doc improvements

This commit is contained in:
tim
2025-09-19 12:04:15 -04:00
parent 3eba6412a6
commit 9fe0179e6a
2 changed files with 236 additions and 116 deletions

View File

@@ -13,9 +13,18 @@ import "./IPartyPool.sol";
import "./IPartyFlashCallback.sol";
/// @title PartyPool - LMSR-backed multi-asset pool with LP ERC20 token
/// @notice Uses LMSRStabilized library; stores per-token uint bases to convert to/from 64.64 fixed point.
/// - Caches qInternal[] (int128 64.64) and cachedUintBalances[] to minimize balanceOf() calls.
/// - swap and swapToLimit mimic core lib; mint/burn call updateForProportionalChange() and manage LP tokens.
/// @notice A multi-asset liquidity pool backed by the LMSRStabilized pricing model.
/// The pool issues an ERC20 LP token representing proportional ownership.
/// It supports:
/// - Proportional minting and burning of LP tokens,
/// - Single-token mint (swapMint) and single-asset withdrawal (burnSwap),
/// - Exact-input swaps and swaps-to-price-limits,
/// - Flash loans via a callback interface.
///
/// @dev The contract stores per-token uint "bases" used to scale token units into the internal Q64.64
/// representation used by the LMSR library. Cached on-chain uint balances are kept to reduce balanceOf calls.
/// The contract uses ceiling/floor rules described in function comments to bias rounding in favor of the pool
/// (i.e., floor outputs to users, ceil inputs/fees where appropriate).
contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
using ABDKMath64x64 for int128;
using LMSRStabilized for LMSRStabilized.State;
@@ -26,20 +35,31 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
// Immutable pool configuration
//
/// @notice Token addresses comprising the pool. Effectively immutable after construction.
/// @dev tokens[i] corresponds to the i-th asset and maps to index i in the internal LMSR arrays.
address[] public tokens; // effectively immutable since there is no interface to change the tokens
/// @inheritdoc IPartyPool
function numTokens() external view returns (uint256) { return tokens.length; }
function allTokens() external view returns (address[] memory) { return tokens; }
/// @inheritdoc IPartyPool
function allTokens() external view returns (address[] memory) { return tokens; }
// NOTE that the slippage target is only exactly achieved in completely balanced pools where all assets are
// priced the same. This target is actually a minimum slippage that the pool imposes on traders, and the actual
// slippage cost can be multiples bigger in practice due to pool inventory imbalances.
/// @notice Trade fraction (Q64.64) representing a reference trade size as fraction of one asset's inventory.
/// @dev Used by the LMSR stabilization logic to compute target slippage.
int128 public immutable tradeFrac; // slippage target trade size as a fraction of one asset's inventory
/// @notice Target slippage (Q64.64) applied for the reference trade size specified by tradeFrac.
int128 public immutable targetSlippage; // target slippage applied to that trade size
// fee in parts-per-million (ppm), taken from inputs before swaps
/// @notice Per-swap fee in parts-per-million (ppm). Fee is taken from input amounts before LMSR computations.
uint256 public immutable swapFeePpm;
// flash loan fee in parts-per-million (ppm)
/// @notice Flash-loan fee in parts-per-million (ppm) applied to flash borrow amounts.
uint256 public immutable flashFeePpm;
//
@@ -47,16 +67,27 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
//
LMSRStabilized.State internal lmsr;
/// @notice If true and there are exactly two assets, an optimized 2-asset stable-pair path is used for some computations.
bool immutable private _stablePair; // if true, the optimized LMSRStabilizedBalancedPair optimization path is enabled
// Cached on-chain balances (uint) and internal 64.64 representation
// balance / base = internal
uint256[] internal cachedUintBalances;
/// @notice Per-token uint base denominators used to convert uint token amounts <-> internal Q64.64 representation.
/// @dev denominators()[i] is the base for tokens[i]. These bases are chosen by deployer and must match token decimals.
uint256[] internal bases; // per-token uint base used to scale token amounts <-> internal
/// @inheritdoc IPartyPool
function denominators() external view returns (uint256[] memory) { return bases; }
/// @notice Mapping from token address => (index+1). A zero value indicates the token is not in the pool.
