Files
lmsr-amm/test/PartyPlanner.t.sol

333 lines
13 KiB
Solidity

// SPDX-License-Identifier: UNLICENSED
pragma solidity ^0.8.30;
import {CommonBase} from "../lib/forge-std/src/Base.sol";
import {StdAssertions} from "../lib/forge-std/src/StdAssertions.sol";
import {StdChains} from "../lib/forge-std/src/StdChains.sol";
import {StdCheats, StdCheatsSafe} from "../lib/forge-std/src/StdCheats.sol";
import {StdUtils} from "../lib/forge-std/src/StdUtils.sol";
import {Test} from "../lib/forge-std/src/Test.sol";
import {ERC20} from "../lib/openzeppelin-contracts/contracts/token/ERC20/ERC20.sol";
import {IERC20} from "../lib/openzeppelin-contracts/contracts/token/ERC20/IERC20.sol";
import {IPartyPlanner} from "../src/IPartyPlanner.sol";
import {IPartyPool} from "../src/IPartyPool.sol";
import {LMSRStabilized} from "../src/LMSRStabilized.sol";
import {Deploy} from "./Deploy.sol";
import {MockERC20} from "./PartyPlanner.t.sol";
// Mock ERC20 token for testing
contract MockERC20 is ERC20 {
uint8 private _decimals;
constructor(string memory name, string memory symbol, uint8 decimals_) ERC20(name, symbol) {
_decimals = decimals_;
}
function mint(address to, uint256 amount) external {
_mint(to, amount);
}
function decimals() public view override returns (uint8) {
return _decimals;
}
}
contract PartyPlannerTest is Test {
IPartyPlanner public planner;
MockERC20 public tokenA;
MockERC20 public tokenB;
MockERC20 public tokenC;
address public payer = makeAddr("payer");
address public receiver = makeAddr("receiver");
uint256 constant INITIAL_MINT_AMOUNT = 1000000e18;
uint256 constant INITIAL_DEPOSIT_AMOUNT = 1000e18;
function setUp() public {
// Deploy PartyPlanner owned by this test contract
planner = Deploy.newPartyPlanner(address(this));
// Deploy mock _tokens
tokenA = new MockERC20("Token A", "TKNA", 18);
tokenB = new MockERC20("Token B", "TKNB", 18);
tokenC = new MockERC20("Token C", "TKNC", 6);
// Mint _tokens to payer
tokenA.mint(payer, INITIAL_MINT_AMOUNT);
tokenB.mint(payer, INITIAL_MINT_AMOUNT);
tokenC.mint(payer, INITIAL_MINT_AMOUNT);
// Approve _tokens for PartyPlanner
vm.startPrank(payer);
tokenA.approve(address(planner), type(uint256).max);
tokenB.approve(address(planner), type(uint256).max);
tokenC.approve(address(planner), type(uint256).max);
vm.stopPrank();
}
function test_createPool_Success() public {
// Prepare pool parameters
string memory name = "Test Pool";
string memory symbol = "TESTLP";
IERC20[] memory tokens = new IERC20[](2);
tokens[0] = IERC20(address(tokenA));
tokens[1] = IERC20(address(tokenB));
uint256[] memory bases = new uint256[](2);
bases[0] = 1e18; // 18 decimals
bases[1] = 1e18; // 18 decimals
uint256[] memory initialDeposits = new uint256[](2);
initialDeposits[0] = INITIAL_DEPOSIT_AMOUNT;
initialDeposits[1] = INITIAL_DEPOSIT_AMOUNT;
// Fixed point parameters (using simple values for testing)
int128 tradeFrac = int128((1 << 64) - 1); // slightly less than 1.0 in 64.64 fixed point
int128 targetSlippage = int128(1 << 62); // 0.25 in 64.64 fixed point
uint256 swapFeePpm = 3000; // 0.3%
uint256 flashFeePpm = 5000; // 0.5%
uint256 initialPoolCount = planner.poolCount();
uint256 initialTokenACount = planner.poolsByTokenCount(IERC20(address(tokenA)));
uint256 initialTokenBCount = planner.poolsByTokenCount(IERC20(address(tokenB)));
// Compute kappa then create pool via kappa overload
int128 computedKappa = LMSRStabilized.computeKappaFromSlippage(tokens.length, tradeFrac, targetSlippage);
(IPartyPool pool, uint256 lpAmount) = planner.newPool(
name,
symbol,
tokens,
computedKappa,
swapFeePpm,
flashFeePpm,
false, // not stable
payer,
receiver,
initialDeposits,
1000e18, // initial LP amount
0 // no deadline
);
// Verify pool was created
assertNotEq(address(pool), address(0), "Pool should be created");
