poolPrice() bugfix; burn() and mint() precision bugfixes

This commit is contained in:
tim
2025-12-01 15:42:12 -04:00
parent ea54059337
commit 4e56f54f27
6 changed files with 120 additions and 73 deletions

View File

@@ -32,11 +32,11 @@
| BNB | `0xB8c77482e45F1F44dE1745F52C74426C631bDD52` | nonstandard API | | BNB | `0xB8c77482e45F1F44dE1745F52C74426C631bDD52` | nonstandard API |
# Proof of Concept Pool # OG Pool
``` ```
Name: Liquidity Party POC Name: Original Genesis of Liquidity Party
Symbol: POC.LP Symbol: OG.LP
Kappa: 0.01 Kappa: 0.01
``` ```
@@ -52,3 +52,14 @@ Symbol: POC.LP
| UNI | 0.00145 | `0x1f9840a85d5aF5bf1D1762F925BDADdC4201F984` | | UNI | 0.00145 | `0x1f9840a85d5aF5bf1D1762F925BDADdC4201F984` |
| PEPE | 0.00215 | | | PEPE | 0.00215 | |
| SHIB | 0.00215 | | | SHIB | 0.00215 | |
USDT 0xdAC17F958D2ee523a2206206994597C13D831ec7
USDC 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48
WBTC 0x2260FAC5E5542a773Aa44fBCfeDf7C193bc2C599
WETH 0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2
UNI 0x1f9840a85d5aF5bf1D1762F925BDADdC4201F984
WSOL 0xD31a59c85aE9D8edEFeC411D448f90841571b89c
TRX 0x50327c6c5a14DCaDE707ABad2E27eB517df87AB5
AAVE 0x7Fc66500c84A76Ad7e9c93437bFc5Ac33E2DDaE9
PEPE 0x6982508145454Ce325dDbE47a25d4ec3d2311933
SHIB 0x95aD61b0a150d79219dCF64E1E6Cc01f0B64C4cE

View File

@@ -776,19 +776,19 @@ library LMSRStabilized {
return _exp(qInternal[baseTokenIndex].sub(qInternal[quoteTokenIndex]).mul(invB)); return _exp(qInternal[baseTokenIndex].sub(qInternal[quoteTokenIndex]).mul(invB));
} }
/// @notice Price of one unit of the LP size-metric (S = sum q_i) denominated in `quote` asset (Q64.64) /// @notice Total pool value denominated in `quote` asset (Q64.64, internal quote units)
/// @dev Computes: poolPrice_quote = (1 / S) * sum_j q_j * exp((q_j - q_quote) / b) /// @dev Computes: poolValue_quote = sum_j q_j * exp((q_j - q_quote) / b)
function poolPrice(State storage s, uint256 quoteTokenIndex) internal view returns (int128) { function poolValue(State storage s, uint256 quoteTokenIndex) internal view returns (int128) {
return poolPrice(s.kappa, s.qInternal, quoteTokenIndex); return poolValue(s.kappa, s.qInternal, quoteTokenIndex);
} }
/// @notice Pure version: Price of one unit of the LP size-metric (S = sum q_i) denominated in `quote` asset (Q64.64) /// @notice Pure version: Total pool value denominated in `quote` asset (Q64.64, internal quote units)
/// @dev Computes: poolPrice_quote = (1 / S) * sum_j q_j * exp((q_j - q_quote) / b) /// @dev Computes: poolValue_quote = sum_j q_j * exp((q_j - q_quote) / b)
/// @param kappa Liquidity parameter κ (64.64 fixed point) /// @param kappa Liquidity parameter κ (64.64 fixed point)
/// @param qInternal Cached internal balances in 64.64 fixed-point format /// @param qInternal Cached internal balances in 64.64 fixed-point format
/// @param quoteTokenIndex Index of quote token /// @param quoteTokenIndex Index of quote token
/// @return Pool price in 64.64 fixed-point format /// @return Total pool value in 64.64 fixed-point format (internal quote units)
function poolPrice(int128 kappa, int128[] memory qInternal, uint256 quoteTokenIndex) internal pure returns (int128) { function poolValue(int128 kappa, int128[] memory qInternal, uint256 quoteTokenIndex) internal pure returns (int128) {
// Compute b and ensure positivity // Compute b and ensure positivity
int128 sizeMetric = _computeSizeMetric(qInternal); int128 sizeMetric = _computeSizeMetric(qInternal);
require(sizeMetric > int128(0), "LMSR: size metric zero"); require(sizeMetric > int128(0), "LMSR: size metric zero");
