18fc8b))
* In test asset, use 0 for the last split, and not 0.5 ([0aba7ed](https://github.com/propeller-heads/tycho-execution/commit/0aba7edf830da0f0efaa465c8069484b62fb7a4d))
## [0.65.1](https://github.com/propeller-heads/tycho-execution/compare/0.65.0...0.65.1) (2025-03-13)
### Reverts
* Revert "feat: Add validation for cyclical trades" ([3d7dcef](https://github.com/propeller-heads/tycho-execution/commit/3d7dcef1bd01db283d787f0bc86b4e9cfc28bbaa))
## [0.65.0](https://github.com/propeller-heads/tycho-execution/compare/0.64.0...0.65.0) (2025-03-13)
### Features
* Add validation for cyclical trades ([55ffa4e](https://github.com/propeller-heads/tycho-execution/commit/55ffa4eb457ea8dd1ed57cdaac01f45880d34b0f))
## [0.64.0](https://github.com/propeller-heads/tycho-execution/compare/0.63.0...0.64.0) (2025-03-13)
### Features
* update tycho-core to 0.61.1 ([53b8c6a](https://github.com/propeller-heads/tycho-execution/commit/53b8c6afee6efdb2a878e2535a8daadfb29d91be))
## [0.63.0](https://github.com/propeller-heads/tycho-execution/compare/0.62.0...0.63.0) (2025-03-10)
### Features
* add cyclicSwapAmountOut tracker in _swap, add split cylic tests ([4d67df4](https://github.com/propeller-heads/tycho-execution/commit/4d67df40965414caff94f8660c70f4acad51482f))
### Bug Fixes
* amountConsumed check in _swapChecked for cyclic swap ([91f36fe](https://github.com/propeller-heads/tycho-execution/commit/91f36fe3285ae4e3e010b9138e8226e257f8499c))
* remove amountIn addition to amountOut in _swap for cyclic swaps, add testCyclicSwapWithTwoPools test to verify ([57acbd5](https://github.com/propeller-heads/tycho-execution/commit/57acbd58c5146c88098e9bc274ec702ef25add32))
## [0.62.0](https://github.com/propeller-heads/tycho-execution/compare/0.61.0...0.62.0) (2025-03-06) ## [0.62.0](https://github.com/propeller-heads/tycho-execution/compare/0.61.0...0.62.0) (2025-03-06)

6
Cargo.lock generated
View File

@@ -4317,8 +4317,8 @@ checksum = "e421abadd41a4225275504ea4d6566923418b7f05506fbc9c0fe86ba7396114b"
[[package]] [[package]]
name = "tycho-core" name = "tycho-core"
version = "0.56.5" version = "0.61.1"
source = "git+https://github.com/propeller-heads/tycho-indexer.git?tag=0.56.5#2af8c1a5a61c5479eab5f7903b69943efa61e2c8" source = "git+https://github.com/propeller-heads/tycho-indexer.git?tag=0.61.1#aae2c11bffe9ae5e436adc019b769438fa038272"
dependencies = [ dependencies = [
"anyhow", "anyhow",
"async-trait", "async-trait",
@@ -4340,7 +4340,7 @@ dependencies = [
[[package]] [[package]]
name = "tycho-execution" name = "tycho-execution"
version = "0.62.0" version = "0.66.1"
dependencies = [ dependencies = [
"alloy", "alloy",
"alloy-primitives", "alloy-primitives",

View File

@@ -1,6 +1,6 @@
[package] [package]
name = "tycho-execution" name = "tycho-execution"
version = "0.62.0" version = "0.66.1"
edition = "2021" edition = "2021"
[[bin]] [[bin]]
@@ -24,7 +24,7 @@ clap = { version = "4.5.3", features = ["derive"] }
alloy = { version = "0.9.2", features = ["providers", "rpc-types-eth", "eip712", "signer-local"], optional = true } alloy = { version = "0.9.2", features = ["providers", "rpc-types-eth", "eip712", "signer-local"], optional = true }
alloy-sol-types = { version = "0.8.14", optional = true } alloy-sol-types = { version = "0.8.14", optional = true }
alloy-primitives = { version = "0.8.9", optional = true } alloy-primitives = { version = "0.8.9", optional = true }
tycho-core = { git = "https://github.com/propeller-heads/tycho-indexer.git", package = "tycho-core", tag = "0.56.5" } tycho-core = { git = "https://github.com/propeller-heads/tycho-indexer.git", package = "tycho-core", tag = "0.61.1" }
once_cell = "1.20.2" once_cell = "1.20.2"
[dev-dependencies] [dev-dependencies]

Binary file not shown.