assertGt(lpAmount, 0, "LP tokens should be minted");
// Verify pool is indexed correctly
assertEq(planner.poolCount(), initialPoolCount + 1, "Pool count should increase by 1");
assertTrue(planner.getPoolSupported(address(pool)), "Pool should be marked as supported");
// Verify token indexing
assertEq(planner.poolsByTokenCount(IERC20(address(tokenA))), initialTokenACount + 1, "TokenA pool count should increase");
assertEq(planner.poolsByTokenCount(IERC20(address(tokenB))), initialTokenBCount + 1, "TokenB pool count should increase");
// Verify pools can be retrieved
IPartyPool[] memory allPools = planner.getAllPools(0, 10);
bool poolFound = false;
for (uint256 i = 0; i < allPools.length; i++) {
if (allPools[i] == pool) {
poolFound = true;
break;
}
}
assertTrue(poolFound, "Created pool should be in getAllPools result");
// Verify pool appears in token-specific queries
IPartyPool[] memory tokenAPools = planner.getPoolsByToken(IERC20(address(tokenA)), 0, 10);
bool poolInTokenA = false;
for (uint256 i = 0; i < tokenAPools.length; i++) {
if (tokenAPools[i] == pool) {
poolInTokenA = true;
break;
}
}
assertTrue(poolInTokenA, "Pool should be indexed under tokenA");
IPartyPool[] memory tokenBPools = planner.getPoolsByToken(IERC20(address(tokenB)), 0, 10);
bool poolInTokenB = false;
for (uint256 i = 0; i < tokenBPools.length; i++) {
if (tokenBPools[i] == pool) {
poolInTokenB = true;
break;
}
}
assertTrue(poolInTokenB, "Pool should be indexed under tokenB");
// Verify LP _tokens were minted to receiver
assertEq(pool.balanceOf(receiver), lpAmount, "Receiver should have LP tokens");
}
function test_createPool_MultiplePoolsIndexing() public {
// Create first pool with tokenA and tokenB
IERC20[] memory tokens1 = new IERC20[](2);
tokens1[0] = IERC20(address(tokenA));
tokens1[1] = IERC20(address(tokenB));
uint256[] memory bases1 = new uint256[](2);
bases1[0] = 1e18;
bases1[1] = 1e18;
uint256[] memory deposits1 = new uint256[](2);
deposits1[0] = INITIAL_DEPOSIT_AMOUNT;
deposits1[1] = INITIAL_DEPOSIT_AMOUNT;
int128 kappa1 = LMSRStabilized.computeKappaFromSlippage(tokens1.length, int128((1 << 64) - 1), int128(1 << 62));
(IPartyPool pool1,) = planner.newPool(
"Pool 1", "LP1", tokens1,
kappa1, 3000, 5000, false,
payer, receiver, deposits1, 1000e18, 0
);
// Create second pool with tokenB and tokenC
IERC20[] memory tokens2 = new IERC20[](2);
tokens2[0] = IERC20(address(tokenB));
tokens2[1] = IERC20(address(tokenC));
uint256[] memory bases2 = new uint256[](2);
bases2[0] = 1e18;
bases2[1] = 1e6; // tokenC has 6 decimals
uint256[] memory deposits2 = new uint256[](2);
deposits2[0] = INITIAL_DEPOSIT_AMOUNT;
deposits2[1] = INITIAL_DEPOSIT_AMOUNT / 1e12; // Adjust for 6 decimals
int128 kappa2 = LMSRStabilized.computeKappaFromSlippage(tokens2.length, int128((1 << 64) - 1), int128(1 << 62));
(IPartyPool pool2,) = planner.newPool(
"Pool 2", "LP2", tokens2,
kappa2, 3000, 5000, false,
payer, receiver, deposits2, 1000e18, 0
);
// Verify indexing
assertEq(planner.poolCount(), 2, "Should have 2 pools");
assertEq(planner.tokenCount(), 3, "Should have 3 unique tokens");
// Verify token-pool relationships
assertEq(planner.poolsByTokenCount(IERC20(address(tokenA))), 1, "TokenA should be in 1 pool");
assertEq(planner.poolsByTokenCount(IERC20(address(tokenB))), 2, "TokenB should be in 2 pools");
assertEq(planner.poolsByTokenCount(IERC20(address(tokenC))), 1, "TokenC should be in 1 pool");
// Verify tokenB appears in both pools
IPartyPool[] memory tokenBPools = planner.getPoolsByToken(IERC20(address(tokenB)), 0, 10);
assertEq(tokenBPools.length, 2, "TokenB should have 2 pools");
bool pool1Found = false;
bool pool2Found = false;
for (uint256 i = 0; i < tokenBPools.length; i++) {
if (tokenBPools[i] == pool1) pool1Found = true;