@@ -814,8 +814,7 @@ library LMSRStabilized {
unchecked { j++; } unchecked { j++; }
} }
// pool price in units of quote = (1 / S) * acc return acc;
return acc.div(S);
} }
/* -------------------- /* --------------------

View File

@@ -67,8 +67,12 @@ contract PartyInfo is PartyPoolHelpers, IPartyInfo {
require(nAssets > 0, "poolPrice: uninit"); require(nAssets > 0, "poolPrice: uninit");
require(quoteTokenIndex < nAssets, "poolPrice: idx"); require(quoteTokenIndex < nAssets, "poolPrice: idx");
// price per unit of qTotal (Q64.64) from LMSR // LMSR total value of pool in terms of quote token
return LMSRStabilized.poolPrice( pool.kappa(), lmsr.qInternal, quoteTokenIndex); int128 value = LMSRStabilized.poolValue(pool.kappa(), lmsr.qInternal, quoteTokenIndex);
uint256 qd = pool.denominators()[quoteTokenIndex];
uint256 supply = pool.totalSupply();
return value.mul(ABDKMath64x64.divu(qd * 10**18, supply));
} }

View File

@@ -224,13 +224,13 @@ contract PartyPoolMintImpl is PartyPoolBase {
return depositAmounts; // Return zeros, initial deposit handled differently return depositAmounts; // Return zeros, initial deposit handled differently
} }
// lpTokenAmount / totalLpSupply = depositAmount / currentBalance // Compute mint ratio in Q64.64: ratio = lpTokenAmount / totalSupply
// Therefore: depositAmount = (lpTokenAmount * currentBalance) / totalLpSupply int128 ratio = ABDKMath64x64.divu(lpTokenAmount, totalSupply);
// We round up to protect the pool
// depositAmount_i = ceil(ratio * currentBalance_i)
for (uint i = 0; i < numAssets; i++) { for (uint i = 0; i < numAssets; i++) {
uint256 currentBalance = cachedUintBalances[i]; uint256 currentBalance = cachedUintBalances[i];
// Calculate with rounding up: (a * b + c - 1) / c depositAmounts[i] = _internalToUintCeilPure(ratio, currentBalance);
depositAmounts[i] = (lpTokenAmount * currentBalance + totalSupply - 1) / totalSupply;
} }
return depositAmounts; return depositAmounts;
@@ -247,10 +247,10 @@ contract PartyPoolMintImpl is PartyPoolBase {
return withdrawAmounts; // Return zeros, nothing to withdraw return withdrawAmounts; // Return zeros, nothing to withdraw
} }
// withdrawAmount = floor(lpTokenAmount * currentBalance / totalLpSupply) int128 ratio = ABDKMath64x64.divu(lpTokenAmount, totalSupply);
for (uint i = 0; i < numAssets; i++) { for (uint i = 0; i < numAssets; i++) {
uint256 currentBalance = cachedUintBalances[i]; uint256 currentBalance = cachedUintBalances[i];
withdrawAmounts[i] = (lpTokenAmount * currentBalance) / totalSupply; withdrawAmounts[i] = ratio.mulu(currentBalance);
} }
return withdrawAmounts; return withdrawAmounts;
@@ -536,7 +536,6 @@ contract PartyPoolMintImpl is PartyPoolBase {
IERC20 outputToken = _tokens[outputTokenIndex]; IERC20 outputToken = _tokens[outputTokenIndex];
_sendTokenTo(outputToken, receiver, amountOut, unwrap); _sendTokenTo(outputToken, receiver, amountOut, unwrap);
// Update cached balances using computed payout and protocol fee; no on-chain reads // Update cached balances using computed payout and protocol fee; no on-chain reads
int128[] memory newQInternal = new int128[](n); int128[] memory newQInternal = new int128[](n);
@@ -574,15 +573,24 @@ contract PartyPoolMintImpl is PartyPoolBase {
/// @notice Pure version of _internalToUintCeil for use in view functions /// @notice Pure version of _internalToUintCeil for use in view functions
function _internalToUintCeilPure(int128 amount, uint256 base) internal pure returns (uint256) { function _internalToUintCeilPure(int128 amount, uint256 base) internal pure returns (uint256) {