View File

@@ -111,8 +111,7 @@ contract TychoRouter is AccessControl, Dispatcher, Pausable, ReentrancyGuard {
/** /**
* @notice Executes a swap operation based on a predefined swap graph, supporting internal token amount splits. * @notice Executes a swap operation based on a predefined swap graph, supporting internal token amount splits.
* This function enables multi-step swaps, optional ETH wrapping/unwrapping, and validates the output amount * This function enables multi-step swaps, optional ETH wrapping/unwrapping, and validates the output amount
* against a user-specified minimum. This function expects the input tokens to already be in the router at * against a user-specified minimum. This function performs a transferFrom to retrieve tokens from the caller.
* the time of calling.
* *
* @dev * @dev
* - If `wrapEth` is true, the contract wraps the provided native ETH into WETH and uses it as the sell token. * - If `wrapEth` is true, the contract wraps the provided native ETH into WETH and uses it as the sell token.
@@ -259,14 +258,13 @@ contract TychoRouter is AccessControl, Dispatcher, Pausable, ReentrancyGuard {
: IERC20(tokenIn).balanceOf(address(this)); : IERC20(tokenIn).balanceOf(address(this));
amountOut = _swap(amountIn, nTokens, swaps); amountOut = _swap(amountIn, nTokens, swaps);
uint256 currentBalance = tokenIn == address(0) uint256 currentBalance = tokenIn == address(0)
? address(this).balance ? address(this).balance
: IERC20(tokenIn).balanceOf(address(this)); : IERC20(tokenIn).balanceOf(address(this));
uint256 amountConsumed = initialBalance - currentBalance; uint256 amountConsumed = initialBalance - currentBalance;
if (amountConsumed != amountIn) { if (tokenIn != tokenOut && amountConsumed != amountIn) {
revert TychoRouter__AmountInDiffersFromConsumed( revert TychoRouter__AmountInDiffersFromConsumed(
amountIn, amountConsumed amountIn, amountConsumed
); );
@@ -299,12 +297,15 @@ contract TychoRouter is AccessControl, Dispatcher, Pausable, ReentrancyGuard {
* - The indices of the input and output tokens (via `tokenInIndex()` and `tokenOutIndex()`). * - The indices of the input and output tokens (via `tokenInIndex()` and `tokenOutIndex()`).
* - The portion of the available amount to be used for the swap, indicated by the `split` value. * - The portion of the available amount to be used for the swap, indicated by the `split` value.
* *
* Two important notes: * Three important notes:
* - The contract assumes that token indexes follow a specific order: the sell token is at index 0, followed by any * - The contract assumes that token indexes follow a specific order: the sell token is at index 0, followed by any
* intermediary tokens, and finally the buy token. * intermediary tokens, and finally the buy token.
* - A `split` value of 0 is interpreted as 100% of the available amount (i.e., the entire remaining balance). * - A `split` value of 0 is interpreted as 100% of the available amount (i.e., the entire remaining balance).
* This means that in scenarios without explicit splits the value should be 0, and when splits are present, * This means that in scenarios without explicit splits the value should be 0, and when splits are present,
* the last swap should also have a split value of 0. * the last swap should also have a split value of 0.
* - In case of cyclic swaps, the output token is the same as the input token.
* `cyclicSwapAmountOut` is used to track the amount of the output token, and is updated when
* the `tokenOutIndex` is 0.
* *
* @param amountIn The initial amount of the sell token to be swapped. * @param amountIn The initial amount of the sell token to be swapped.
* @param nTokens The total number of tokens involved in the swap path, used to initialize arrays for internal tracking. * @param nTokens The total number of tokens involved in the swap path, used to initialize arrays for internal tracking.
@@ -329,6 +330,7 @@ contract TychoRouter is AccessControl, Dispatcher, Pausable, ReentrancyGuard {
uint256[] memory remainingAmounts = new uint256[](nTokens); uint256[] memory remainingAmounts = new uint256[](nTokens);
uint256[] memory amounts = new uint256[](nTokens); uint256[] memory amounts = new uint256[](nTokens);
uint256 cyclicSwapAmountOut = 0;
amounts[0] = amountIn; amounts[0] = amountIn;
remainingAmounts[0] = amountIn; remainingAmounts[0] = amountIn;
@@ -345,11 +347,16 @@ contract TychoRouter is AccessControl, Dispatcher, Pausable, ReentrancyGuard {
currentAmountOut = _callExecutor( currentAmountOut = _callExecutor(
swapData.executor(), currentAmountIn, swapData.protocolData() swapData.executor(), currentAmountIn, swapData.protocolData()
); );
amounts[tokenOutIndex] += currentAmountOut; // Checks if the output token is the same as the input token
if (tokenOutIndex == 0) {
cyclicSwapAmountOut += currentAmountOut;
} else {
amounts[tokenOutIndex] += currentAmountOut;
}
remainingAmounts[tokenOutIndex] += currentAmountOut; remainingAmounts[tokenOutIndex] += currentAmountOut;
remainingAmounts[tokenInIndex] -= currentAmountIn; remainingAmounts[tokenInIndex] -= currentAmountIn;
} }
return amounts[tokenOutIndex]; return tokenOutIndex == 0 ? cyclicSwapAmountOut : amounts[tokenOutIndex];
} }
/** /**

View File

@@ -45,11 +45,14 @@ contract Constants is Test, BaseConstants {
address DAI_USDC_POOL = 0xAE461cA67B15dc8dc81CE7615e0320dA1A9aB8D5; address DAI_USDC_POOL = 0xAE461cA67B15dc8dc81CE7615e0320dA1A9aB8D5;
address WETH_WBTC_POOL = 0xBb2b8038a1640196FbE3e38816F3e67Cba72D940; address WETH_WBTC_POOL = 0xBb2b8038a1640196FbE3e38816F3e67Cba72D940;
address USDC_WBTC_POOL = 0x004375Dff511095CC5A197A54140a24eFEF3A416; address USDC_WBTC_POOL = 0x004375Dff511095CC5A197A54140a24eFEF3A416;
address USDC_WETH_USV2 = 0xB4e16d0168e52d35CaCD2c6185b44281Ec28C9Dc;
// Uniswap v3 // Uniswap v3
address USV3_FACTORY_ETHEREUM = 0x1F98431c8aD98523631AE4a59f267346ea31F984; address USV3_FACTORY_ETHEREUM = 0x1F98431c8aD98523631AE4a59f267346ea31F984;
address USV2_FACTORY_ETHEREUM = 0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f; address USV2_FACTORY_ETHEREUM = 0x5C69bEe701ef814a2B6a3EDD4B1652CB9cc5aA6f;
address DAI_WETH_USV3 = 0xC2e9F25Be6257c210d7Adf0D4Cd6E3E881ba25f8; address DAI_WETH_USV3 = 0xC2e9F25Be6257c210d7Adf0D4Cd6E3E881ba25f8;
address USDC_WETH_USV3 = 0x88e6A0c2dDD26FEEb64F039a2c41296FcB3f5640; // 0.05% fee
address USDC_WETH_USV3_2 = 0x8ad599c3A0ff1De082011EFDDc58f1908eb6e6D8; // 0.3% fee
// Uniswap universal router // Uniswap universal router
address UNIVERSAL_ROUTER = 0x66a9893cC07D91D95644AEDD05D03f95e1dBA8Af; address UNIVERSAL_ROUTER = 0x66a9893cC07D91D95644AEDD05D03f95e1dBA8Af;

