942 lines
43 KiB
Solidity
942 lines
43 KiB
Solidity
// SPDX-License-Identifier: UNLICENSED
|
|
pragma solidity ^0.8.30;
|
|
|
|
import "forge-std/console2.sol";
|
|
import "@abdk/ABDKMath64x64.sol";
|
|
import "@openzeppelin/contracts/token/ERC20/ERC20.sol";
|
|
import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
|
|
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
|
|
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
|
|
import "./LMSRStabilized.sol";
|
|
import "./LMSRStabilizedBalancedPair.sol";
|
|
import "./IPartyPool.sol";
|
|
import "./IPartyFlashCallback.sol";
|
|
|
|
/// @title PartyPool - LMSR-backed multi-asset pool with LP ERC20 token
|
|
/// @notice A multi-asset liquidity pool backed by the LMSRStabilized pricing model.
|
|
/// The pool issues an ERC20 LP token representing proportional ownership.
|
|
/// It supports:
|
|
/// - Proportional minting and burning of LP tokens,
|
|
/// - Single-token mint (swapMint) and single-asset withdrawal (burnSwap),
|
|
/// - Exact-input swaps and swaps-to-price-limits,
|
|
/// - Flash loans via a callback interface.
|
|
///
|
|
/// @dev The contract stores per-token uint "bases" used to scale token units into the internal Q64.64
|
|
/// representation used by the LMSR library. Cached on-chain uint balances are kept to reduce balanceOf calls.
|
|
/// The contract uses ceiling/floor rules described in function comments to bias rounding in favor of the pool
|
|
/// (i.e., floor outputs to users, ceil inputs/fees where appropriate).
|
|
contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
|
|
using ABDKMath64x64 for int128;
|
|
using LMSRStabilized for LMSRStabilized.State;
|
|
using SafeERC20 for IERC20;
|
|
|
|
|
|
//
|
|
// Immutable pool configuration
|
|
//
|
|
|
|
/// @notice Token addresses comprising the pool. Effectively immutable after construction.
|
|
/// @dev tokens[i] corresponds to the i-th asset and maps to index i in the internal LMSR arrays.
|
|
IERC20[] public tokens; // effectively immutable since there is no interface to change the tokens
|
|
|
|
/// @inheritdoc IPartyPool
|
|
function numTokens() external view returns (uint256) { return tokens.length; }
|
|
|
|
/// @inheritdoc IPartyPool
|
|
function allTokens() external view returns (IERC20[] memory) { return tokens; }
|
|
|
|
// NOTE that the slippage target is only exactly achieved in completely balanced pools where all assets are
|
|
// priced the same. This target is actually a minimum slippage that the pool imposes on traders, and the actual
|
|
// slippage cost can be multiples bigger in practice due to pool inventory imbalances.
|
|
|
|
/// @notice Trade fraction (Q64.64) representing a reference trade size as fraction of one asset's inventory.
|
|
/// @dev Used by the LMSR stabilization logic to compute target slippage.
|
|
int128 public immutable tradeFrac; // slippage target trade size as a fraction of one asset's inventory
|
|
|
|
/// @notice Target slippage (Q64.64) applied for the reference trade size specified by tradeFrac.
|
|
int128 public immutable targetSlippage; // target slippage applied to that trade size
|
|
|
|
/// @notice Per-swap fee in parts-per-million (ppm). Fee is taken from input amounts before LMSR computations.
|
|
uint256 public immutable swapFeePpm;
|
|
|
|
/// @notice Flash-loan fee in parts-per-million (ppm) applied to flash borrow amounts.
|
|
uint256 public immutable flashFeePpm;
|
|
|
|
//
|
|
// Internal state
|
|
//
|
|
|
|
LMSRStabilized.State internal lmsr;
|
|
|
|
/// @notice If true and there are exactly two assets, an optimized 2-asset stable-pair path is used for some computations.
|
|
bool immutable private _stablePair; // if true, the optimized LMSRStabilizedBalancedPair optimization path is enabled
|
|
|
|
// Cached on-chain balances (uint) and internal 64.64 representation
|
|
// balance / base = internal
|
|
uint256[] internal cachedUintBalances;
|
|
|
|
/// @notice Per-token uint base denominators used to convert uint token amounts <-> internal Q64.64 representation.
|
|
/// @dev denominators()[i] is the base for tokens[i]. These bases are chosen by deployer and must match token decimals.
|
|
uint256[] internal bases; // per-token uint base used to scale token amounts <-> internal
|
|
|
|
/// @inheritdoc IPartyPool
|
|
function denominators() external view returns (uint256[] memory) { return bases; }
|
|
|
|
/// @notice Mapping from token address => (index+1). A zero value indicates the token is not in the pool.
|
|
/// @dev Use index = tokenAddressToIndexPlusOne[token] - 1 when non-zero.
|
|
mapping(IERC20=>uint) public tokenAddressToIndexPlusOne; // Uses index+1 so a result of 0 indicates a failed lookup
|
|
|
|
/// @notice Scale factor used when converting LMSR Q64.64 totals to LP token units (uint).
|
|
/// @dev LP tokens are minted in units equal to ABDK.mulu(lastTotalQ64x64, LP_SCALE).
|
|
uint256 public constant LP_SCALE = 1e18; // Scale used to convert LMSR lastTotal (Q64.64) into LP token units (uint)
|
|
|
|
/// @param name_ LP token name
|
|
/// @param symbol_ LP token symbol
|
|
/// @param _tokens token addresses (n)
|
|
/// @param _bases scaling bases for each token (n) - used when converting to/from internal 64.64 amounts
|
|
/// @param _tradeFrac trade fraction in 64.64 fixed-point (as used by LMSR)
|
|
/// @param _targetSlippage target slippage in 64.64 fixed-point (as used by LMSR)
|
|
/// @param _swapFeePpm fee in parts-per-million, taken from swap input amounts before LMSR calculations
|
|
/// @param _flashFeePpm fee in parts-per-million, taken for flash loans
|
|
/// @param _stable if true and assets.length==2, then the optimization for 2-asset stablecoin pools is activated.