// Convert Q64.64 to uint with ceiling: ceil(amount * base) // Convert Q64.64 to uint with ceiling: ceil(amount * base)
// Use mulu which floors, then add remainder check for ceiling // Fast path: compute floor using mulu, then detect fractional remainder via low 64-bit check
uint256 floored = ABDKMath64x64.mulu(amount, base); uint256 floored = ABDKMath64x64.mulu(amount, base);
// Check if there's a fractional part by computing amount * base - floored
int128 baseQ64 = ABDKMath64x64.fromUInt(base); // Extract fractional 64 bits of `amount`; if zero, product is already an integer after scaling
int128 flooredQ64 = ABDKMath64x64.fromUInt(floored); uint64 frac = uint64(uint128(amount));
int128 product = amount.mul(baseQ64); if (frac == 0) {
if (product > flooredQ64) { return floored;
return floored + 1; // Ceiling
} }
unchecked {
// Remainder exists iff (frac * (base mod 2^64)) mod 2^64 != 0
uint64 baseL = uint64(base);
uint128 low = uint128(frac) * uint128(baseL);
if (uint64(low) != 0) {
return floored + 1; // Ceiling
}
}
return floored; return floored;
} }

View File

@@ -2,7 +2,6 @@
pragma solidity ^0.8.20; pragma solidity ^0.8.20;
import "forge-std/Test.sol"; import "forge-std/Test.sol";
import "forge-std/console2.sol";
import "@openzeppelin/contracts/interfaces/IERC20Metadata.sol"; import "@openzeppelin/contracts/interfaces/IERC20Metadata.sol";
import "../src/LMSRStabilized.sol"; import "../src/LMSRStabilized.sol";
import "../src/LMSRStabilizedBalancedPair.sol"; import "../src/LMSRStabilizedBalancedPair.sol";
@@ -90,7 +89,6 @@ contract LMSRStabilizedTest is Test {
int128 newE0 = eValues[0].mul(_exp(tradeAmount.div(b))); int128 newE0 = eValues[0].mul(_exp(tradeAmount.div(b)));
int128 slippageRatio = newE0.div(eValues[0]).div(eValues[1].div(eValues[1])); int128 slippageRatio = newE0.div(eValues[0]).div(eValues[1].div(eValues[1]));
int128 slippage = slippageRatio.sub(ABDKMath64x64.fromInt(1)); int128 slippage = slippageRatio.sub(ABDKMath64x64.fromInt(1));
console2.log('slippage', slippage);
// Slippage should be close to stdSlippage (within 1% relative error) // Slippage should be close to stdSlippage (within 1% relative error)
int128 relativeError = slippage.sub(stdSlippage).abs().div(stdSlippage); int128 relativeError = slippage.sub(stdSlippage).abs().div(stdSlippage);
@@ -133,7 +131,6 @@ contract LMSRStabilizedTest is Test {
int128 newE0 = eValues[0].mul(_exp(tradeAmount.div(b))); int128 newE0 = eValues[0].mul(_exp(tradeAmount.div(b)));
int128 slippageRatio = newE0.div(eValues[0]).div(eValues[1].div(eValues[1])); int128 slippageRatio = newE0.div(eValues[0]).div(eValues[1].div(eValues[1]));
int128 slippage = slippageRatio.sub(ABDKMath64x64.fromInt(1)); int128 slippage = slippageRatio.sub(ABDKMath64x64.fromInt(1));
console2.log('slippage', slippage);
int128 relativeError = slippage.sub(stdSlippage).abs().div(stdSlippage); int128 relativeError = slippage.sub(stdSlippage).abs().div(stdSlippage);
assertLt(relativeError, ABDKMath64x64.divu(1, 100), "Almost balanced pool slippage error too high"); assertLt(relativeError, ABDKMath64x64.divu(1, 100), "Almost balanced pool slippage error too high");
} }
@@ -175,14 +172,12 @@ contract LMSRStabilizedTest is Test {
int128 newE0 = eValues[0].mul(_exp(tradeAmount.div(b))); int128 newE0 = eValues[0].mul(_exp(tradeAmount.div(b)));
int128 slippageRatio = newE0.div(eValues[0]).div(eValues[2].div(eValues[2])); int128 slippageRatio = newE0.div(eValues[0]).div(eValues[2].div(eValues[2]));