if (tokenBPools[i] == pool2) pool2Found = true;
}
assertTrue(pool1Found, "Pool1 should be in tokenB pools");
assertTrue(pool2Found, "Pool2 should be in tokenB pools");
}
function test_createPool_InvalidInputs() public {
IERC20[] memory tokens = new IERC20[](2);
tokens[0] = IERC20(address(tokenA));
tokens[1] = IERC20(address(tokenB));
uint256[] memory bases = new uint256[](2);
bases[0] = 1e18;
bases[1] = 1e18;
uint256[] memory deposits = new uint256[](1); // Mismatched length
deposits[0] = INITIAL_DEPOSIT_AMOUNT;
// Test token/deposit length mismatch
vm.expectRevert("Planner: tokens and deposits length mismatch");
// call old-signature convenience (it will still exist) for the mismatched-length revert check
planner.newPool(
"Test Pool", "TESTLP", tokens,
int128((1 << 64) - 1), int128(1 << 62), 3000, 5000, false,
payer, receiver, deposits, 1000e18, 0
);
// Test zero payer address
uint256[] memory validDeposits = new uint256[](2);
validDeposits[0] = INITIAL_DEPOSIT_AMOUNT;
validDeposits[1] = INITIAL_DEPOSIT_AMOUNT;
int128 kappaErr = LMSRStabilized.computeKappaFromSlippage(tokens.length, int128((1 << 64) - 1), int128(1 << 62));
vm.expectRevert("Planner: payer cannot be zero address");
planner.newPool(
"Test Pool", "TESTLP", tokens,
kappaErr, 3000, 5000, false,
address(0), receiver, validDeposits, 1000e18, 0
);
// Test zero receiver address
vm.expectRevert("Planner: receiver cannot be zero address");
planner.newPool(
"Test Pool", "TESTLP", tokens,
kappaErr, 3000, 5000, false,
payer, address(0), validDeposits, 1000e18, 0
);
// Test deadline exceeded
// The default timestamp is 1 and 1-0 is 0 which means "ignore deadline," so we need to set a proper timestamp.
int128 kappaDeadline = LMSRStabilized.computeKappaFromSlippage(tokens.length, int128((1 << 64) - 1), int128(1 << 62));
vm.warp(1000);
vm.expectRevert("Planner: deadline exceeded");
planner.newPool(
"Test Pool", "TESTLP", tokens,
kappaDeadline, 3000, 5000, false,
payer, receiver, validDeposits, 1000e18, block.timestamp - 1
);
}
function test_poolIndexing_Pagination() public {
// Create multiple pools for pagination testing
uint256 numPools = 5;
IPartyPool[] memory createdPools = new IPartyPool[](numPools);
for (uint256 i = 0; i < numPools; i++) {
IERC20[] memory tokens = new IERC20[](2);
tokens[0] = IERC20(address(tokenA));
tokens[1] = IERC20(address(tokenB));
uint256[] memory bases = new uint256[](2);
bases[0] = 1e18;
bases[1] = 1e18;
uint256[] memory deposits = new uint256[](2);
deposits[0] = INITIAL_DEPOSIT_AMOUNT;
deposits[1] = INITIAL_DEPOSIT_AMOUNT;
int128 kappaLoop = LMSRStabilized.computeKappaFromSlippage(tokens.length, int128((1 << 64) - 1), int128(1 << 62));
(IPartyPool pool,) = planner.newPool(
string(abi.encodePacked("Pool ", vm.toString(i))),
string(abi.encodePacked("LP", vm.toString(i))),
tokens,
kappaLoop, 3000, 5000, false,
payer, receiver, deposits, 1000e18, 0
);
createdPools[i] = pool;
}
assertEq(planner.poolCount(), numPools, "Should have created all pools");
// Test pagination - get first 3 pools
IPartyPool[] memory page1 = planner.getAllPools(0, 3);
assertEq(page1.length, 3, "First page should have 3 pools");
// Test pagination - get next 2 pools
IPartyPool[] memory page2 = planner.getAllPools(3, 3);
assertEq(page2.length, 2, "Second page should have 2 pools");
// Test pagination - offset beyond bounds
IPartyPool[] memory emptyPage = planner.getAllPools(10, 3);
assertEq(emptyPage.length, 0, "Should return empty array for out of bounds offset");
// Verify all pools are accessible through pagination
IPartyPool[] memory allPools = planner.getAllPools(0, 10);
assertEq(allPools.length, numPools, "Should return all pools");
for (uint256 i = 0; i < numPools; i++) {
assertEq(address(allPools[i]), address(createdPools[i]), "Pool order should be preserved");
}
}
}