|
|
constructor(
|
|
string memory name_,
|
|
string memory symbol_,
|
|
IERC20[] memory _tokens,
|
|
uint256[] memory _bases,
|
|
int128 _tradeFrac,
|
|
int128 _targetSlippage,
|
|
uint256 _swapFeePpm,
|
|
uint256 _flashFeePpm,
|
|
bool _stable
|
|
) ERC20(name_, symbol_) {
|
|
require(_tokens.length > 1, "Pool: need >1 asset");
|
|
require(_tokens.length == _bases.length, "Pool: lengths mismatch");
|
|
tokens = _tokens;
|
|
bases = _bases;
|
|
tradeFrac = _tradeFrac;
|
|
targetSlippage = _targetSlippage;
|
|
require(_swapFeePpm < 1_000_000, "Pool: fee >= ppm");
|
|
swapFeePpm = _swapFeePpm;
|
|
require(_flashFeePpm < 1_000_000, "Pool: flash fee >= ppm");
|
|
flashFeePpm = _flashFeePpm;
|
|
_stablePair = _stable && _tokens.length == 2;
|
|
|
|
uint256 n = _tokens.length;
|
|
|
|
// Initialize LMSR state nAssets; full init occurs on first mint when quantities are known.
|
|
lmsr.nAssets = n;
|
|
|
|
// Initialize token address to index mapping
|
|
for (uint i = 0; i < n;) {
|
|
tokenAddressToIndexPlusOne[_tokens[i]] = i + 1;
|
|
unchecked {i++;}
|
|
}
|
|
|
|
// Initialize caches to zero
|
|
cachedUintBalances = new uint256[](n);
|
|
}
|
|
|
|
|
|
/* ----------------------
|
|
Initialization / Mint / Burn (LP token managed)
|
|
---------------------- */
|
|
|
|
/// @inheritdoc IPartyPool
|
|
function mintDepositAmounts(uint256 lpTokenAmount) public view returns (uint256[] memory depositAmounts) {
|
|
uint256 n = tokens.length;
|
|
depositAmounts = new uint256[](n);
|
|
|
|
// If this is the first mint or pool is empty, return zeros
|
|
// For first mint, tokens should already be transferred to the pool
|
|
if (totalSupply() == 0 || lmsr.nAssets == 0) {
|
|
return depositAmounts; // Return zeros, initial deposit handled differently
|
|
}
|
|
|
|
// Calculate deposit based on current proportions
|
|
uint256 totalLpSupply = totalSupply();
|
|
|
|
// lpTokenAmount / totalLpSupply = depositAmount / currentBalance
|
|
// Therefore: depositAmount = (lpTokenAmount * currentBalance) / totalLpSupply
|
|
// We round up to protect the pool
|
|
for (uint i = 0; i < n; i++) {
|
|
uint256 currentBalance = cachedUintBalances[i];
|
|
// Calculate with rounding up: (a * b + c - 1) / c
|
|
depositAmounts[i] = (lpTokenAmount * currentBalance + totalLpSupply - 1) / totalLpSupply;
|
|
}
|
|
|
|
return depositAmounts;
|
|
}
|
|
|
|
/// @notice Initial mint to set up pool for the first time.
|
|
/// @dev Assumes tokens have already been transferred to the pool prior to calling.
|
|
/// Can only be called when the pool is uninitialized (totalSupply() == 0 or lmsr.nAssets == 0).
|
|
/// @param receiver address that receives the LP tokens
|
|
/// @param lpTokens The number of LP tokens to issue for this mint. If 0, then the number of tokens returned will equal the LMSR internal q total
|
|
function initialMint(address receiver, uint256 lpTokens) external nonReentrant
|
|
returns (uint256 lpMinted) {
|
|
uint256 n = tokens.length;
|
|
|
|
// Check if this is initial deposit - revert if not
|
|
bool isInitialDeposit = totalSupply() == 0 || lmsr.nAssets == 0;
|
|
require(isInitialDeposit, "initialMint: pool already initialized");
|
|
|
|
// Update cached balances for all assets
|
|
int128[] memory newQInternal = new int128[](n);
|
|
uint256[] memory depositAmounts = new uint256[](n);
|
|
for (uint i = 0; i < n; ) {
|
|
uint256 bal = IERC20(tokens[i]).balanceOf(address(this));
|
|
cachedUintBalances[i] = bal;
|
|
newQInternal[i] = _uintToInternalFloor(bal, bases[i]);
|
|
depositAmounts[i] = bal;
|
|
unchecked { i++; }
|
|
}
|
|
|
|
// Initialize the stabilized LMSR state
|
|
lmsr.init(newQInternal, tradeFrac, targetSlippage);
|
|
|
|
// Compute actual LP tokens to mint based on size metric (scaled)
|
|
if( lpTokens != 0 )
|
|
lpMinted = lpTokens;
|
|
else {
|
|
int128 newTotal = _computeSizeMetric(newQInternal);
|
|
lpMinted = ABDKMath64x64.mulu(newTotal, LP_SCALE);
|
|
}
|
|
|
|
require(lpMinted > 0, "initialMint: zero LP amount");
|
|
_mint(receiver, lpMinted);
|
|
emit Mint(address(0), receiver, depositAmounts, lpMinted);
|
|
}
|
|
|
|
/// @notice Proportional mint for existing pool.
|
|
/// @dev Payer must approve the required token amounts before calling.
|
|
/// Can only be called when pool is already initialized (totalSupply() > 0 and lmsr.nAssets > 0).
|
|
/// Rounds follow the pool-favorable conventions documented in helpers (ceil inputs, floor outputs).
|
|
/// @param payer address that provides the input tokens
|
|
/// @param receiver address that receives the LP tokens
|
|
/// @param lpTokenAmount desired amount of LP tokens to mint
|
|
/// @param deadline timestamp after which the transaction will revert. Pass 0 to ignore.