int128 slippage = slippageRatio.sub(ABDKMath64x64.fromInt(1)); int128 slippage = slippageRatio.sub(ABDKMath64x64.fromInt(1));
console2.log('slippage', slippage);
// Since the imbalance is extreme, with one coin worth lots more than the others, the actual slippage for // Since the imbalance is extreme, with one coin worth lots more than the others, the actual slippage for
// this swap is actually off by about 100% // this swap is actually off by about 100%
// When we configure kappa, it is a best case slippage (worst case AMM loss) that only occurs with balanced // When we configure kappa, it is a best case slippage (worst case AMM loss) that only occurs with balanced
// assets // assets
int128 relativeError = slippage.sub(stdSlippage).abs().div(stdSlippage); int128 relativeError = slippage.sub(stdSlippage).abs().div(stdSlippage);
console2.log('relative error', relativeError);
assertLt(relativeError, ABDKMath64x64.divu(100, 100), "Imbalanced pool slippage error too high"); assertLt(relativeError, ABDKMath64x64.divu(100, 100), "Imbalanced pool slippage error too high");
} }
@@ -249,7 +244,6 @@ contract LMSRStabilizedTest is Test {
int128 newE0 = eValues[0].mul(_exp(tradeAmount.div(newB))); int128 newE0 = eValues[0].mul(_exp(tradeAmount.div(newB)));
int128 slippageRatio = newE0.div(eValues[0]).div(eValues[1].div(eValues[1])); int128 slippageRatio = newE0.div(eValues[0]).div(eValues[1].div(eValues[1]));
int128 slippage = slippageRatio.sub(ABDKMath64x64.fromInt(1)); int128 slippage = slippageRatio.sub(ABDKMath64x64.fromInt(1));
console2.log('post-deposit slippage', slippage);
int128 relativeError = slippage.sub(stdSlippage).abs().div(stdSlippage); int128 relativeError = slippage.sub(stdSlippage).abs().div(stdSlippage);
assertLt(relativeError, ABDKMath64x64.divu(1, 100), "Slippage target not met after deposit"); assertLt(relativeError, ABDKMath64x64.divu(1, 100), "Slippage target not met after deposit");
@@ -398,7 +392,6 @@ contract LMSRStabilizedTest is Test {
int128 newE0 = eValues[0].mul(_exp(tradeAmount.div(newB))); int128 newE0 = eValues[0].mul(_exp(tradeAmount.div(newB)));
int128 slippageRatio = newE0.div(eValues[0]).div(eValues[1].div(eValues[1])); int128 slippageRatio = newE0.div(eValues[0]).div(eValues[1].div(eValues[1]));
int128 slippage = slippageRatio.sub(ABDKMath64x64.fromInt(1)); int128 slippage = slippageRatio.sub(ABDKMath64x64.fromInt(1));
console2.log('post-withdrawal slippage', slippage);
int128 relativeError = slippage.sub(stdSlippage).abs().div(stdSlippage); int128 relativeError = slippage.sub(stdSlippage).abs().div(stdSlippage);
assertLt(relativeError, ABDKMath64x64.divu(1, 100), "Slippage target not met after withdrawal"); assertLt(relativeError, ABDKMath64x64.divu(1, 100), "Slippage target not met after withdrawal");
@@ -712,10 +705,6 @@ contract LMSRStabilizedTest is Test {
// The path independence property isn't perfect due to discrete swap mechanics, // The path independence property isn't perfect due to discrete swap mechanics,
// but the difference should be within reasonable bounds // but the difference should be within reasonable bounds
console2.log("Direct swap output:");
console2.logInt(directAmountOut);
console2.log("Indirect swap total output:");
console2.logInt(indirectAmountOut2);
// Basic verification that both paths produce positive outputs // Basic verification that both paths produce positive outputs
assertTrue(directAmountOut > 0, "Direct swap should produce positive output"); assertTrue(directAmountOut > 0, "Direct swap should produce positive output");