/// @dev Use index = tokenAddressToIndexPlusOne[token] - 1 when non-zero.
mapping(address=>uint) public tokenAddressToIndexPlusOne; // Uses index+1 so a result of 0 indicates a failed lookup
/// @notice Scale factor used when converting LMSR Q64.64 totals to LP token units (uint).
/// @dev LP tokens are minted in units equal to ABDK.mulu(lastTotalQ64x64, LP_SCALE).
uint256 public constant LP_SCALE = 1e18; // Scale used to convert LMSR lastTotal (Q64.64) into LP token units (uint)
/// @param name_ LP token name
@@ -111,9 +142,7 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
Initialization / Mint / Burn (LP token managed)
---------------------- */
/// @notice Calculate the proportional deposit amounts required for a given LP token amount
/// @param lpTokenAmount The amount of LP tokens desired
/// @return depositAmounts Array of token amounts to deposit (rounded up)
/// @inheritdoc IPartyPool
function mintDepositAmounts(uint256 lpTokenAmount) public view returns (uint256[] memory depositAmounts) {
uint256 n = tokens.length;
depositAmounts = new uint256[](n);
@@ -139,9 +168,7 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
return depositAmounts;
}
/// @notice Calculate the proportional withdrawal amounts for a given LP token amount
/// @param lpTokenAmount The amount of LP tokens to burn
/// @return withdrawAmounts Array of token amounts to withdraw (rounded down)
/// @inheritdoc IPartyPool
function burnReceiveAmounts(uint256 lpTokenAmount) external view returns (uint256[] memory withdrawAmounts) {
return _burnReceiveAmounts(lpTokenAmount);
}
@@ -168,8 +195,9 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
}
/// @notice Proportional mint (or initial supply if first call).
/// For initial supply: assumes tokens have already been transferred to the pool
/// For subsequent mints: payer must approve tokens beforehand, receiver gets the LP tokens
/// @dev - For initial supply: assumes tokens have already been transferred to the pool prior to calling.
/// - For subsequent mints: payer must approve the required token amounts before calling.
/// Rounds follow the pool-favorable conventions documented in helpers (ceil inputs, floor outputs).
/// @param payer address that provides the input tokens (ignored for initial deposit)
/// @param receiver address that receives the LP tokens
/// @param lpTokenAmount desired amount of LP tokens to mint (ignored for initial deposit)
@@ -267,7 +295,8 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
}
/// @notice Burn LP tokens and withdraw the proportional basket to receiver.
/// Payer must own the LP tokens; withdraw amounts are computed from current proportions.
/// @dev Payer must own or approve the LP tokens being burned. The function updates LMSR state
/// proportionally to reflect the reduced pool size after the withdrawal.
/// @param payer address that provides the LP tokens to burn
/// @param receiver address that receives the withdrawn tokens
/// @param lpAmount amount of LP tokens to burn (proportional withdrawal)
@@ -341,12 +370,13 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
---------------------- */
/// @notice Internal quote for exact-input swap that mirrors swap() rounding and fee application
/// @dev Returns amounts consistent with swap() semantics: grossIn includes fees (ceil), amountOut is floored.
/// @return grossIn amount to transfer in (inclusive of fee), amountOutUint output amount (uint),
/// amountInInternalUsed and amountOutInternal (64.64), amountInUintNoFee input amount excluding fee (uint),
/// feeUint fee taken from the gross input (uint)
function _quoteSwapExactIn(
uint256 i,
uint256 j,
uint256 inputTokenIndex,
uint256 outputTokenIndex,
uint256 maxAmountIn,
int128 limitPrice
)
@@ -362,7 +392,7 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
)
{
uint256 n = tokens.length;
require(i < n && j < n, "swap: idx");
require(inputTokenIndex < n && outputTokenIndex < n, "swap: idx");
require(maxAmountIn > 0, "swap: input zero");
require(lmsr.nAssets > 0, "swap: empty pool");
@@ -370,18 +400,18 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
(, uint256 netUintForSwap) = _computeFee(maxAmountIn);
// Convert to internal (floor)
int128 deltaInternalI = _uintToInternalFloor(netUintForSwap, bases[i]);
int128 deltaInternalI = _uintToInternalFloor(netUintForSwap, bases[inputTokenIndex]);
require(deltaInternalI > int128(0), "swap: input too small after fee");