|
|
function mint(address payer, address receiver, uint256 lpTokenAmount, uint256 deadline) external nonReentrant
|
|
returns (uint256 lpMinted) {
|
|
require(deadline == 0 || block.timestamp <= deadline, "mint: deadline exceeded");
|
|
uint256 n = tokens.length;
|
|
|
|
// Check if this is NOT initial deposit - revert if it is
|
|
bool isInitialDeposit = totalSupply() == 0 || lmsr.nAssets == 0;
|
|
require(!isInitialDeposit, "mint: use initialMint for pool initialization");
|
|
require(lpTokenAmount > 0, "mint: zero LP amount");
|
|
|
|
// Capture old pool size metric (scaled) by computing from current balances
|
|
int128 oldTotal = _computeSizeMetric(lmsr.qInternal);
|
|
uint256 oldScaled = ABDKMath64x64.mulu(oldTotal, LP_SCALE);
|
|
|
|
// Calculate required deposit amounts for the desired LP tokens
|
|
uint256[] memory depositAmounts = mintDepositAmounts(lpTokenAmount);
|
|
|
|
// Transfer in all token amounts
|
|
for (uint i = 0; i < n; ) {
|
|
if (depositAmounts[i] > 0) {
|
|
tokens[i].safeTransferFrom(payer, address(this), depositAmounts[i]);
|
|
}
|
|
unchecked { i++; }
|
|
}
|
|
|
|
// Update cached balances for all assets
|
|
int128[] memory newQInternal = new int128[](n);
|
|
for (uint i = 0; i < n; ) {
|
|
uint256 bal = IERC20(tokens[i]).balanceOf(address(this));
|
|
cachedUintBalances[i] = bal;
|
|
newQInternal[i] = _uintToInternalFloor(bal, bases[i]);
|
|
unchecked { i++; }
|
|
}
|
|
|
|
// Update for proportional change
|
|
lmsr.updateForProportionalChange(newQInternal);
|
|
|
|
// Compute actual LP tokens to mint based on change in size metric (scaled)
|
|
// floor truncation rounds in favor of the pool
|
|
int128 newTotal = _computeSizeMetric(newQInternal);
|
|
uint256 newScaled = ABDKMath64x64.mulu(newTotal, LP_SCALE);
|
|
uint256 actualLpToMint;
|
|
|
|
require(oldScaled > 0, "mint: oldScaled zero");
|
|
uint256 delta = (newScaled > oldScaled) ? (newScaled - oldScaled) : 0;
|
|
// Proportional issuance: totalSupply * delta / oldScaled
|
|
if (delta > 0) {
|
|
// floor truncation rounds in favor of the pool
|
|
actualLpToMint = (totalSupply() * delta) / oldScaled;
|
|
} else {
|
|
actualLpToMint = 0;
|
|
}
|
|
|
|
// Ensure the calculated LP amount is not too different from requested
|
|
require(actualLpToMint > 0, "mint: zero LP minted");
|
|
|
|
// Allow actual amount to be at most 0.00001% less than requested
|
|
// This accounts for rounding in deposit calculations
|
|
uint256 minAcceptable = lpTokenAmount * 99_999 / 100_000;
|
|
require(actualLpToMint >= minAcceptable, "mint: insufficient LP minted");
|
|
|
|
_mint(receiver, actualLpToMint);
|
|
emit Mint(payer, receiver, depositAmounts, actualLpToMint);
|
|
return actualLpToMint;
|
|
}
|
|
|
|
/// @inheritdoc IPartyPool
|
|
function burnReceiveAmounts(uint256 lpTokenAmount) external view returns (uint256[] memory withdrawAmounts) {
|
|
return _burnReceiveAmounts(lpTokenAmount);
|
|
}
|
|
|
|
function _burnReceiveAmounts(uint256 lpTokenAmount) internal view returns (uint256[] memory withdrawAmounts) {
|
|
uint256 n = tokens.length;
|
|
withdrawAmounts = new uint256[](n);
|
|
|
|
// If supply is zero or pool uninitialized, return zeros
|
|
if (totalSupply() == 0 || lmsr.nAssets == 0) {
|
|
return withdrawAmounts; // Return zeros, nothing to withdraw
|
|
}
|
|
|
|
// Calculate withdrawal amounts based on current proportions
|
|
uint256 totalLpSupply = totalSupply();
|
|
|
|
// withdrawAmount = floor(lpTokenAmount * currentBalance / totalLpSupply)
|
|
for (uint i = 0; i < n; i++) {
|
|
uint256 currentBalance = cachedUintBalances[i];
|
|
withdrawAmounts[i] = (lpTokenAmount * currentBalance) / totalLpSupply;
|
|
}
|
|
|
|
return withdrawAmounts;
|
|
}
|
|
|
|
/// @notice Burn LP tokens and withdraw the proportional basket to receiver.
|
|
/// @dev Payer must own or approve the LP tokens being burned. The function updates LMSR state
|
|
/// proportionally to reflect the reduced pool size after the withdrawal.
|
|
/// @param payer address that provides the LP tokens to burn
|
|
/// @param receiver address that receives the withdrawn tokens
|
|
/// @param lpAmount amount of LP tokens to burn (proportional withdrawal)
|
|
/// @param deadline timestamp after which the transaction will revert. Pass 0 to ignore.