@@ -736,8 +725,6 @@ contract LMSRStabilizedTest is Test {
// Update the state's cached qInternal // Update the state's cached qInternal
_updateCachedQInternal(initialQ); _updateCachedQInternal(initialQ);
console2.log("Testing round-trip trades for balanced pool");
// Use standard trade size // Use standard trade size
int128 tradeAmount = s.qInternal[0].mul(stdTradeSize); int128 tradeAmount = s.qInternal[0].mul(stdTradeSize);
@@ -754,9 +741,6 @@ contract LMSRStabilizedTest is Test {
// Calculate round-trip slippage: (initial amount - final amount) / initial amount // Calculate round-trip slippage: (initial amount - final amount) / initial amount
int128 roundTripSlippage = (amountIn1.sub(amountOut2)).div(amountIn1); int128 roundTripSlippage = (amountIn1.sub(amountOut2)).div(amountIn1);
console2.log("Round-trip slippage (micro-units):");
console2.logInt(_toMicro(roundTripSlippage));
// Verify round-trip slippage is reasonable // Verify round-trip slippage is reasonable
int128 tolerance = ABDKMath64x64.divu(1, 100000); // 0.001% tolerance int128 tolerance = ABDKMath64x64.divu(1, 100000); // 0.001% tolerance
assertLt(roundTripSlippage.abs(), tolerance, "Round-trip slippage should be near zero"); assertLt(roundTripSlippage.abs(), tolerance, "Round-trip slippage should be near zero");
@@ -797,15 +781,6 @@ contract LMSRStabilizedTest is Test {
// Second direction: asset 1 -> asset 0 // Second direction: asset 1 -> asset 0
(int128 amountIn1to0, int128 amountOut1to0) = s.swapAmountsForExactInput(1, 0, tradeAmount1, 0); (int128 amountIn1to0, int128 amountOut1to0) = s.swapAmountsForExactInput(1, 0, tradeAmount1, 0);
console2.log("0->1 swap amountIn:");
console2.logInt(amountIn0to1);
console2.log("0->1 swap amountOut:");
console2.logInt(amountOut0to1);
console2.log("1->0 swap amountIn:");
console2.logInt(amountIn1to0);
console2.log("1->0 swap amountOut:");
console2.logInt(amountOut1to0);
// For balanced pools, the swap ratios should be approximately symmetric // For balanced pools, the swap ratios should be approximately symmetric
int128 ratio0to1 = amountOut0to1.div(amountIn0to1); int128 ratio0to1 = amountOut0to1.div(amountIn0to1);
int128 ratio1to0 = amountOut1to0.div(amountIn1to0); int128 ratio1to0 = amountOut1to0.div(amountIn1to0);
@@ -814,9 +789,6 @@ contract LMSRStabilizedTest is Test {
int128 ratioDifference = (ratio0to1.sub(ratio1to0)).abs(); int128 ratioDifference = (ratio0to1.sub(ratio1to0)).abs();
int128 relativeRatioDiff = ratioDifference.div(ratio0to1.add(ratio1to0).div(ABDKMath64x64.fromInt(2))); int128 relativeRatioDiff = ratioDifference.div(ratio0to1.add(ratio1to0).div(ABDKMath64x64.fromInt(2)));
console2.log("Relative ratio difference (micro-units):");
console2.logInt(_toMicro(relativeRatioDiff));
// Assert that the relative difference between ratios is small // Assert that the relative difference between ratios is small
int128 tolerance = ABDKMath64x64.divu(5, 100); // 5% tolerance int128 tolerance = ABDKMath64x64.divu(5, 100); // 5% tolerance
assertLt(relativeRatioDiff, tolerance, assertLt(relativeRatioDiff, tolerance,

View File

@@ -2,7 +2,6 @@
/* solhint-disable */ /* solhint-disable */
pragma solidity ^0.8.30; pragma solidity ^0.8.30;
import "forge-std/console2.sol";
import {ABDKMath64x64} from "../lib/abdk-libraries-solidity/ABDKMath64x64.sol"; import {ABDKMath64x64} from "../lib/abdk-libraries-solidity/ABDKMath64x64.sol";
import {CommonBase} from "../lib/forge-std/src/Base.sol"; import {CommonBase} from "../lib/forge-std/src/Base.sol";