// Compute internal amounts using LMSR (exact-input with price limit)
// if _stablePair is true, use the optimized path
console2.log('stablepair optimization?', _stablePair);
(amountInInternalUsed, amountOutInternal) =
_stablePair ? LMSRStabilizedBalancedPair.swapAmountsForExactInput(lmsr, i, j, deltaInternalI, limitPrice)
: lmsr.swapAmountsForExactInput(i, j, deltaInternalI, limitPrice);
_stablePair ? LMSRStabilizedBalancedPair.swapAmountsForExactInput(lmsr, inputTokenIndex, outputTokenIndex, deltaInternalI, limitPrice)
: lmsr.swapAmountsForExactInput(inputTokenIndex, outputTokenIndex, deltaInternalI, limitPrice);
// Convert actual used input internal -> uint (ceil)
amountInUintNoFee = _internalToUintCeil(amountInInternalUsed, bases[i]);
amountInUintNoFee = _internalToUintCeil(amountInInternalUsed, bases[inputTokenIndex]);
require(amountInUintNoFee > 0, "swap: input zero");
// Compute gross transfer including fee on the used input (ceil)
@@ -396,17 +426,18 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
require(grossIn <= maxAmountIn, "swap: transfer exceeds max");
// Compute output (floor)
amountOutUint = _internalToUintFloor(amountOutInternal, bases[j]);
amountOutUint = _internalToUintFloor(amountOutInternal, bases[outputTokenIndex]);
require(amountOutUint > 0, "swap: output zero");
}
/// @notice Internal quote for swap-to-limit that mirrors swapToLimit() rounding and fee application
/// @dev Computes the input required to reach limitPrice and the resulting output; all rounding matches swapToLimit.
/// @return grossIn amount to transfer in (inclusive of fee), amountOutUint output amount (uint),
/// amountInInternal and amountOutInternal (64.64), amountInUintNoFee input amount excluding fee (uint),
/// feeUint fee taken from the gross input (uint)
function _quoteSwapToLimit(
uint256 i,
uint256 j,
uint256 inputTokenIndex,
uint256 outputTokenIndex,
int128 limitPrice
)
internal
@@ -421,15 +452,15 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
)
{
uint256 n = tokens.length;
require(i < n && j < n, "swapToLimit: idx");
require(inputTokenIndex < n && outputTokenIndex < n, "swapToLimit: idx");
require(limitPrice > int128(0), "swapToLimit: limit <= 0");
require(lmsr.nAssets > 0, "swapToLimit: pool uninitialized");
// Compute internal maxima at the price limit
(amountInInternal, amountOutInternal) = lmsr.swapAmountsForPriceLimit(i, j, limitPrice);
(amountInInternal, amountOutInternal) = lmsr.swapAmountsForPriceLimit(inputTokenIndex, outputTokenIndex, limitPrice);
// Convert input to uint (ceil) and output to uint (floor)
amountInUintNoFee = _internalToUintCeil(amountInInternal, bases[i]);
amountInUintNoFee = _internalToUintCeil(amountInInternal, bases[inputTokenIndex]);
require(amountInUintNoFee > 0, "swapToLimit: input zero");
feeUint = 0;
@@ -439,37 +470,39 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
grossIn += feeUint;
}
amountOutUint = _internalToUintFloor(amountOutInternal, bases[j]);
amountOutUint = _internalToUintFloor(amountOutInternal, bases[outputTokenIndex]);
require(amountOutUint > 0, "swapToLimit: output zero");
}
/// @notice External view to quote exact-in swap amounts (gross input incl. fee and output), matching swap() computations
/// @inheritdoc IPartyPool
function swapAmounts(
uint256 i,
uint256 j,
uint256 inputTokenIndex,
uint256 outputTokenIndex,
uint256 maxAmountIn,
int128 limitPrice
) external view returns (uint256 amountIn, uint256 amountOut, uint256 fee) {
(uint256 grossIn, uint256 outUint,,,, uint256 feeUint) = _quoteSwapExactIn(i, j, maxAmountIn, limitPrice);
(uint256 grossIn, uint256 outUint,,,, uint256 feeUint) = _quoteSwapExactIn(inputTokenIndex, outputTokenIndex, maxAmountIn, limitPrice);
return (grossIn, outUint, feeUint);
}
/// @notice External view to quote swap-to-limit amounts (gross input incl. fee and output), matching swapToLimit() computations
/// @inheritdoc IPartyPool
function swapToLimitAmounts(
uint256 i,
uint256 j,
uint256 inputTokenIndex,
uint256 outputTokenIndex,
int128 limitPrice
) external view returns (uint256 amountIn, uint256 amountOut, uint256 fee) {
(uint256 grossIn, uint256 outUint,,,, uint256 feeUint) = _quoteSwapToLimit(i, j, limitPrice);
(uint256 grossIn, uint256 outUint,,,, uint256 feeUint) = _quoteSwapToLimit(inputTokenIndex, outputTokenIndex, limitPrice);
return (grossIn, outUint, feeUint);
}
/// @notice Swap input token i -> token j. Payer must approve token i.