|
|
function burn(address payer, address receiver, uint256 lpAmount, uint256 deadline) external nonReentrant {
|
|
require(deadline == 0 || block.timestamp <= deadline, "burn: deadline exceeded");
|
|
uint256 n = tokens.length;
|
|
require(lpAmount > 0, "burn: zero lp");
|
|
|
|
uint256 supply = totalSupply();
|
|
require(supply > 0, "burn: empty supply");
|
|
require(lmsr.nAssets > 0, "burn: uninit pool");
|
|
require(balanceOf(payer) >= lpAmount, "burn: insufficient LP");
|
|
|
|
// Refresh cached balances to reflect current on-chain balances before computing withdrawal amounts
|
|
for (uint i = 0; i < n; ) {
|
|
uint256 bal = IERC20(tokens[i]).balanceOf(address(this));
|
|
cachedUintBalances[i] = bal;
|
|
unchecked { i++; }
|
|
}
|
|
|
|
// Compute proportional withdrawal amounts for the requested LP amount (rounded down)
|
|
uint256[] memory withdrawAmounts = _burnReceiveAmounts(lpAmount);
|
|
|
|
// Transfer underlying tokens out to receiver according to computed proportions
|
|
for (uint i = 0; i < n; ) {
|
|
if (withdrawAmounts[i] > 0) {
|
|
tokens[i].safeTransfer(receiver, withdrawAmounts[i]);
|
|
}
|
|
unchecked { i++; }
|
|
}
|
|
|
|
// Update cached balances and internal q for all assets
|
|
int128[] memory newQInternal = new int128[](n);
|
|
for (uint i = 0; i < n; ) {
|
|
uint256 bal = IERC20(tokens[i]).balanceOf(address(this));
|
|
cachedUintBalances[i] = bal;
|
|
newQInternal[i] = _uintToInternalFloor(bal, bases[i]);
|
|
unchecked { i++; }
|
|
}
|
|
|
|
// Apply proportional update or deinitialize if drained
|
|
bool allZero = true;
|
|
for (uint i = 0; i < n; ) {
|
|
if (newQInternal[i] != int128(0)) {
|
|
allZero = false;
|
|
break;
|
|
}
|
|
unchecked { i++; }
|
|
}
|
|
|
|
if (allZero) {
|
|
lmsr.deinit();
|
|
} else {
|
|
lmsr.updateForProportionalChange(newQInternal);
|
|
}
|
|
|
|
// Burn exactly the requested LP amount from payer (authorization via allowance)
|
|
if (msg.sender != payer) {
|
|
uint256 allowed = allowance(payer, msg.sender);
|
|
require(allowed >= lpAmount, "burn: allowance insufficient");
|
|
_approve(payer, msg.sender, allowed - lpAmount);
|
|
}
|
|
_burn(payer, lpAmount);
|
|
|
|
emit Burn(payer, receiver, withdrawAmounts, lpAmount);
|
|
}
|
|
|
|
/* ----------------------
|
|
Swaps
|
|
---------------------- */
|
|
|
|
/// @inheritdoc IPartyPool
|
|
function swapAmounts(
|
|
uint256 inputTokenIndex,
|
|
uint256 outputTokenIndex,
|
|
uint256 maxAmountIn,
|
|
int128 limitPrice
|
|
) external view returns (uint256 amountIn, uint256 amountOut, uint256 fee) {
|
|
(uint256 grossIn, uint256 outUint,,,, uint256 feeUint) = _quoteSwapExactIn(inputTokenIndex, outputTokenIndex, maxAmountIn, limitPrice);
|
|
return (grossIn, outUint, feeUint);
|
|
}
|
|
|
|
/// @inheritdoc IPartyPool
|
|
function swapToLimitAmounts(
|
|
uint256 inputTokenIndex,
|
|
uint256 outputTokenIndex,
|
|
int128 limitPrice
|
|
) external view returns (uint256 amountIn, uint256 amountOut, uint256 fee) {
|
|
(uint256 grossIn, uint256 outUint,,,, uint256 feeUint) = _quoteSwapToLimit(inputTokenIndex, outputTokenIndex, limitPrice);
|
|
return (grossIn, outUint, feeUint);
|
|
}
|
|
|
|
|
|
/// @notice Swap input token i -> token j. Payer must approve token i.
|
|
/// @dev This function transfers the exact gross input (including fee) from payer and sends the computed output to receiver.
|
|
/// Non-standard tokens (fee-on-transfer, rebasers) are rejected via balance checks.
|
|
/// @param payer address of the account that pays for the swap
|
|
/// @param receiver address that will receive the output tokens
|
|
/// @param inputTokenIndex index of input asset
|
|
/// @param outputTokenIndex index of output asset
|
|
/// @param maxAmountIn maximum amount of token i (uint256) to transfer in (inclusive of fees)
|
|
/// @param limitPrice maximum acceptable marginal price (64.64 fixed point). Pass 0 to ignore.
|
|
/// @param deadline timestamp after which the transaction will revert. Pass 0 to ignore.
|
|
/// @return amountIn actual input used (uint256), amountOut actual output sent (uint256), fee fee taken from the input (uint256)
|
|
function swap(
|
|
address payer,
|
|
address receiver,
|
|
uint256 inputTokenIndex,
|
|
uint256 outputTokenIndex,
|
|
uint256 maxAmountIn,
|
|
int128 limitPrice,
|
|
uint256 deadline
|
|
) external nonReentrant returns (uint256 amountIn, uint256 amountOut, uint256 fee) {
|
|
uint256 n = tokens.length;
|
|
require(inputTokenIndex < n && outputTokenIndex < n, "swap: idx");
|
|
require(maxAmountIn > 0, "swap: input zero");
|
|
require(deadline == 0 || block.timestamp <= deadline, "swap: deadline exceeded");
|
|
|
|
// Read previous balances for affected assets
|
|
uint256 prevBalI = IERC20(tokens[inputTokenIndex]).balanceOf(address(this));
|
|
uint256 prevBalJ = IERC20(tokens[outputTokenIndex]).balanceOf(address(this));
|
|
|
|
// Compute amounts using the same path as views
|
|
(uint256 totalTransferAmount, uint256 amountOutUint, int128 amountInInternalUsed, int128 amountOutInternal, , uint256 feeUint) =
|
|
_quoteSwapExactIn(inputTokenIndex, outputTokenIndex, maxAmountIn, limitPrice);
|
|
|
|
// Transfer the exact amount from payer and require exact receipt (revert on fee-on-transfer)
|
|
tokens[inputTokenIndex].safeTransferFrom(payer, address(this), totalTransferAmount);
|
|
uint256 balIAfter = IERC20(tokens[inputTokenIndex]).balanceOf(address(this));
|
|
require(balIAfter == prevBalI + totalTransferAmount, "swap: non-standard tokenIn");
|
|
|
|
// Transfer output to receiver and verify exact decrease
|
|
tokens[outputTokenIndex].safeTransfer(receiver, amountOutUint);
|
|
uint256 balJAfter = IERC20(tokens[outputTokenIndex]).balanceOf(address(this));
|
|
require(balJAfter == prevBalJ - amountOutUint, "swap: non-standard tokenOut");
|
|
|
|
// Update cached uint balances for i and j using actual balances
|
|
cachedUintBalances[inputTokenIndex] = balIAfter;
|
|
cachedUintBalances[outputTokenIndex] = balJAfter;
|
|
|
|
// Apply swap to LMSR state with the internal amounts actually used
|
|
lmsr.applySwap(inputTokenIndex, outputTokenIndex, amountInInternalUsed, amountOutInternal);
|
|
|
|
emit Swap(payer, receiver, tokens[inputTokenIndex], tokens[outputTokenIndex], totalTransferAmount, amountOutUint);
|
|
|
|
return (totalTransferAmount, amountOutUint, feeUint);
|
|
}
|
|
|
|
/// @notice Swap up to the price limit; computes max input to reach limit then performs swap.
|
|
/// @dev If balances prevent fully reaching the limit, the function caps and returns actuals.
|
|
/// The payer must transfer the exact gross input computed by the view.
|
|
/// @param deadline timestamp after which the transaction will revert. Pass 0 to ignore.