import {StdAssertions} from "../lib/forge-std/src/StdAssertions.sol"; import {StdAssertions} from "../lib/forge-std/src/StdAssertions.sol";
@@ -254,14 +253,15 @@ contract PartyPoolTest is Test {
/// does not undercharge (no value extraction). This test verifies the request succeeds /// does not undercharge (no value extraction). This test verifies the request succeeds
/// and that computed deposits are at least the proportional floor (ceil >= floor). /// and that computed deposits are at least the proportional floor (ceil >= floor).
function testProportionalMintOneWeiSucceedsAndProtectsPool() public { function testProportionalMintOneWeiSucceedsAndProtectsPool() public {
// Request a tiny LP amount (1 wei). Approve pool to transfer _tokens on alice's behalf. // Request a tiny LP amount. Approve pool to transfer _tokens on alice's behalf.
vm.startPrank(alice); vm.startPrank(alice);
token0.approve(address(pool), type(uint256).max); token0.approve(address(pool), type(uint256).max);
token1.approve(address(pool), type(uint256).max); token1.approve(address(pool), type(uint256).max);
token2.approve(address(pool), type(uint256).max); token2.approve(address(pool), type(uint256).max);
// Inspect the deposit amounts that the pool will require (these are rounded up) // Inspect the deposit amounts that the pool will require (these are rounded up)
uint256[] memory deposits = info.mintAmounts(pool, 1); uint256 lpAmount = pool.totalSupply() / 2**64 + 1; // smallest mintable amount
uint256[] memory deposits = info.mintAmounts(pool, lpAmount);
// Basic sanity: deposits array length must match token count and not all zero necessarily // Basic sanity: deposits array length must match token count and not all zero necessarily
assertEq(deposits.length, 3); assertEq(deposits.length, 3);
@@ -270,16 +270,16 @@ contract PartyPoolTest is Test {
uint256 totalLp = pool.totalSupply(); uint256 totalLp = pool.totalSupply();
for (uint i = 0; i < deposits.length; i++) { for (uint i = 0; i < deposits.length; i++) {
uint256 bal = IERC20(pool.allTokens()[i]).balanceOf(address(pool)); uint256 bal = IERC20(pool.allTokens()[i]).balanceOf(address(pool));
uint256 floorProportional = (1 * bal) / totalLp; // floor uint256 floorProportional = (lpAmount * bal) / totalLp; // floor
// Ceil (deposit) must be >= floor (pool protected) // Ceil (deposit) must be >= floor (pool protected)
assertTrue(deposits[i] >= floorProportional, "deposit must not be less than floor proportion"); assertTrue(deposits[i] >= floorProportional, "deposit must not be less than floor proportion");
} }
// Perform the mint — it should succeed for a 1 wei request (pool uses ceil to protect itself) // Perform the mint — it should succeed for a 1 wei request (pool uses ceil to protect itself)
pool.mint(alice, alice, 1, 0); pool.mint(alice, alice, lpAmount, 0);
// After mint, alice should have received at least 1 wei of LP // After mint, alice should have received at least 1 wei of LP
assertTrue(pool.balanceOf(alice) >= 1, "Alice should receive at least 1 wei LP"); assertTrue(pool.balanceOf(alice) >= lpAmount, "Alice should receive more LP token");
vm.stopPrank(); vm.stopPrank();
} }
@@ -301,9 +301,10 @@ contract PartyPoolTest is Test {
poolValueBefore += IERC20(toks[i]).balanceOf(address(pool)); poolValueBefore += IERC20(toks[i]).balanceOf(address(pool));
} }
uint256 totalLpBefore = pool.totalSupply(); uint256 totalLpBefore = pool.totalSupply();
uint256 lpAmount = totalLpBefore/10**18; // tiny amount
// Compute required deposits and perform mint for 1 wei // Compute required deposits and perform mint for 1 wei