View File

@@ -1192,6 +1192,203 @@ contract TychoRouterTest is TychoRouterTestSetup {
assertEq(IERC20(WBTC_ADDR).balanceOf(tychoRouterAddr), 102718); assertEq(IERC20(WBTC_ADDR).balanceOf(tychoRouterAddr), 102718);
} }
function testCyclicSequentialSwap() public {
// This test has start and end tokens that are the same
// The flow is:
// USDC -> WETH -> USDC using two pools
uint256 amountIn = 100 * 10 ** 6;
deal(USDC_ADDR, tychoRouterAddr, amountIn);
bytes memory usdcWethV3Pool1ZeroOneData = encodeUniswapV3Swap(
USDC_ADDR, WETH_ADDR, tychoRouterAddr, USDC_WETH_USV3, true
);
bytes memory usdcWethV3Pool2OneZeroData = encodeUniswapV3Swap(
WETH_ADDR, USDC_ADDR, tychoRouterAddr, USDC_WETH_USV3_2, false
);
bytes[] memory swaps = new bytes[](2);
// USDC -> WETH
swaps[0] = encodeSwap(
uint8(0),
uint8(1),
uint24(0),
address(usv3Executor),
usdcWethV3Pool1ZeroOneData
);
// WETH -> USDC
swaps[1] = encodeSwap(
uint8(1),
uint8(0),
uint24(0),
address(usv3Executor),
usdcWethV3Pool2OneZeroData
);
tychoRouter.exposedSwap(amountIn, 2, pleEncode(swaps));
assertEq(IERC20(USDC_ADDR).balanceOf(tychoRouterAddr), 99889294);
}
function testSplitInputCyclicSwap() public {
// This test has start and end tokens that are the same
// The flow is:
// ┌─ (USV3, 60% split) ──> WETH ─┐
// │ │
// USDC ──────┤ ├──(USV2)──> USDC
// │ │
// └─ (USV3, 40% split) ──> WETH ─┘
uint256 amountIn = 100 * 10 ** 6;
deal(USDC_ADDR, tychoRouterAddr, amountIn);
bytes memory usdcWethV3Pool1ZeroOneData = encodeUniswapV3Swap(
USDC_ADDR, WETH_ADDR, tychoRouterAddr, USDC_WETH_USV3, true
);
bytes memory usdcWethV3Pool2ZeroOneData = encodeUniswapV3Swap(
USDC_ADDR, WETH_ADDR, tychoRouterAddr, USDC_WETH_USV3_2, true
);
bytes memory wethUsdcV2OneZeroData = encodeUniswapV2Swap(
WETH_ADDR, USDC_WETH_USV2, tychoRouterAddr, false
);
bytes[] memory swaps = new bytes[](3);
// USDC -> WETH (60% split)
swaps[0] = encodeSwap(
uint8(0),
uint8(1),
(0xffffff * 60) / 100, // 60%
address(usv3Executor),
usdcWethV3Pool1ZeroOneData
);
// USDC -> WETH (40% remainder)
swaps[1] = encodeSwap(
uint8(0),
uint8(1),
uint24(0),
address(usv3Executor),
usdcWethV3Pool2ZeroOneData
);
// WETH -> USDC
swaps[2] = encodeSwap(
uint8(1),
uint8(0),
uint24(0),
address(usv2Executor),
wethUsdcV2OneZeroData
);
tychoRouter.exposedSwap(amountIn, 2, pleEncode(swaps));
assertEq(IERC20(USDC_ADDR).balanceOf(tychoRouterAddr), 99574171);
}
function testSplitOutputCyclicSwap() public {
// This test has start and end tokens that are the same
// The flow is:
// ┌─── (USV3, 60% split) ───┐
// │ │
// USDC ──(USV2) ── WETH──| ├─> USDC
// │ │
// └─── (USV3, 40% split) ───┘
uint256 amountIn = 100 * 10 ** 6;
deal(USDC_ADDR, tychoRouterAddr, amountIn);
bytes memory usdcWethV2Data = encodeUniswapV2Swap(
USDC_ADDR, USDC_WETH_USV2, tychoRouterAddr, true
);
bytes memory usdcWethV3Pool1OneZeroData = encodeUniswapV3Swap(
WETH_ADDR, USDC_ADDR, tychoRouterAddr, USDC_WETH_USV3, false
);
bytes memory usdcWethV3Pool2OneZeroData = encodeUniswapV3Swap(
WETH_ADDR, USDC_ADDR, tychoRouterAddr, USDC_WETH_USV3_2, false
);
bytes[] memory swaps = new bytes[](3);
// USDC -> WETH
swaps[0] = encodeSwap(
uint8(0), uint8(1), uint24(0), address(usv2Executor), usdcWethV2Data
);
// WETH -> USDC
swaps[1] = encodeSwap(
uint8(1),
uint8(0),
(0xffffff * 60) / 100,
address(usv3Executor),
usdcWethV3Pool1OneZeroData
);
// WETH -> USDC
swaps[2] = encodeSwap(
uint8(1),
uint8(0),
uint24(0),
address(usv3Executor),
usdcWethV3Pool2OneZeroData
);
tychoRouter.exposedSwap(amountIn, 2, pleEncode(swaps));
assertEq(IERC20(USDC_ADDR).balanceOf(tychoRouterAddr), 99525908);
}
function testCyclicSequentialSwapIntegration() public {
deal(USDC_ADDR, ALICE, 100 * 10 ** 6);
// Approve permit2
vm.startPrank(ALICE);
IERC20(USDC_ADDR).approve(PERMIT2_ADDRESS, type(uint256).max);
// Encoded solution generated using `test_cyclic_sequential_swap`
// but manually replacing the executor address
// `dd8559c917393fc8dd2b4dd289c52ff445fde1b0` with the one in this test
// `2e234dae75c793f67a35089c9d99245e1c58470b`
(bool success,) = tychoRouterAddr.call(
hex"d499aa880000000000000000000000000000000000000000000000000000000005f5e100000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb480000000000000000000000000000000000000000000000000000000005f4308e000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb480000000000000000000000000000000000000000000000000000000005f5e1000000000000000000000000000000000000000000000000000000000067f67a8b00000000000000000000000000000000000000000000000000000000000000000000000000000000000000003ede3eca2a72b3aecc820e955b36f38437d013950000000000000000000000000000000000000000000000000000000067cef493000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000002800000000000000000000000000000000000000000000000000000000000000041c07077fc73bb0f5129006061288fa0583c101631307377281d6b8f3feb50aa2d564f9948c92e0e4abc3771d592bd2f22ebb18ccf21b270459b05f272251ce1c71b0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000de006d00010000002e234dae75c793f67a35089c9d99245e1c58470ba0b86991c6218b36c1d19d4a2e9eb0ce3606eb48c02aaa39b223fe8d0a0e5c4f27ead9083c756cc20001f43ede3eca2a72b3aecc820e955b36f38437d0139588e6a0c2ddd26feeb64f039a2c41296fcb3f564001006d01000000002e234dae75c793f67a35089c9d99245e1c58470bc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48000bb83ede3eca2a72b3aecc820e955b36f38437d013958ad599c3a0ff1de082011efddc58f1908eb6e6d8000000"