|
|
function swapToLimit(
|
|
address payer,
|
|
address receiver,
|
|
uint256 inputTokenIndex,
|
|
uint256 outputTokenIndex,
|
|
int128 limitPrice,
|
|
uint256 deadline
|
|
) external returns (uint256 amountInUsed, uint256 amountOut, uint256 fee) {
|
|
uint256 n = tokens.length;
|
|
require(inputTokenIndex < n && outputTokenIndex < n, "swapToLimit: idx");
|
|
require(limitPrice > int128(0), "swapToLimit: limit <= 0");
|
|
require(deadline == 0 || block.timestamp <= deadline, "swapToLimit: deadline exceeded");
|
|
|
|
// Read previous balances for affected assets
|
|
uint256 prevBalI = IERC20(tokens[inputTokenIndex]).balanceOf(address(this));
|
|
uint256 prevBalJ = IERC20(tokens[outputTokenIndex]).balanceOf(address(this));
|
|
|
|
// Compute amounts using the same path as views
|
|
(uint256 totalTransferAmount, uint256 amountOutUint, int128 amountInInternalMax, int128 amountOutInternal, uint256 amountInUsedUint, uint256 feeUint) =
|
|
_quoteSwapToLimit(inputTokenIndex, outputTokenIndex, limitPrice);
|
|
|
|
// Transfer the exact amount needed from payer and require exact receipt (revert on fee-on-transfer)
|
|
tokens[inputTokenIndex].safeTransferFrom(payer, address(this), totalTransferAmount);
|
|
uint256 balIAfter = IERC20(tokens[inputTokenIndex]).balanceOf(address(this));
|
|
require(balIAfter == prevBalI + totalTransferAmount, "swapToLimit: non-standard tokenIn");
|
|
|
|
// Transfer output to receiver and verify exact decrease
|
|
tokens[outputTokenIndex].safeTransfer(receiver, amountOutUint);
|
|
uint256 balJAfter = IERC20(tokens[outputTokenIndex]).balanceOf(address(this));
|
|
require(balJAfter == prevBalJ - amountOutUint, "swapToLimit: non-standard tokenOut");
|
|
|
|
// Update caches to actual balances
|
|
cachedUintBalances[inputTokenIndex] = balIAfter;
|
|
cachedUintBalances[outputTokenIndex] = balJAfter;
|
|
|
|
// Apply swap to LMSR state with the internal amounts
|
|
lmsr.applySwap(inputTokenIndex, outputTokenIndex, amountInInternalMax, amountOutInternal);
|
|
|
|
// Maintain original event semantics (logs input without fee)
|
|
emit Swap(payer, receiver, tokens[inputTokenIndex], tokens[outputTokenIndex], amountInUsedUint, amountOutUint);
|
|
|
|
return (amountInUsedUint, amountOutUint, feeUint);
|
|
}
|
|
|
|
/// @notice Ceiling fee helper: computes ceil(x * feePpm / 1_000_000)
|
|
/// @dev Internal helper; public-facing functions use this to ensure fees round up in favor of pool.
|
|
function _ceilFee(uint256 x, uint256 feePpm) internal pure returns (uint256) {
|
|
if (feePpm == 0) return 0;
|
|
// ceil division: (num + denom - 1) / denom
|
|
return (x * feePpm + 1_000_000 - 1) / 1_000_000;
|
|
}
|
|
|
|
/// @notice Internal quote for exact-input swap that mirrors swap() rounding and fee application
|
|
/// @dev Returns amounts consistent with swap() semantics: grossIn includes fees (ceil), amountOut is floored.
|
|
/// @return grossIn amount to transfer in (inclusive of fee), amountOutUint output amount (uint),
|
|
/// amountInInternalUsed and amountOutInternal (64.64), amountInUintNoFee input amount excluding fee (uint),
|
|
/// feeUint fee taken from the gross input (uint)
|
|
function _quoteSwapExactIn(
|
|
uint256 inputTokenIndex,
|
|
uint256 outputTokenIndex,
|
|
uint256 maxAmountIn,
|
|
int128 limitPrice
|
|
)
|
|
internal
|
|
view
|
|
returns (
|
|
uint256 grossIn,
|
|
uint256 amountOutUint,
|
|
int128 amountInInternalUsed,
|
|
int128 amountOutInternal,
|
|
uint256 amountInUintNoFee,
|
|
uint256 feeUint
|
|
)
|
|
{
|
|
uint256 n = tokens.length;
|
|
require(inputTokenIndex < n && outputTokenIndex < n, "swap: idx");
|
|
require(maxAmountIn > 0, "swap: input zero");
|
|
require(lmsr.nAssets > 0, "swap: empty pool");
|
|
|
|
// Estimate max net input (fee on gross rounded up, then subtract)
|
|
(, uint256 netUintForSwap) = _computeFee(maxAmountIn);
|
|
|
|
// Convert to internal (floor)
|
|
int128 deltaInternalI = _uintToInternalFloor(netUintForSwap, bases[inputTokenIndex]);
|
|
require(deltaInternalI > int128(0), "swap: input too small after fee");
|
|
|
|
// Compute internal amounts using LMSR (exact-input with price limit)
|
|
// if _stablePair is true, use the optimized path
|
|
console2.log('stablepair optimization?', _stablePair);
|
|
(amountInInternalUsed, amountOutInternal) =
|
|
_stablePair ? LMSRStabilizedBalancedPair.swapAmountsForExactInput(lmsr, inputTokenIndex, outputTokenIndex, deltaInternalI, limitPrice)
|
|
: lmsr.swapAmountsForExactInput(inputTokenIndex, outputTokenIndex, deltaInternalI, limitPrice);
|
|
|
|
// Convert actual used input internal -> uint (ceil)
|
|
amountInUintNoFee = _internalToUintCeil(amountInInternalUsed, bases[inputTokenIndex]);
|
|
require(amountInUintNoFee > 0, "swap: input zero");
|
|
|
|
// Compute gross transfer including fee on the used input (ceil)
|
|
feeUint = 0;
|
|
grossIn = amountInUintNoFee;
|
|
if (swapFeePpm > 0) {
|
|
feeUint = _ceilFee(amountInUintNoFee, swapFeePpm);
|
|
grossIn += feeUint;
|
|
}
|
|
|
|
// Ensure within user max
|
|
require(grossIn <= maxAmountIn, "swap: transfer exceeds max");
|
|
|
|
// Compute output (floor)
|
|
amountOutUint = _internalToUintFloor(amountOutInternal, bases[outputTokenIndex]);
|
|
require(amountOutUint > 0, "swap: output zero");
|
|
}
|
|
|
|
/// @notice Internal quote for swap-to-limit that mirrors swapToLimit() rounding and fee application
|
|
/// @dev Computes the input required to reach limitPrice and the resulting output; all rounding matches swapToLimit.