/// @dev This function transfers the exact gross input (including fee) from payer and sends the computed output to receiver.
/// Non-standard tokens (fee-on-transfer, rebasers) are rejected via balance checks.
/// @param payer address of the account that pays for the swap
/// @param receiver address that will receive the output tokens
/// @param i index of input asset
/// @param j index of output asset
/// @param inputTokenIndex index of input asset
/// @param outputTokenIndex index of output asset
/// @param maxAmountIn maximum amount of token i (uint256) to transfer in (inclusive of fees)
/// @param limitPrice maximum acceptable marginal price (64.64 fixed point). Pass 0 to ignore.
/// @param deadline timestamp after which the transaction will revert. Pass 0 to ignore.
@@ -477,96 +510,97 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
function swap(
address payer,
address receiver,
uint256 i,
uint256 j,
uint256 inputTokenIndex,
uint256 outputTokenIndex,
uint256 maxAmountIn,
int128 limitPrice,
uint256 deadline
) external nonReentrant returns (uint256 amountIn, uint256 amountOut, uint256 fee) {
uint256 n = tokens.length;
require(i < n && j < n, "swap: idx");
require(inputTokenIndex < n && outputTokenIndex < n, "swap: idx");
require(maxAmountIn > 0, "swap: input zero");
require(deadline == 0 || block.timestamp <= deadline, "swap: deadline exceeded");
// Read previous balances for affected assets
uint256 prevBalI = IERC20(tokens[i]).balanceOf(address(this));
uint256 prevBalJ = IERC20(tokens[j]).balanceOf(address(this));
uint256 prevBalI = IERC20(tokens[inputTokenIndex]).balanceOf(address(this));
uint256 prevBalJ = IERC20(tokens[outputTokenIndex]).balanceOf(address(this));
// Compute amounts using the same path as views
(uint256 totalTransferAmount, uint256 amountOutUint, int128 amountInInternalUsed, int128 amountOutInternal, , uint256 feeUint) =
_quoteSwapExactIn(i, j, maxAmountIn, limitPrice);
_quoteSwapExactIn(inputTokenIndex, outputTokenIndex, maxAmountIn, limitPrice);
// Transfer the exact amount from payer and require exact receipt (revert on fee-on-transfer)
_safeTransferFrom(tokens[i], payer, address(this), totalTransferAmount);
uint256 balIAfter = IERC20(tokens[i]).balanceOf(address(this));
_safeTransferFrom(tokens[inputTokenIndex], payer, address(this), totalTransferAmount);
uint256 balIAfter = IERC20(tokens[inputTokenIndex]).balanceOf(address(this));
require(balIAfter == prevBalI + totalTransferAmount, "swap: non-standard tokenIn");
// Transfer output to receiver and verify exact decrease
_safeTransfer(tokens[j], receiver, amountOutUint);
uint256 balJAfter = IERC20(tokens[j]).balanceOf(address(this));
_safeTransfer(tokens[outputTokenIndex], receiver, amountOutUint);
uint256 balJAfter = IERC20(tokens[outputTokenIndex]).balanceOf(address(this));
require(balJAfter == prevBalJ - amountOutUint, "swap: non-standard tokenOut");
// Update cached uint balances for i and j using actual balances
cachedUintBalances[i] = balIAfter;
cachedUintBalances[j] = balJAfter;
cachedUintBalances[inputTokenIndex] = balIAfter;
cachedUintBalances[outputTokenIndex] = balJAfter;
// Apply swap to LMSR state with the internal amounts actually used
lmsr.applySwap(i, j, amountInInternalUsed, amountOutInternal);
lmsr.applySwap(inputTokenIndex, outputTokenIndex, amountInInternalUsed, amountOutInternal);
emit Swap(payer, receiver, tokens[i], tokens[j], totalTransferAmount, amountOutUint);
emit Swap(payer, receiver, tokens[inputTokenIndex], tokens[outputTokenIndex], totalTransferAmount, amountOutUint);
return (totalTransferAmount, amountOutUint, feeUint);
}
/// @notice Swap up to the price limit; computes max input to reach limit then performs swap.