uint256[] memory deposits = info.mintAmounts(pool, 1); uint256[] memory deposits = info.mintAmounts(pool, lpAmount);
// Sum deposits as deposited_value // Sum deposits as deposited_value
uint256 depositedValue = 0; uint256 depositedValue = 0;
@@ -311,8 +312,8 @@ contract PartyPoolTest is Test {
depositedValue += deposits[i]; depositedValue += deposits[i];
} }
// Execute mint; it may revert if actualLpToMint == 0 but for 1 wei we expect it to succeed per design. // Execute mint; it may revert if actualLpToMint == 0 but for small nonzero values we expect it to succeed per design.
pool.mint(alice, alice, 1, 0); pool.mint(alice, alice, lpAmount, 0);
// Observe minted LP // Observe minted LP
uint256 totalLpAfter = pool.totalSupply(); uint256 totalLpAfter = pool.totalSupply();
@@ -321,6 +322,7 @@ contract PartyPoolTest is Test {
require(minted > 0, "sanity: minted should be > 0 for this test"); require(minted > 0, "sanity: minted should be > 0 for this test");
// Economic invariant check: // Economic invariant check:
// The depositor should pay at least as much value per LP token as the pool's rate before the mint:
// depositedValue / minted >= poolValueBefore / totalLpBefore // depositedValue / minted >= poolValueBefore / totalLpBefore
// Rearranged (to avoid fractional math): depositedValue * totalLpBefore >= poolValueBefore * minted // Rearranged (to avoid fractional math): depositedValue * totalLpBefore >= poolValueBefore * minted
// Use >= to allow the pool to charge equal-or-more value per LP (protects against extraction). // Use >= to allow the pool to charge equal-or-more value per LP (protects against extraction).
@@ -1079,8 +1081,12 @@ contract PartyPoolTest is Test {
// Expected price is 1.0 in ABDK 64.64 fixed point // Expected price is 1.0 in ABDK 64.64 fixed point
int128 expected = ABDKMath64x64.fromInt(1); int128 expected = ABDKMath64x64.fromInt(1);
// Cast int128 to uint128 then to uint256 for assertEq (values are non-negative) // Allow a small tolerance for fixed-point rounding (~1e-9)
assertEq(uint256(uint128(price)), uint256(uint128(expected)), "Initial pool price must be 1.0000000"); int128 ratio = ABDKMath64x64.div(price, expected);
int128 expectedRatio = ABDKMath64x64.fromUInt(1);
int128 tol = ABDKMath64x64.divu(1, 1_000_000_000);
int128 diff = ratio.sub(expectedRatio).abs();
assertLe(diff, tol, "poolPrice(token0) should be ~ 1.000000000");
// Mint a small amount of LP into the pool from alice and verify price remains 1.0 // Mint a small amount of LP into the pool from alice and verify price remains 1.0
vm.startPrank(alice); vm.startPrank(alice);
@@ -1105,7 +1111,57 @@ contract PartyPoolTest is Test {
// Re-query the pool price and ensure it remains 1.0 (within exact fixed-point equality) // Re-query the pool price and ensure it remains 1.0 (within exact fixed-point equality)
int128 priceAfter = info.poolPrice(pool, 0); int128 priceAfter = info.poolPrice(pool, 0);
assertEq(uint256(uint128(priceAfter)), uint256(uint128(expected)), "Pool price should remain 1.0000000 after mint"); // Allow a small tolerance for fixed-point rounding (~1e-9)
ratio = ABDKMath64x64.div(price, priceAfter);
expectedRatio = ABDKMath64x64.fromUInt(1);
tol = ABDKMath64x64.divu(1, 1_000_000_000);
diff = ratio.sub(expectedRatio).abs();
assertLe(diff, tol, "Pool price should remain 1.0000000 after mint");
}
/// @notice For the same 3x-imbalanced pool, verify that the LP pool price in terms of
/// token0 is 1/3 of the pool price in terms of token1 (up to rounding).