|
|
/// @return grossIn amount to transfer in (inclusive of fee), amountOutUint output amount (uint),
|
|
/// amountInInternal and amountOutInternal (64.64), amountInUintNoFee input amount excluding fee (uint),
|
|
/// feeUint fee taken from the gross input (uint)
|
|
function _quoteSwapToLimit(
|
|
uint256 inputTokenIndex,
|
|
uint256 outputTokenIndex,
|
|
int128 limitPrice
|
|
)
|
|
internal
|
|
view
|
|
returns (
|
|
uint256 grossIn,
|
|
uint256 amountOutUint,
|
|
int128 amountInInternal,
|
|
int128 amountOutInternal,
|
|
uint256 amountInUintNoFee,
|
|
uint256 feeUint
|
|
)
|
|
{
|
|
uint256 n = tokens.length;
|
|
require(inputTokenIndex < n && outputTokenIndex < n, "swapToLimit: idx");
|
|
require(limitPrice > int128(0), "swapToLimit: limit <= 0");
|
|
require(lmsr.nAssets > 0, "swapToLimit: pool uninitialized");
|
|
|
|
// Compute internal maxima at the price limit
|
|
(amountInInternal, amountOutInternal) = lmsr.swapAmountsForPriceLimit(inputTokenIndex, outputTokenIndex, limitPrice);
|
|
|
|
// Convert input to uint (ceil) and output to uint (floor)
|
|
amountInUintNoFee = _internalToUintCeil(amountInInternal, bases[inputTokenIndex]);
|
|
require(amountInUintNoFee > 0, "swapToLimit: input zero");
|
|
|
|
feeUint = 0;
|
|
grossIn = amountInUintNoFee;
|
|
if (swapFeePpm > 0) {
|
|
feeUint = _ceilFee(amountInUintNoFee, swapFeePpm);
|
|
grossIn += feeUint;
|
|
}
|
|
|
|
amountOutUint = _internalToUintFloor(amountOutInternal, bases[outputTokenIndex]);
|
|
require(amountOutUint > 0, "swapToLimit: output zero");
|
|
}
|
|
|
|
/// @notice Compute fee and net amounts for a gross input (fee rounded up to favor the pool).
|
|
/// @return feeUint fee taken (uint) and netUint remaining for protocol use (uint)
|
|
function _computeFee(uint256 gross) internal view returns (uint256 feeUint, uint256 netUint) {
|
|
if (swapFeePpm == 0) {
|
|
return (0, gross);
|
|
}
|
|
feeUint = _ceilFee(gross, swapFeePpm);
|
|
netUint = gross - feeUint;
|
|
}
|
|
|
|
/// @notice Convenience: return gross = net + fee(net) using ceiling for fee.
|
|
function _addFee(uint256 netUint) internal view returns (uint256 gross) {
|
|
if (swapFeePpm == 0) return netUint;
|
|
uint256 fee = _ceilFee(netUint, swapFeePpm);
|
|
return netUint + fee;
|
|
}
|
|
|
|
// --- New events for single-token mint/burn flows ---
|
|
// Note: events intentionally avoid exposing internal ΔS and avoid duplicating LP mint/burn data
|
|
// which is already present in the standard Mint/Burn events.
|
|
|
|
/// @notice Single-token mint: deposit a single token, charge swap-LMSR cost, and mint LP.
|
|
/// @dev swapMint executes as an exact-in planned swap followed by proportional scaling of qInternal.
|
|
/// The function emits SwapMint (gross, net, fee) and also emits Mint for LP issuance.
|
|
/// @param payer who transfers the input token
|
|
/// @param receiver who receives the minted LP tokens
|
|
/// @param inputTokenIndex index of the input token
|
|
/// @param maxAmountIn maximum uint token input (inclusive of fee)
|
|
/// @param deadline optional deadline
|
|
/// @return lpMinted actual LP minted (uint)
|
|
function swapMint(
|
|
address payer,
|
|
address receiver,
|
|
uint256 inputTokenIndex,
|
|
uint256 maxAmountIn,
|
|
uint256 deadline
|
|
) external nonReentrant returns (uint256 lpMinted) {
|
|
uint256 n = tokens.length;
|
|
require(inputTokenIndex < n, "swapMint: idx");
|
|
require(maxAmountIn > 0, "swapMint: input zero");
|
|
require(deadline == 0 || block.timestamp <= deadline, "swapMint: deadline");
|
|
|
|
// Ensure pool initialized
|
|
require(lmsr.nAssets > 0, "swapMint: uninit pool");
|
|
|
|
// compute fee on gross maxAmountIn to get an initial net estimate (we'll recompute based on actual used)
|
|
(, uint256 netUintGuess) = _computeFee(maxAmountIn);
|
|
|
|
// Convert the net guess to internal (floor)
|
|
int128 netInternalGuess = _uintToInternalFloor(netUintGuess, bases[inputTokenIndex]);
|
|
require(netInternalGuess > int128(0), "swapMint: input too small after fee");
|
|
|
|
// Use LMSR view to determine actual internal consumed and size-increase (ΔS) for mint
|
|
(int128 amountInInternalUsed, int128 sizeIncreaseInternal) = lmsr.swapAmountsForMint(inputTokenIndex, netInternalGuess);
|
|
|
|
// amountInInternalUsed may be <= netInternalGuess. Convert to uint (ceil) to determine actual transfer
|
|
uint256 amountInUint = _internalToUintCeil(amountInInternalUsed, bases[inputTokenIndex]);
|
|
require(amountInUint > 0, "swapMint: input zero after internal conversion");
|
|
|
|
// Compute fee on the actual used input and total transfer amount (ceiling)
|
|
uint256 feeUintActual = _ceilFee(amountInUint, swapFeePpm);
|
|
uint256 totalTransfer = amountInUint + feeUintActual;
|
|
require(totalTransfer > 0 && totalTransfer <= maxAmountIn, "swapMint: transfer exceeds max");
|
|
|
|
// Record pre-balance and transfer tokens from payer, require exact receipt (revert on fee-on-transfer)
|
|
uint256 prevBalI = IERC20(tokens[inputTokenIndex]).balanceOf(address(this));
|
|
tokens[inputTokenIndex].safeTransferFrom(payer, address(this), totalTransfer);
|
|
uint256 balIAfter = IERC20(tokens[inputTokenIndex]).balanceOf(address(this));
|
|
require(balIAfter == prevBalI + totalTransfer, "swapMint: non-standard tokenIn");
|
|
|
|
// Update cached uint balances for token inputTokenIndex (only inputTokenIndex changed externally)
|
|
cachedUintBalances[inputTokenIndex] = balIAfter;
|
|
|
|
// Compute old and new scaled size metrics to determine LP minted
|
|
int128 oldTotal = _computeSizeMetric(lmsr.qInternal);