/// If the pool can't fill entirely because of balances, it caps appropriately and returns actuals.
/// Payer must approve token i for the exact computed input amount.
/// @dev If balances prevent fully reaching the limit, the function caps and returns actuals.
/// The payer must transfer the exact gross input computed by the view.
/// @param deadline timestamp after which the transaction will revert. Pass 0 to ignore.
function swapToLimit(
address payer,
address receiver,
uint256 i,
uint256 j,
uint256 inputTokenIndex,
uint256 outputTokenIndex,
int128 limitPrice,
uint256 deadline
) external returns (uint256 amountInUsed, uint256 amountOut, uint256 fee) {
uint256 n = tokens.length;
require(i < n && j < n, "swapToLimit: idx");
require(inputTokenIndex < n && outputTokenIndex < n, "swapToLimit: idx");
require(limitPrice > int128(0), "swapToLimit: limit <= 0");
require(deadline == 0 || block.timestamp <= deadline, "swapToLimit: deadline exceeded");
// Read previous balances for affected assets
uint256 prevBalI = IERC20(tokens[i]).balanceOf(address(this));
uint256 prevBalJ = IERC20(tokens[j]).balanceOf(address(this));
uint256 prevBalI = IERC20(tokens[inputTokenIndex]).balanceOf(address(this));
uint256 prevBalJ = IERC20(tokens[outputTokenIndex]).balanceOf(address(this));
// Compute amounts using the same path as views
(uint256 totalTransferAmount, uint256 amountOutUint, int128 amountInInternalMax, int128 amountOutInternal, uint256 amountInUsedUint, uint256 feeUint) =
_quoteSwapToLimit(i, j, limitPrice);
_quoteSwapToLimit(inputTokenIndex, outputTokenIndex, limitPrice);
// Transfer the exact amount needed from payer and require exact receipt (revert on fee-on-transfer)
_safeTransferFrom(tokens[i], payer, address(this), totalTransferAmount);
uint256 balIAfter = IERC20(tokens[i]).balanceOf(address(this));
_safeTransferFrom(tokens[inputTokenIndex], payer, address(this), totalTransferAmount);
uint256 balIAfter = IERC20(tokens[inputTokenIndex]).balanceOf(address(this));
require(balIAfter == prevBalI + totalTransferAmount, "swapToLimit: non-standard tokenIn");
// Transfer output to receiver and verify exact decrease
_safeTransfer(tokens[j], receiver, amountOutUint);
uint256 balJAfter = IERC20(tokens[j]).balanceOf(address(this));
_safeTransfer(tokens[outputTokenIndex], receiver, amountOutUint);
uint256 balJAfter = IERC20(tokens[outputTokenIndex]).balanceOf(address(this));
require(balJAfter == prevBalJ - amountOutUint, "swapToLimit: non-standard tokenOut");
// Update caches to actual balances
cachedUintBalances[i] = balIAfter;
cachedUintBalances[j] = balJAfter;
cachedUintBalances[inputTokenIndex] = balIAfter;
cachedUintBalances[outputTokenIndex] = balJAfter;
// Apply swap to LMSR state with the internal amounts
lmsr.applySwap(i, j, amountInInternalMax, amountOutInternal);
lmsr.applySwap(inputTokenIndex, outputTokenIndex, amountInInternalMax, amountOutInternal);
// Maintain original event semantics (logs input without fee)
emit Swap(payer, receiver, tokens[i], tokens[j], amountInUsedUint, amountOutUint);
emit Swap(payer, receiver, tokens[inputTokenIndex], tokens[outputTokenIndex], amountInUsedUint, amountOutUint);
return (amountInUsedUint, amountOutUint, feeUint);
}
/// @notice Ceiling fee helper: computes ceil(x * feePpm / 1_000_000)
/// @dev Internal helper; public-facing functions use this to ensure fees round up in favor of pool.
function _ceilFee(uint256 x, uint256 feePpm) internal pure returns (uint256) {
if (feePpm == 0) return 0;
// ceil division: (num + denom - 1) / denom
@@ -595,21 +629,23 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
// which is already present in the standard Mint/Burn events.