);
assertEq(IERC20(USDC_ADDR).balanceOf(ALICE), 99889294);
vm.stopPrank();
}
function testSplitInputCyclicSwapIntegration() public {
deal(USDC_ADDR, ALICE, 100 * 10 ** 6);
// Approve permit2
vm.startPrank(ALICE);
IERC20(USDC_ADDR).approve(PERMIT2_ADDRESS, type(uint256).max);
// Encoded solution generated using `test_split_input_cyclic_swap`
// but manually replacing the executor addresses with the ones in this test
// `dd8559c917393fc8dd2b4dd289c52ff445fde1b0` to `2e234dae75c793f67a35089c9d99245e1c58470b`
// `f6c5be66fff9dc69962d73da0a617a827c382329` to `5615deb798bb3e4dfa0139dfa1b3d433cc23b72f`
(bool success,) = tychoRouterAddr.call(
hex"d499aa880000000000000000000000000000000000000000000000000000000005f5e100000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb480000000000000000000000000000000000000000000000000000000005ef619b000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb480000000000000000000000000000000000000000000000000000000005f5e1000000000000000000000000000000000000000000000000000000000067f6c08700000000000000000000000000000000000000000000000000000000000000000000000000000000000000003ede3eca2a72b3aecc820e955b36f38437d013950000000000000000000000000000000000000000000000000000000067cf3a8f000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000002800000000000000000000000000000000000000000000000000000000000000041f248bfa39e6801b4173cd4d61e5e5d0c31942eb3c194785f964a82b2c3e05b4b302bccc0924fa4c4ef90854e42865db11f458d3b6a62afddee833f3eb069cd521b000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000136006d00019999992e234dae75c793f67a35089c9d99245e1c58470ba0b86991c6218b36c1d19d4a2e9eb0ce3606eb48c02aaa39b223fe8d0a0e5c4f27ead9083c756cc20001f43ede3eca2a72b3aecc820e955b36f38437d0139588e6a0c2ddd26feeb64f039a2c41296fcb3f564001006d00010000002e234dae75c793f67a35089c9d99245e1c58470ba0b86991c6218b36c1d19d4a2e9eb0ce3606eb48c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2000bb83ede3eca2a72b3aecc820e955b36f38437d013958ad599c3a0ff1de082011efddc58f1908eb6e6d801005601000000005615deb798bb3e4dfa0139dfa1b3d433cc23b72fc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2b4e16d0168e52d35cacd2c6185b44281ec28c9dc3ede3eca2a72b3aecc820e955b36f38437d013950000000000000000000000"
);
assertEq(IERC20(USDC_ADDR).balanceOf(ALICE), 99574171);
vm.stopPrank();
}
function testSplitOutputCyclicSwapIntegration() public {
deal(USDC_ADDR, ALICE, 100 * 10 ** 6);
// Approve permit2
vm.startPrank(ALICE);
IERC20(USDC_ADDR).approve(PERMIT2_ADDRESS, type(uint256).max);
// Encoded solution generated using `test_split_output_cyclic_swap`
// but manually replacing the executor addresses with the ones in this test
// `dd8559c917393fc8dd2b4dd289c52ff445fde1b0` to `2e234dae75c793f67a35089c9d99245e1c58470b`
// `f6c5be66fff9dc69962d73da0a617a827c382329` to `5615deb798bb3e4dfa0139dfa1b3d433cc23b72f`
(bool success,) = tychoRouterAddr.call(
hex"d499aa880000000000000000000000000000000000000000000000000000000005f5e100000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb480000000000000000000000000000000000000000000000000000000005eea514000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000002000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb480000000000000000000000000000000000000000000000000000000005f5e1000000000000000000000000000000000000000000000000000000000067f6be9400000000000000000000000000000000000000000000000000000000000000000000000000000000000000003ede3eca2a72b3aecc820e955b36f38437d013950000000000000000000000000000000000000000000000000000000067cf389c000000000000000000000000000000000000000000000000000000000000020000000000000000000000000000000000000000000000000000000000000002800000000000000000000000000000000000000000000000000000000000000041c02ad8eceede50085f35ce8e8313ebbac9b379396c6e72a35bb4df0970cbdaaa1a91e6f787641af55b13b926199c844df42fdd2ae7bb287db7e5cc2a8bc1d7f51b000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000136005600010000005615deb798bb3e4dfa0139dfa1b3d433cc23b72fa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48b4e16d0168e52d35cacd2c6185b44281ec28c9dc3ede3eca2a72b3aecc820e955b36f38437d0139501006d01009999992e234dae75c793f67a35089c9d99245e1c58470bc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2a0b86991c6218b36c1d19d4a2e9eb0ce3606eb480001f43ede3eca2a72b3aecc820e955b36f38437d0139588e6a0c2ddd26feeb64f039a2c41296fcb3f564000006d01000000002e234dae75c793f67a35089c9d99245e1c58470bc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48000bb83ede3eca2a72b3aecc820e955b36f38437d013958ad599c3a0ff1de082011efddc58f1908eb6e6d80000000000000000000000"
);
assertEq(IERC20(USDC_ADDR).balanceOf(ALICE), 99525908);
vm.stopPrank();
}
// Base Network Tests // Base Network Tests
// Make sure to set the RPC_URL to base network // Make sure to set the RPC_URL to base network
function testSwapSingleBase() public { function testSwapSingleBase() public {