|
|
require(oldTotal > int128(0), "swapMint: zero total");
|
|
uint256 oldScaled = ABDKMath64x64.mulu(oldTotal, LP_SCALE);
|
|
|
|
int128 newTotal = oldTotal.add(sizeIncreaseInternal);
|
|
uint256 newScaled = ABDKMath64x64.mulu(newTotal, LP_SCALE);
|
|
|
|
uint256 actualLpToMint;
|
|
if (totalSupply() == 0) {
|
|
// If somehow supply zero (shouldn't happen as lmsr.nAssets>0), mint newScaled
|
|
actualLpToMint = newScaled;
|
|
} else {
|
|
require(oldScaled > 0, "swapMint: oldScaled zero");
|
|
uint256 delta = (newScaled > oldScaled) ? (newScaled - oldScaled) : 0;
|
|
if (delta > 0) {
|
|
// floor truncation rounds in favor of pool
|
|
actualLpToMint = (totalSupply() * delta) / oldScaled;
|
|
} else {
|
|
actualLpToMint = 0;
|
|
}
|
|
}
|
|
|
|
require(actualLpToMint > 0, "swapMint: zero LP minted");
|
|
|
|
// Update LMSR internal state: scale qInternal proportionally by newTotal/oldTotal
|
|
int128[] memory newQInternal = new int128[](n);
|
|
for (uint256 idx = 0; idx < n; idx++) {
|
|
// newQInternal[idx] = qInternal[idx] * (newTotal / oldTotal)
|
|
newQInternal[idx] = lmsr.qInternal[idx].mul(newTotal).div(oldTotal);
|
|
}
|
|
|
|
// Update cached internal and kappa via updateForProportionalChange
|
|
lmsr.updateForProportionalChange(newQInternal);
|
|
|
|
// Note: we updated cachedUintBalances[inputTokenIndex] above via reading balance; other token uint balances did not
|
|
// change externally (they were not transferred in). We keep cachedUintBalances for others unchanged.
|
|
// Mint LP tokens to receiver
|
|
_mint(receiver, actualLpToMint);
|
|
|
|
// Emit SwapMint event with gross transfer, net input and fee (planned exact-in)
|
|
emit SwapMint(payer, receiver, inputTokenIndex, totalTransfer, amountInUint, feeUintActual);
|
|
|
|
// Emit standard Mint event which records deposit amounts and LP minted
|
|
emit Mint(payer, receiver, new uint256[](n), actualLpToMint);
|
|
// Note: depositAmounts array omitted (empty) since swapMint uses single-token input
|
|
|
|
return actualLpToMint;
|
|
}
|
|
|
|
/// @notice Burn LP tokens then swap the redeemed proportional basket into a single asset `inputTokenIndex` and send to receiver.
|
|
/// @dev The function burns LP tokens (authorization via allowance if needed), sends the single-asset payout and updates LMSR state.
|
|
/// @param payer who burns LP tokens
|
|
/// @param receiver who receives the single asset
|
|
/// @param lpAmount amount of LP tokens to burn
|
|
/// @param inputTokenIndex index of target asset to receive
|
|
/// @param deadline optional deadline
|
|
/// @return amountOutUint uint amount of asset i sent to receiver
|
|
function burnSwap(
|
|
address payer,
|
|
address receiver,
|
|
uint256 lpAmount,
|
|
uint256 inputTokenIndex,
|
|
uint256 deadline
|
|
) external nonReentrant returns (uint256 amountOutUint) {
|
|
uint256 n = tokens.length;
|
|
require(inputTokenIndex < n, "burnSwap: idx");
|
|
require(lpAmount > 0, "burnSwap: zero lp");
|
|
require(deadline == 0 || block.timestamp <= deadline, "burnSwap: deadline");
|
|
|
|
uint256 supply = totalSupply();
|
|
require(supply > 0, "burnSwap: empty supply");
|
|
require(balanceOf(payer) >= lpAmount, "burnSwap: insufficient LP");
|
|
|
|
// alpha = lpAmount / supply as Q64.64
|
|
int128 alpha = ABDKMath64x64.divu(lpAmount, supply);
|
|
|
|
// Use LMSR view to compute single-asset payout and burned size-metric
|
|
(int128 payoutInternal, ) = lmsr.swapAmountsForBurn(inputTokenIndex, alpha);
|
|
|
|
// Convert payoutInternal -> uint (floor) to favor pool
|
|
amountOutUint = _internalToUintFloor(payoutInternal, bases[inputTokenIndex]);
|
|
require(amountOutUint > 0, "burnSwap: output zero");
|
|
|
|
// Transfer the payout to receiver
|
|
tokens[inputTokenIndex].safeTransfer(receiver, amountOutUint);
|
|
|
|
// Burn LP tokens from payer (authorization via allowance)
|
|
if (msg.sender != payer) {
|
|
uint256 allowed = allowance(payer, msg.sender);
|
|
require(allowed >= lpAmount, "burnSwap: allowance insufficient");
|
|
_approve(payer, msg.sender, allowed - lpAmount);
|
|
}
|
|
_burn(payer, lpAmount);
|
|
|
|
// Update cached balances by reading on-chain balances for all tokens
|
|
int128[] memory newQInternal = new int128[](n);
|
|
for (uint256 idx = 0; idx < n; idx++) {
|
|
uint256 bal = IERC20(tokens[idx]).balanceOf(address(this));
|
|
cachedUintBalances[idx] = bal;
|
|
newQInternal[idx] = _uintToInternalFloor(bal, bases[idx]);
|
|
}
|
|
|
|
// Emit BurnSwap with public-facing info only (do not expose ΔS or LP burned)
|
|
emit BurnSwap(payer, receiver, inputTokenIndex, amountOutUint);
|
|
|
|
// If entire pool drained, deinit; else update proportionally
|
|
bool allZero = true;
|
|
for (uint256 idx = 0; idx < n; idx++) {
|
|
if (newQInternal[idx] != int128(0)) { allZero = false; break; }
|
|
}
|
|
if (allZero) {
|
|
lmsr.deinit();
|
|
} else {
|
|
lmsr.updateForProportionalChange(newQInternal);
|
|
}
|
|
|
|
emit Burn(payer, receiver, new uint256[](n), lpAmount);
|
|
return amountOutUint;
|
|
}
|
|
|
|
|
|
/// @inheritdoc IPartyPool
|
|
function flashRepaymentAmounts(uint256[] memory loanAmounts) external view
|
|
returns (uint256[] memory repaymentAmounts) {
|
|
repaymentAmounts = new uint256[](tokens.length);
|
|
for (uint256 i = 0; i < tokens.length; i++) {
|
|
uint256 amount = loanAmounts[i];
|
|
if (amount > 0) {
|
|
repaymentAmounts[i] = amount + _ceilFee(amount, flashFeePpm);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// @notice Receive token amounts and require them to be repaid plus a fee inside a callback.
