pool_design.py

This commit is contained in:
tim
2025-10-23 17:29:21 -04:00
parent c5be9a3aee
commit 9796a4345f
2 changed files with 162 additions and 0 deletions

162
research/pool_design.py Normal file
View File

@@ -0,0 +1,162 @@
import logging
import math
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
log = logging.getLogger(__name__)
def lmsr_swap_amount_out(
balances,
amount_in,
token_in_index,
token_out_index,
lp_fee,
kappa,
):
"""
Compute the LMSR kernel fee-free amountOut for swapping `amount_in` of token `token_in_index`
into token `token_out_index`, applying lp_fee to the input amount (i.e., amount_in_net = amount_in * (1 - lp_fee)).
Uses native Python floats for performance and simplicity.
Notes on congruence with PartyPool / LMSRStabilized:
- The kernel formula implemented here matches the LMSR closed-form:
amountOut = b * ln(1 + r0 * (1 - exp(-a / b)))
where r0 = exp((q_i - q_j) / b) and b = kappa * S (S = sum balances).
- lp_fee is applied to the input before the kernel (fee-on-input), matching PartyPool's placement.
- This function uses continuous float arithmetic and does NOT emulate
PartyPool's integer/unit conversions or rounding (floor/ceil) and ppm fee quantization.
Parameters:
- balances: iterable of per-token balances (numbers). These represent q_i in internal units.
- amount_in: input amount supplied by swapper (before fees).
- token_in_index: index of the input token i.
- token_out_index: index of the output token j.
- lp_fee: fractional LP fee applied to the input (e.g., 0.003).
- kappa: liquidity parameter κ (must be positive, in same units as balances).
Returns:
- float: net amountOut (exclusive of fees) the swapper receives from the pool (capped at pool balance).
"""
# Normalize and validate inputs (convert to floats)
try:
q = [float(x) for x in balances]
a_in = float(amount_in)
lpf = float(lp_fee)
k = float(kappa)
except (TypeError, ValueError) as e:
raise ValueError("Invalid numeric input") from e
n = len(q)
if not (0 <= token_in_index < n and 0 <= token_out_index < n):
raise IndexError("token indices out of range")
if a_in <= 0.0:
return 0.0
if k <= 0.0:
raise ValueError("kappa must be positive")
# Size metric S = sum q_i
S = sum(q)
if S <= 0.0:
raise ValueError("size metric (sum balances) must be positive")
# b = kappa * S
b = k * S
if b <= 0.0:
raise ValueError("computed b must be positive")
# Apply LP fee on the input amount (kernel is fee-free; wrapper handles fees)
if not (0.0 <= lpf < 1.0):
raise ValueError("lp_fee must be in [0, 1)")
a_net = a_in * (1.0 - lpf)
if a_net <= 0.0:
return 0.0
qi = q[token_in_index]
qj = q[token_out_index]
# Guard: output asset must have non-zero effective reserve
if qj <= 0.0:
# No available output to withdraw
return 0.0
# Compute r0 = exp((q_i - q_j) / b)
try:
r0 = math.exp((qi - qj) / b)
except OverflowError:
raise ArithmeticError("exponential overflow in r0 computation")
# Compute a/b
a_over_b = a_net / b
# exp(-a/b)
try:
exp_neg = math.exp(-a_over_b)
except OverflowError:
# If exp would underflow/overflow, treat exp(-a/b) as 0 in extreme case
exp_neg = 0.0
# inner = 1 + r0 * (1 - exp(-a/b))
inner = 1.0 + r0 * (1.0 - exp_neg)
# If inner <= 0, cap to available balance qj
if inner <= 0.0:
return float(qj)
# amountOut = b * ln(inner)
try:
ln_inner = math.log(inner)
except (ValueError, OverflowError):
# Numeric issue computing ln; be conservative and return 0
return 0.0
amount_out = b * ln_inner
# Safety: non-positive output -> return zero
if amount_out <= 0.0:
return 0.0
# Cap output to pool's current balance qj (cannot withdraw more than available)
if amount_out > qj:
return float(qj)
return float(amount_out)
def main():
balance0 = 1_000_000 # estimated from the production pool
balances = [balance0, balance0]
X = np.geomspace(1, 10_000_000, 100)
Y = [1 -
lmsr_swap_amount_out(balances, float(amount_in), 0, 1, 0.000010, 0.8)
/ amount_in
for amount_in in X]
plt.plot(X / balance0, Y, label='LMSR')
d = pd.read_csv('swap_results_block_23640998.csv')
d.columns = ['block', 'price0', 'price1', 'in0', 'out0', 'in1', 'out1']
uniswap_slippage = 1 - d.out0 / d.in0 / d.iloc[0].price0
plt.plot(d.in0 / balance0, uniswap_slippage, label='CP')
# Interpolate Uniswap slippage to match LMSR x-coordinates
interp_uniswap = np.interp(X / balance0, d.in0 / balance0, uniswap_slippage)
mask = Y < interp_uniswap
plt.fill_between(X / balance0, 0, 1, where=mask, alpha=0.2, color='green')
plt.xscale('log')
plt.yscale('log')
plt.gca().xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _: '{:.2f}'.format(10000*x)))
plt.gca().yaxis.set_major_formatter(plt.FuncFormatter(lambda y, _: '{:.2f}%'.format(y)))
plt.xlabel('Input Amount (basis points of initial balance)')
plt.ylabel('Slippage')
plt.title('Pool Slippages')
plt.grid(True)
plt.legend()
plt.show()
if __name__ == '__main__':
main()