View File

@@ -206,6 +206,11 @@ impl StrategyEncoder for SplitSwapStrategyEncoder {
} }
let encoded_swaps = self.ple_encode(swaps); let encoded_swaps = self.ple_encode(swaps);
let tokens_len = if solution.given_token == solution.checked_token {
tokens.len() - 1
} else {
tokens.len()
};
let method_calldata = if let Some(permit2) = self.permit2.clone() { let method_calldata = if let Some(permit2) = self.permit2.clone() {
let (permit, signature) = permit2.get_permit( let (permit, signature) = permit2.get_permit(
&solution.router_address, &solution.router_address,
@@ -220,7 +225,7 @@ impl StrategyEncoder for SplitSwapStrategyEncoder {
biguint_to_u256(&min_amount_out), biguint_to_u256(&min_amount_out),
wrap, wrap,
unwrap, unwrap,
U256::from(tokens.len()), U256::from(tokens_len),
bytes_to_address(&solution.receiver)?, bytes_to_address(&solution.receiver)?,
permit, permit,
signature.as_bytes().to_vec(), signature.as_bytes().to_vec(),
@@ -235,7 +240,7 @@ impl StrategyEncoder for SplitSwapStrategyEncoder {
biguint_to_u256(&min_amount_out), biguint_to_u256(&min_amount_out),
wrap, wrap,
unwrap, unwrap,
U256::from(tokens.len()), U256::from(tokens_len),
bytes_to_address(&solution.receiver)?, bytes_to_address(&solution.receiver)?,
encoded_swaps, encoded_swaps,
) )
@@ -1212,4 +1217,448 @@ mod tests {
let hex_calldata = encode(&calldata); let hex_calldata = encode(&calldata);
println!("{}", hex_calldata); println!("{}", hex_calldata);
} }
#[test]
fn test_cyclic_sequential_swap() {
// This test has start and end tokens that are the same
// The flow is:
// USDC -> WETH -> USDC using two pools
// Set up a mock private key for signing (Alice's pk in our router tests)
let private_key =
"0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string();
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
// Create two Uniswap V3 pools for the cyclic swap
// USDC -> WETH (Pool 1)
let swap_usdc_weth = Swap {
component: ProtocolComponent {
id: "0x88e6A0c2dDD26FEEb64F039a2c41296FcB3f5640".to_string(), /* USDC-WETH USV3
* Pool 1 */
protocol_system: "uniswap_v3".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(500).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: usdc.clone(),
token_out: weth.clone(),
split: 0f64,
};
// WETH -> USDC (Pool 2)
let swap_weth_usdc = Swap {
component: ProtocolComponent {
id: "0x8ad599c3A0ff1De082011EFDDc58f1908eb6e6D8".to_string(), /* USDC-WETH USV3
* Pool 2 */
protocol_system: "uniswap_v3".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(3000).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: weth.clone(),
token_out: usdc.clone(),
split: 0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder =
SplitSwapStrategyEncoder::new(eth_chain(), swap_encoder_registry, Some(private_key))
.unwrap();
let solution = Solution {
exact_out: false,
given_token: usdc.clone(),
given_amount: BigUint::from_str("100000000").unwrap(), // 100 USDC (6 decimals)
checked_token: usdc.clone(),
expected_amount: None,
checked_amount: Some(BigUint::from_str("99889294").unwrap()), /* Expected output from
* test */
slippage: None,
swaps: vec![swap_usdc_weth, swap_weth_usdc],
router_address: Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
..Default::default()
};
let (calldata, _) = encoder
.encode_strategy(solution)
.unwrap();
let hex_calldata = hex::encode(&calldata);
let expected_input = [
"d499aa88", // selector
"0000000000000000000000000000000000000000000000000000000005f5e100", // given amount
"000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // given token
"000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // checked token
"0000000000000000000000000000000000000000000000000000000005f4308e", // min amount out
"0000000000000000000000000000000000000000000000000000000000000000", // wrap action
"0000000000000000000000000000000000000000000000000000000000000000", // unwrap action
"0000000000000000000000000000000000000000000000000000000000000002", // tokens length
"000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
]
.join("");
let expected_swaps = [
"00000000000000000000000000000000000000000000000000000000000000de", // length of ple encoded swaps without padding
"006d", // ple encoded swaps
"00", // token in index
"01", // token out index
"000000", // split
"dd8559c917393fc8dd2b4dd289c52ff445fde1b0", // executor address
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token in
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token out
"0001f4", // pool fee
"3ede3eca2a72b3aecc820e955b36f38437d01395", // router address
"88e6a0c2ddd26feeb64f039a2c41296fcb3f5640", // component id
"01", // zero2one
"006d", // ple encoded swaps
"01", // token in index
"00000000", // split
"dd8559c917393fc8dd2b4dd289c52ff445fde1b0", // executor address
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token out
"000bb8", // pool fee
"3ede3eca2a72b3aecc820e955b36f38437d01395", // router address
"8ad599c3a0ff1de082011efddc58f1908eb6e6d8", // component id
"000000", // zero2one
]
.join("");
assert_eq!(hex_calldata[..520], expected_input);
assert_eq!(hex_calldata[1288..], expected_swaps);
}
#[test]
fn test_split_input_cyclic_swap() {
// This test has start and end tokens that are the same
// The flow is:
// ┌─ (USV3, 60% split) ──> WETH ─┐
// │ │
// USDC ──────┤ ├──(USV2)──> USDC
// │ │
// └─ (USV3, 40% split) ──> WETH ─┘
// Set up a mock private key for signing (Alice's pk in our router tests)
let private_key =
"0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string();
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
// USDC -> WETH (Pool 1) - 60% of input
let swap_usdc_weth_pool1 = Swap {
component: ProtocolComponent {
id: "0x88e6A0c2dDD26FEEb64F039a2c41296FcB3f5640".to_string(), /* USDC-WETH USV3
* Pool 1 */
protocol_system: "uniswap_v3".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(500).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: usdc.clone(),
token_out: weth.clone(),
split: 0.6f64, // 60% of input
};
// USDC -> WETH (Pool 2) - 40% of input (remaining)
let swap_usdc_weth_pool2 = Swap {
component: ProtocolComponent {
id: "0x8ad599c3A0ff1De082011EFDDc58f1908eb6e6D8".to_string(), /* USDC-WETH USV3
* Pool 2 */
protocol_system: "uniswap_v3".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(3000).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: usdc.clone(),
token_out: weth.clone(),
split: 0f64, // Remaining 40%
};
// WETH -> USDC (Pool 2)
let swap_weth_usdc_pool2 = Swap {
component: ProtocolComponent {
id: "0xB4e16d0168e52d35CaCD2c6185b44281Ec28C9Dc".to_string(), /* USDC-WETH USV2
* Pool 2 */
protocol_system: "uniswap_v2".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(3000).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: weth.clone(),
token_out: usdc.clone(),
split: 0.0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SplitSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
Some(private_key.clone()),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: usdc.clone(),
given_amount: BigUint::from_str("100000000").unwrap(), // 100 USDC (6 decimals)
checked_token: usdc.clone(),
expected_amount: None,
checked_amount: Some(BigUint::from_str("99574171").unwrap()), /* Expected output from
* test */
router_address: Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