|
|
/// @dev The caller must implement IPartyFlashCallback#partyFlashCallback which receives (amounts, repaymentAmounts, data).
|
|
/// This function verifies that, after the callback returns, the pool's balances have increased by at least the fees
|
|
/// for each borrowed token. Reverts if repayment (including fee) did not occur.
|
|
/// @param recipient The address which will receive the token amounts
|
|
/// @param amounts The amount of each token to send (array length must equal pool size)
|
|
/// @param data Any data to be passed through to the callback
|
|
function flash(
|
|
address recipient,
|
|
uint256[] memory amounts,
|
|
bytes calldata data
|
|
) external nonReentrant {
|
|
require(recipient != address(0), "flash: zero recipient");
|
|
require(amounts.length == tokens.length, "flash: amounts length mismatch");
|
|
|
|
// Calculate repayment amounts for each token including fee
|
|
uint256[] memory repaymentAmounts = new uint256[](tokens.length);
|
|
|
|
// Store initial balances to verify repayment later
|
|
uint256[] memory initialBalances = new uint256[](tokens.length);
|
|
|
|
// Track if any token amount is non-zero
|
|
bool hasNonZeroAmount = false;
|
|
|
|
// Process each token, skipping those with zero amounts
|
|
for (uint256 i = 0; i < tokens.length; i++) {
|
|
uint256 amount = amounts[i];
|
|
|
|
if (amount > 0) {
|
|
hasNonZeroAmount = true;
|
|
|
|
// Calculate repayment amount with fee (ceiling)
|
|
repaymentAmounts[i] = amount + _ceilFee(amount, flashFeePpm);
|
|
|
|
// Record initial balance
|
|
initialBalances[i] = IERC20(tokens[i]).balanceOf(address(this));
|
|
|
|
// Transfer token to recipient
|
|
tokens[i].safeTransfer(recipient, amount);
|
|
}
|
|
}
|
|
|
|
// Ensure at least one token is being borrowed
|
|
require(hasNonZeroAmount, "flash: no tokens requested");
|
|
|
|
// Call flash callback with expected repayment amounts
|
|
IPartyFlashCallback(msg.sender).partyFlashCallback(amounts, repaymentAmounts, data);
|
|
|
|
// Verify repayment amounts for tokens that were borrowed
|
|
for (uint256 i = 0; i < tokens.length; i++) {
|
|
if (amounts[i] > 0) {
|
|
uint256 currentBalance = IERC20(tokens[i]).balanceOf(address(this));
|
|
|
|
// Verify repayment: current balance must be at least (initial balance + fee)
|
|
require(
|
|
currentBalance >= initialBalances[i] + _ceilFee(amounts[i], flashFeePpm),
|
|
"flash: repayment failed"
|
|
);
|
|
|
|
// Update cached balance
|
|
cachedUintBalances[i] = currentBalance;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* ----------------------
|
|
Conversion helpers
|
|
---------------------- */
|
|
|
|
// Convert uint token amount -> internal 64.64 (floor). Uses ABDKMath64x64.divu which truncates.
|
|
function _uintToInternalFloor(uint256 amount, uint256 base) internal pure returns (int128) {
|
|
// internal = amount / base (as Q64.64)
|
|
return ABDKMath64x64.divu(amount, base);
|
|
}
|
|
|
|
// Convert internal 64.64 -> uint token amount (floor). Uses ABDKMath64x64.mulu which floors the product.
|
|
function _internalToUintFloor(int128 internalAmount, uint256 base) internal pure returns (uint256) {
|
|
// uint = internal * base (floored)
|
|
return ABDKMath64x64.mulu(internalAmount, base);
|
|
}
|
|
|
|
// Convert internal 64.64 -> uint token amount (ceiling). Rounds up to protect the pool.
|
|
function _internalToUintCeil(int128 internalAmount, uint256 base) internal pure returns (uint256) {
|
|
// Get the floor value first
|
|
uint256 floorValue = ABDKMath64x64.mulu(internalAmount, base);
|
|
|
|
// Check if there was any fractional part by comparing to a reconstruction of the original
|
|
int128 reconstructed = ABDKMath64x64.divu(floorValue, base);
|
|
|
|
// If reconstructed is less than original, there was a fractional part that was truncated
|
|
if (reconstructed < internalAmount) {
|
|
return floorValue + 1;
|
|
}
|
|
|
|
return floorValue;
|
|
}
|
|
|
|
/// @notice Helper to compute size metric (sum of all asset quantities) from internal balances
|
|
/// @dev Returns the sum of all provided qInternal_ entries as a Q64.64 value.
|
|
function _computeSizeMetric(int128[] memory qInternal_) private pure returns (int128) {
|
|
int128 total = int128(0);
|
|
for (uint i = 0; i < qInternal_.length; ) {
|
|
total = total.add(qInternal_[i]);
|
|
unchecked { i++; }
|
|
}
|
|
return total;
|
|
}
|
|
|
|
}
|