/// @notice Single-token mint: deposit a single token, charge swap-LMSR cost, and mint LP.
/// @dev swapMint executes as an exact-in planned swap followed by proportional scaling of qInternal.
/// The function emits SwapMint (gross, net, fee) and also emits Mint for LP issuance.
/// @param payer who transfers the input token
/// @param receiver who receives the minted LP tokens
/// @param i index of the input token
/// @param inputTokenIndex index of the input token
/// @param maxAmountIn maximum uint token input (inclusive of fee)
/// @param deadline optional deadline
/// @return lpMinted actual LP minted (uint)
function swapMint(
address payer,
address receiver,
uint256 i,
uint256 inputTokenIndex,
uint256 maxAmountIn,
uint256 deadline
) external nonReentrant returns (uint256 lpMinted) {
uint256 n = tokens.length;
require(i < n, "swapMint: idx");
require(inputTokenIndex < n, "swapMint: idx");
require(maxAmountIn > 0, "swapMint: input zero");
require(deadline == 0 || block.timestamp <= deadline, "swapMint: deadline");
@@ -620,14 +656,14 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
(, uint256 netUintGuess) = _computeFee(maxAmountIn);
// Convert the net guess to internal (floor)
int128 netInternalGuess = _uintToInternalFloor(netUintGuess, bases[i]);
int128 netInternalGuess = _uintToInternalFloor(netUintGuess, bases[inputTokenIndex]);
require(netInternalGuess > int128(0), "swapMint: input too small after fee");
// Use LMSR view to determine actual internal consumed and size-increase (ΔS) for mint
(int128 amountInInternalUsed, int128 sizeIncreaseInternal) = lmsr.swapAmountsForMint(i, netInternalGuess);
(int128 amountInInternalUsed, int128 sizeIncreaseInternal) = lmsr.swapAmountsForMint(inputTokenIndex, netInternalGuess);
// amountInInternalUsed may be <= netInternalGuess. Convert to uint (ceil) to determine actual transfer
uint256 amountInUint = _internalToUintCeil(amountInInternalUsed, bases[i]);
uint256 amountInUint = _internalToUintCeil(amountInInternalUsed, bases[inputTokenIndex]);
require(amountInUint > 0, "swapMint: input zero after internal conversion");
// Compute fee on the actual used input and total transfer amount (ceiling)
@@ -636,13 +672,13 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
require(totalTransfer > 0 && totalTransfer <= maxAmountIn, "swapMint: transfer exceeds max");
// Record pre-balance and transfer tokens from payer, require exact receipt (revert on fee-on-transfer)
uint256 prevBalI = IERC20(tokens[i]).balanceOf(address(this));
_safeTransferFrom(tokens[i], payer, address(this), totalTransfer);
uint256 balIAfter = IERC20(tokens[i]).balanceOf(address(this));
uint256 prevBalI = IERC20(tokens[inputTokenIndex]).balanceOf(address(this));
_safeTransferFrom(tokens[inputTokenIndex], payer, address(this), totalTransfer);
uint256 balIAfter = IERC20(tokens[inputTokenIndex]).balanceOf(address(this));
require(balIAfter == prevBalI + totalTransfer, "swapMint: non-standard tokenIn");
// Update cached uint balances for token i (only i changed externally)
cachedUintBalances[i] = balIAfter;
// Update cached uint balances for token inputTokenIndex (only inputTokenIndex changed externally)
cachedUintBalances[inputTokenIndex] = balIAfter;
// Compute old and new scaled size metrics to determine LP minted
int128 oldTotal = _computeSizeMetric(lmsr.qInternal);
@@ -679,13 +715,13 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
// Update cached internal and kappa via updateForProportionalChange
lmsr.updateForProportionalChange(newQInternal);
// Note: we updated cachedUintBalances[i] above via reading balance; other token uint balances did not
// Note: we updated cachedUintBalances[inputTokenIndex] above via reading balance; other token uint balances did not
// change externally (they were not transferred in). We keep cachedUintBalances for others unchanged.