slippage: None,
swaps: vec![swap_usdc_weth_pool1, swap_usdc_weth_pool2, swap_weth_usdc_pool2],
..Default::default()
};
let (calldata, _) = encoder
.encode_strategy(solution)
.unwrap();
let hex_calldata = hex::encode(&calldata);
let expected_input = [
"d499aa88", // selector
"0000000000000000000000000000000000000000000000000000000005f5e100", // given amount
"000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // given token
"000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // checked token
"0000000000000000000000000000000000000000000000000000000005ef619b", // min amount out
"0000000000000000000000000000000000000000000000000000000000000000", // wrap action
"0000000000000000000000000000000000000000000000000000000000000000", // unwrap action
"0000000000000000000000000000000000000000000000000000000000000002", // tokens length
"000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
]
.join("");
let expected_swaps = [
"0000000000000000000000000000000000000000000000000000000000000136", // length of ple encoded swaps without padding
"006d", // ple encoded swaps
"00", // token in index
"01", // token out index
"999999", // split
"dd8559c917393fc8dd2b4dd289c52ff445fde1b0", // executor address
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token in
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token out
"0001f4", // pool fee
"3ede3eca2a72b3aecc820e955b36f38437d01395", // router address
"88e6a0c2ddd26feeb64f039a2c41296fcb3f5640", // component id
"01", // zero2one
"006d", // ple encoded swaps
"00", // token in index
"01", // token out index
"000000", // split
"dd8559c917393fc8dd2b4dd289c52ff445fde1b0", // executor address
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token in
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token out
"000bb8", // pool fee
"3ede3eca2a72b3aecc820e955b36f38437d01395", // router address
"8ad599c3a0ff1de082011efddc58f1908eb6e6d8", // component id
"01", // zero2one
"0056", // ple encoded swaps
"01", // token in index
"00", // token out index
"000000", // split
"f6c5be66fff9dc69962d73da0a617a827c382329", // executor address,
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"b4e16d0168e52d35cacd2c6185b44281ec28c9dc", // component id,
"3ede3eca2a72b3aecc820e955b36f38437d01395", // router address
"00", // zero2one
"00000000000000000000" // padding
]
.join("");
assert_eq!(hex_calldata[..520], expected_input);
assert_eq!(hex_calldata[1288..], expected_swaps);
}
#[test]
fn test_split_output_cyclic_swap() {
// This test has start and end tokens that are the same
// The flow is:
// ┌─── (USV3, 60% split) ───┐
// │ │
// USDC ──(USV2) ── WETH──| ├─> USDC
// │ │
// └─── (USV3, 40% split) ───┘
// Set up a mock private key for signing (Alice's pk in our router tests)
let private_key =
"0x123456789abcdef123456789abcdef123456789abcdef123456789abcdef1234".to_string();
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let swap_usdc_weth_v2 = Swap {
component: ProtocolComponent {
id: "0xB4e16d0168e52d35CaCD2c6185b44281Ec28C9Dc".to_string(), // USDC-WETH USV2
protocol_system: "uniswap_v2".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(500).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: usdc.clone(),
token_out: weth.clone(),
split: 0.0f64,
};
let swap_weth_usdc_v3_pool1 = Swap {
component: ProtocolComponent {
id: "0x88e6A0c2dDD26FEEb64F039a2c41296FcB3f5640".to_string(), /* USDC-WETH USV3
* Pool 1 */
protocol_system: "uniswap_v3".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(500).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: weth.clone(),
token_out: usdc.clone(),
split: 0.6f64,
};
let swap_weth_usdc_v3_pool2 = Swap {
component: ProtocolComponent {
id: "0x8ad599c3A0ff1De082011EFDDc58f1908eb6e6D8".to_string(), /* USDC-WETH USV3
* Pool 2 */
protocol_system: "uniswap_v3".to_string(),
static_attributes: {
let mut attrs = HashMap::new();
attrs.insert(
"fee".to_string(),
Bytes::from(BigInt::from(3000).to_signed_bytes_be()),
);
attrs
},
..Default::default()
},
token_in: weth.clone(),
token_out: usdc.clone(),
split: 0.0f64,
};
let swap_encoder_registry = get_swap_encoder_registry();
let encoder = SplitSwapStrategyEncoder::new(
eth_chain(),
swap_encoder_registry,
Some(private_key.clone()),
)
.unwrap();
let solution = Solution {
exact_out: false,
given_token: usdc.clone(),
given_amount: BigUint::from_str("100000000").unwrap(), // 100 USDC (6 decimals)
checked_token: usdc.clone(),
expected_amount: None,
checked_amount: Some(BigUint::from_str("99525908").unwrap()), /* Expected output from
* test */
router_address: Bytes::from_str("0x3Ede3eCa2a72B3aeCC820E955B36f38437D01395").unwrap(),
sender: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
receiver: Bytes::from_str("0xcd09f75E2BF2A4d11F3AB23f1389FcC1621c0cc2").unwrap(),
slippage: None,
swaps: vec![swap_usdc_weth_v2, swap_weth_usdc_v3_pool1, swap_weth_usdc_v3_pool2],
..Default::default()
};
let (calldata, _) = encoder
.encode_strategy(solution)
.unwrap();
let hex_calldata = hex::encode(&calldata);
let expected_input = [
"d499aa88", // selector
"0000000000000000000000000000000000000000000000000000000005f5e100", // given amount
"000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // given token
"000000000000000000000000a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // checked token
"0000000000000000000000000000000000000000000000000000000005eea514", // min amount out
"0000000000000000000000000000000000000000000000000000000000000000", // wrap action
"0000000000000000000000000000000000000000000000000000000000000000", // unwrap action
"0000000000000000000000000000000000000000000000000000000000000002", // tokens length
"000000000000000000000000cd09f75e2bf2a4d11f3ab23f1389fcc1621c0cc2", // receiver
]
.join("");
let expected_swaps = [
"0000000000000000000000000000000000000000000000000000000000000136", // length of ple encoded swaps without padding
"0056", // ple encoded swaps
"00", // token in index
"01", // token out index
"000000", // split
"f6c5be66fff9dc69962d73da0a617a827c382329", // executor address
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token in
"b4e16d0168e52d35cacd2c6185b44281ec28c9dc", // component id
"3ede3eca2a72b3aecc820e955b36f38437d01395", // router address
"01", // zero2one
"006d", // ple encoded swaps
"01", // token in index
"00", // token out index
"999999", // split
"dd8559c917393fc8dd2b4dd289c52ff445fde1b0", // executor address
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token out
"0001f4", // pool fee
"3ede3eca2a72b3aecc820e955b36f38437d01395", // router address
"88e6a0c2ddd26feeb64f039a2c41296fcb3f5640", // component id
"00", // zero2one
"006d", // ple encoded swaps
"01", // token in index
"00", // token out index
"000000", // split
"dd8559c917393fc8dd2b4dd289c52ff445fde1b0", // executor address
"c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2", // token in
"a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48", // token out
"000bb8", // pool fee
"3ede3eca2a72b3aecc820e955b36f38437d01395", // router address
"8ad599c3a0ff1de082011efddc58f1908eb6e6d8", // component id
"00", // zero2one
"00000000000000000000" // padding
]
.join("");
assert_eq!(hex_calldata[..520], expected_input);
assert_eq!(hex_calldata[1288..], expected_swaps);
}
} }

View File

@@ -143,11 +143,14 @@ impl SplitSwapValidator {
// Build directed graph of token flows // Build directed graph of token flows
let mut graph: HashMap<&Bytes, HashSet<&Bytes>> = HashMap::new(); let mut graph: HashMap<&Bytes, HashSet<&Bytes>> = HashMap::new();
let mut all_tokens = HashSet::new();
for swap in swaps { for swap in swaps {
graph graph
.entry(&swap.token_in) .entry(&swap.token_in)
.or_default() .or_default()
.insert(&swap.token_out); .insert(&swap.token_out);
all_tokens.insert(&swap.token_in);
all_tokens.insert(&swap.token_out);
} }
// BFS from validation_given // BFS from validation_given
@@ -160,8 +163,8 @@ impl SplitSwapValidator {
continue; continue;
} }
// Early success check // Early success check - if we've reached the checked token and visited all tokens
if token == checked_token && visited.len() == graph.len() + 1 { if token == checked_token && visited.len() == all_tokens.len() {
return Ok(()); return Ok(());
} }
@@ -174,6 +177,13 @@ impl SplitSwapValidator {
} }
} }
// After BFS completes, check if both conditions are met:
// 1. The checked token is in the visited set
// 2. All unique tokens from the swaps are visited
if visited.contains(checked_token) && visited.len() == all_tokens.len() {
return Ok(());
}
// If we get here, either checked_token wasn't reached or not all tokens were visited // If we get here, either checked_token wasn't reached or not all tokens were visited
if !visited.contains(checked_token) { if !visited.contains(checked_token) {
Err(EncodingError::InvalidInput( Err(EncodingError::InvalidInput(
@@ -291,6 +301,41 @@ mod tests {
)); ));
} }
#[test]
fn test_validate_path_cyclic_swap() {
let validator = SplitSwapValidator;
let eth = Bytes::from_str("0x0000000000000000000000000000000000000000").unwrap();
let weth = Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap();
let usdc = Bytes::from_str("0xa0b86991c6218b36c1d19d4a2e9eb0ce3606eb48").unwrap();
let cyclic_swaps = vec![
Swap {
component: ProtocolComponent {
id: "pool1".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: usdc.clone(),
token_out: weth.clone(),
split: 0f64,
},
Swap {
component: ProtocolComponent {
id: "pool2".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth.clone(),
token_out: usdc.clone(),
split: 0f64,
},
];
// Test with USDC as both given token and checked token
let result = validator.validate_swap_path(&cyclic_swaps, &usdc, &usdc, &None, &eth, &weth);
assert_eq!(result, Ok(()));
}
#[test] #[test]
fn test_validate_path_unreachable_checked_token() { fn test_validate_path_unreachable_checked_token() {
let validator = SplitSwapValidator; let validator = SplitSwapValidator;

View File

@@ -25,7 +25,6 @@ impl SwapEncoderBuilder {
"uniswap_v2" => Ok(Box::new(UniswapV2SwapEncoder::new(self.executor_address))), "uniswap_v2" => Ok(Box::new(UniswapV2SwapEncoder::new(self.executor_address))),
"vm:balancer_v2" => Ok(Box::new(BalancerV2SwapEncoder::new(self.executor_address))), "vm:balancer_v2" => Ok(Box::new(BalancerV2SwapEncoder::new(self.executor_address))),
"uniswap_v3" => Ok(Box::new(UniswapV3SwapEncoder::new(self.executor_address))), "uniswap_v3" => Ok(Box::new(UniswapV3SwapEncoder::new(self.executor_address))),
// TODO replace this with V4 encoder once implemented
"uniswap_v4" => Ok(Box::new(UniswapV4SwapEncoder::new(self.executor_address))), "uniswap_v4" => Ok(Box::new(UniswapV4SwapEncoder::new(self.executor_address))),
_ => Err(EncodingError::FatalError(format!( _ => Err(EncodingError::FatalError(format!(
"Unknown protocol system: {}", "Unknown protocol system: {}",