// Mint LP tokens to receiver
_mint(receiver, actualLpToMint);
// Emit SwapMint event with gross transfer, net input and fee (planned exact-in)
emit SwapMint(payer, receiver, i, totalTransfer, amountInUint, feeUintActual);
emit SwapMint(payer, receiver, inputTokenIndex, totalTransfer, amountInUint, feeUintActual);
// Emit standard Mint event which records deposit amounts and LP minted
emit Mint(payer, receiver, new uint256[](n), actualLpToMint);
@@ -694,22 +730,23 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
return actualLpToMint;
}
/// @notice Burn LP tokens then swap the redeemed proportional basket into a single asset `i` and send to receiver.
/// @notice Burn LP tokens then swap the redeemed proportional basket into a single asset `inputTokenIndex` and send to receiver.
/// @dev The function burns LP tokens (authorization via allowance if needed), sends the single-asset payout and updates LMSR state.
/// @param payer who burns LP tokens
/// @param receiver who receives the single asset
/// @param lpAmount amount of LP tokens to burn
/// @param i index of target asset to receive
/// @param inputTokenIndex index of target asset to receive
/// @param deadline optional deadline
/// @return amountOutUint uint amount of asset i sent to receiver
function burnSwap(
address payer,
address receiver,
uint256 lpAmount,
uint256 i,
uint256 inputTokenIndex,
uint256 deadline
) external nonReentrant returns (uint256 amountOutUint) {
uint256 n = tokens.length;
require(i < n, "burnSwap: idx");
require(inputTokenIndex < n, "burnSwap: idx");
require(lpAmount > 0, "burnSwap: zero lp");
require(deadline == 0 || block.timestamp <= deadline, "burnSwap: deadline");
@@ -721,14 +758,14 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
int128 alpha = ABDKMath64x64.divu(lpAmount, supply);
// Use LMSR view to compute single-asset payout and burned size-metric
(int128 payoutInternal, ) = lmsr.swapAmountsForBurn(i, alpha);
(int128 payoutInternal, ) = lmsr.swapAmountsForBurn(inputTokenIndex, alpha);
// Convert payoutInternal -> uint (floor) to favor pool
amountOutUint = _internalToUintFloor(payoutInternal, bases[i]);
amountOutUint = _internalToUintFloor(payoutInternal, bases[inputTokenIndex]);
require(amountOutUint > 0, "burnSwap: output zero");
// Transfer the payout to receiver
_safeTransfer(tokens[i], receiver, amountOutUint);
_safeTransfer(tokens[inputTokenIndex], receiver, amountOutUint);
// Burn LP tokens from payer (authorization via allowance)
if (msg.sender != payer) {
@@ -747,7 +784,7 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
}
// Emit BurnSwap with public-facing info only (do not expose ΔS or LP burned)
emit BurnSwap(payer, receiver, i, amountOutUint);
emit BurnSwap(payer, receiver, inputTokenIndex, amountOutUint);
// If entire pool drained, deinit; else update proportionally
bool allZero = true;
@@ -765,6 +802,7 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
}
/// @inheritdoc IPartyPool
function flashRepaymentAmounts(uint256[] memory loanAmounts) external view
returns (uint256[] memory repaymentAmounts) {
repaymentAmounts = new uint256[](tokens.length);
@@ -777,10 +815,12 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
}
/// @notice Receive token0 and/or token1 and pay it back, plus a fee, in the callback
/// @dev The caller of this method receives a callback in the form of IPartyFlashCallback#partyFlashCallback
/// @notice Receive token amounts and require them to be repaid plus a fee inside a callback.
/// @dev The caller must implement IPartyFlashCallback#partyFlashCallback which receives (amounts, repaymentAmounts, data).
/// This function verifies that, after the callback returns, the pool's balances have increased by at least the fees
/// for each borrowed token. Reverts if repayment (including fee) did not occur.
/// @param recipient The address which will receive the token amounts
/// @param amounts The amount of each token to send
/// @param amounts The amount of each token to send (array length must equal pool size)
/// @param data Any data to be passed through to the callback
function flash(
address recipient,
@@ -886,6 +926,7 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
}
/// @notice Helper to compute size metric (sum of all asset quantities) from internal balances
/// @dev Returns the sum of all provided qInternal_ entries as a Q64.64 value.
function _computeSizeMetric(int128[] memory qInternal_) private pure returns (int128) {
int128 total = int128(0);
for (uint i = 0; i < qInternal_.length; ) {