View File

@@ -1,3 +1,5 @@
use std::collections::HashSet;
use num_bigint::BigUint; use num_bigint::BigUint;
use tycho_core::Bytes; use tycho_core::Bytes;
@@ -92,6 +94,50 @@ impl EVMTychoEncoder {
} }
} }
} }
let mut solution_tokens = vec![];
let mut split_tokens_already_considered = HashSet::new();
for (i, swap) in solution.swaps.iter().enumerate() {
// so we don't count the split tokens more than once
if swap.split != 0.0 {
if !split_tokens_already_considered.contains(&swap.token_in) {
solution_tokens.push(swap.token_in.clone());
split_tokens_already_considered.insert(swap.token_in.clone());
}
} else {
// it might be the last swap of the split or a regular swap
if !split_tokens_already_considered.contains(&swap.token_in) {
solution_tokens.push(swap.token_in.clone());
}
}
if i == solution.swaps.len() - 1 {
solution_tokens.push(swap.token_out.clone());
}
}
if solution_tokens.len() !=
solution_tokens
.iter()
.cloned()
.collect::<HashSet<Bytes>>()
.len()
{
if let Some(last_swap) = solution.swaps.last() {
if solution.swaps[0].token_in != last_swap.token_out {
return Err(EncodingError::FatalError(
"Cyclical swaps are only allowed if they are the first and last token of a solution".to_string(),
));
} else {
// it is a valid cyclical swap
// we don't support any wrapping or unwrapping in this case
if let Some(_native_action) = solution.clone().native_action {
return Err(EncodingError::FatalError(
"Wrapping/Unwrapping is not available in cyclical swaps".to_string(),
));
}
}
}
}
Ok(()) Ok(())
} }
} }
@@ -148,6 +194,14 @@ mod tests {
Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap() Bytes::from_str("0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2").unwrap()
} }
fn usdc() -> Bytes {
Bytes::from_str("0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48").unwrap()
}
fn wbtc() -> Bytes {
Bytes::from_str("0x2260FAC5E5542a773Aa44fBCfeDf7C193bc2C599").unwrap()
}
#[derive(Clone)] #[derive(Clone)]
struct MockStrategy; struct MockStrategy;
@@ -436,4 +490,230 @@ mod tests {
) )
); );
} }
#[test]
fn test_validate_cyclical_swap() {
// This validation passes because the cyclical swap is the first and last token
// 50% -> WETH
// DAI - -> DAI
// 50% -> WETH
// (some of the pool addresses in this test are fake)
let encoder = get_mocked_tycho_encoder();
let swaps = vec![
Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: dai(),
token_out: weth(),
split: 0.5f64,
},
Swap {
component: ProtocolComponent {
id: "0x0000000000000000000000000000000000000000".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: dai(),
token_out: weth(),
split: 0f64,
},
Swap {
component: ProtocolComponent {
id: "0x0000000000000000000000000000000000000000".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth(),
token_out: dai(),
split: 0f64,
},
];
let solution = Solution {
exact_out: false,
given_token: dai(),
checked_token: dai(),
swaps,
..Default::default()
};
let result = encoder.validate_solution(&solution);
assert!(result.is_ok());
}
#[test]
fn test_validate_cyclical_swap_fail() {
// This test should fail because the cyclical swap is not the first and last token
// DAI -> WETH -> USDC -> DAI -> WBTC
// (some of the pool addresses in this test are fake)
let encoder = get_mocked_tycho_encoder();
let swaps = vec![
Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: dai(),
token_out: weth(),
split: 0f64,
},
Swap {
component: ProtocolComponent {
id: "0xB4e16d0168e52d35CaCD2c6185b44281Ec28C9Dc".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth(),
token_out: usdc(),
split: 0f64,
},
Swap {
component: ProtocolComponent {
id: "0x0000000000000000000000000000000000000000".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: usdc(),
token_out: dai(),
split: 0f64,
},
Swap {
component: ProtocolComponent {
id: "0x0000000000000000000000000000000000000000".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: dai(),
token_out: wbtc(),
split: 0f64,
},
];
let solution = Solution {
exact_out: false,
given_token: dai(),
checked_token: wbtc(),
swaps,
..Default::default()
};
let result = encoder.validate_solution(&solution);
assert!(result.is_err());
assert_eq!(
result.err().unwrap(),
EncodingError::FatalError(
"Cyclical swaps are only allowed if they are the first and last token of a solution".to_string()
)
);
}
#[test]
fn test_validate_cyclical_swap_split_output() {
// This validation passes because it is a valid cyclical swap
// -> WETH
// WETH -> DAI
// -> WETH
// (some of the pool addresses in this test are fake)
let encoder = get_mocked_tycho_encoder();
let swaps = vec![
Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth(),
token_out: dai(),
split: 0f64,
},
Swap {
component: ProtocolComponent {
id: "0x0000000000000000000000000000000000000000".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: dai(),
token_out: weth(),
split: 0.5f64,
},
Swap {
component: ProtocolComponent {
id: "0x0000000000000000000000000000000000000000".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: dai(),
token_out: weth(),
split: 0f64,
},
];
let solution = Solution {
exact_out: false,
given_token: weth(),
checked_token: weth(),
swaps,
..Default::default()
};
let result = encoder.validate_solution(&solution);
assert!(result.is_ok());
}
#[test]
fn test_validate_cyclical_swap_native_action_fail() {
// This validation fails because there is a native action with a valid cyclical swap
// ETH -> WETH -> DAI -> WETH
// (some of the pool addresses in this test are fake)
let encoder = get_mocked_tycho_encoder();
let swaps = vec![
Swap {
component: ProtocolComponent {
id: "0xA478c2975Ab1Ea89e8196811F51A7B7Ade33eB11".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: weth(),
token_out: dai(),
split: 0f64,
},
Swap {
component: ProtocolComponent {
id: "0x0000000000000000000000000000000000000000".to_string(),
protocol_system: "uniswap_v2".to_string(),
..Default::default()
},
token_in: dai(),
token_out: weth(),
split: 0f64,
},
];
let solution = Solution {
exact_out: false,
given_token: eth(),
checked_token: weth(),
swaps,
native_action: Some(NativeAction::Wrap),
..Default::default()
};
let result = encoder.validate_solution(&solution);
assert!(result.is_err());
assert_eq!(
result.err().unwrap(),
EncodingError::FatalError(
"Wrapping/Unwrapping is not available in cyclical swaps"
.to_string()
.to_string()
)
);
}
} }

View File

@@ -74,10 +74,10 @@ pub fn get_min_amount_for_solution(solution: Solution) -> BigUint {
if let (Some(expected_amount), Some(slippage)) = if let (Some(expected_amount), Some(slippage)) =
(solution.expected_amount.as_ref(), solution.slippage) (solution.expected_amount.as_ref(), solution.slippage)
{ {
let one_hundred = BigUint::from(100u32); let bps = BigUint::from(10_000u32);
let slippage_percent = BigUint::from((slippage * 100.0) as u32); let slippage_percent = BigUint::from((slippage * 10000.0) as u32);
let multiplier = &one_hundred - slippage_percent; let multiplier = &bps - slippage_percent;
let expected_amount_with_slippage = (expected_amount * &multiplier) / &one_hundred; let expected_amount_with_slippage = (expected_amount * &multiplier) / &bps;
min_amount_out = max(min_amount_out, expected_amount_with_slippage); min_amount_out = max(min_amount_out, expected_amount_with_slippage);
} }
min_amount_out min_amount_out
@@ -133,3 +133,27 @@ pub fn get_runtime() -> Result<(Handle, Option<Arc<Runtime>>), EncodingError> {
} }
} }
} }
#[cfg(test)]
mod tests {
use num_bigint::BigUint;
use super::*;
use crate::encoding::models::Solution;
#[test]
fn test_min_amount_out_small_slippage() {
// Tests that the calculation's precision is high enough to support a slippage of 0.1%.
let solution = Solution {
exact_out: false,
given_amount: BigUint::from(1000000000000000000u64),
checked_amount: None,
slippage: Some(0.001f64),
expected_amount: Some(BigUint::from(1000000000000000000u64)),
..Default::default()
};
let min_amount_out = get_min_amount_for_solution(solution);
assert_eq!(min_amount_out, BigUint::from(999000000000000000u64));
}
}