function testPoolPriceWhenToken0HasThreeTimesToken1() public {
// Build tokens array (reuse test tokens)
IERC20[] memory tokens = new IERC20[](3);
tokens[0] = IERC20(address(token0));
tokens[1] = IERC20(address(token1));
tokens[2] = IERC20(address(token2));
uint256 feePpm = 1000;
int128 kappa = LMSRStabilized.computeKappaFromSlippage(tokens.length, tradeFrac, targetSlippage);
// Same 3x imbalance as in testPriceWhenToken0HasThreeTimesToken1
uint256[] memory deposits = new uint256[](3);
deposits[0] = INIT_BAL * 3; // token0 = 3 * INIT_BAL
deposits[1] = INIT_BAL; // token1 = INIT_BAL
deposits[2] = INIT_BAL * 2; // token2 = 2 * INIT_BAL
(IPartyPool poolCustom, ) = Deploy.newPartyPoolWithDeposits(
"LP3X_POOLPRICE",
"LP3X_POOLPRICE",
tokens,
kappa,
feePpm,
feePpm,
false,
deposits,
INIT_BAL * 6 * 10**18
);
// Get LP price in terms of token0 and token1 (Q64.64, quote units per LP)
int128 p0 = info.poolPrice(poolCustom, 0); // token0 as quote
int128 p1 = info.poolPrice(poolCustom, 1); // token1 as quote
// ratio = p0 / p1 should be close to 3
int128 ratio = ABDKMath64x64.div(p0, p1);
int128 expectedRatio = ABDKMath64x64.fromUInt(3);
// Allow a small tolerance for fixed-point rounding (~1e-6)
int128 tol = ABDKMath64x64.divu(1, 1_000_000);
int128 diff = ratio.sub(expectedRatio).abs();
assertLe(diff, tol, "poolPrice(token0) should be ~ 1/3 of poolPrice(token1)");
} }
/// @notice Create a 3-token pool where token0 has 3x the balance of token1 and verify /// @notice Create a 3-token pool where token0 has 3x the balance of token1 and verify
@@ -1183,12 +1239,9 @@ contract PartyPoolTest is Test {
// Compute swap-implied price as Q64.64 (quote per base) = amountOut / netIn // Compute swap-implied price as Q64.64 (quote per base) = amountOut / netIn
int128 swapPrice = ABDKMath64x64.divu(amountOut, netIn); int128 swapPrice = ABDKMath64x64.divu(amountOut, netIn);
console2.log('info price', infoPrice);
console2.log('swap price', swapPrice);
// Absolute difference between info.price and swap-implied price // Absolute difference between info.price and swap-implied price
int128 slippage = ABDKMath64x64.fromUInt(1) - swapPrice.div(infoPrice); int128 slippage = ABDKMath64x64.fromUInt(1) - swapPrice.div(infoPrice);
console2.log('slippage', slippage);
// Tolerance ~ 4e-5 in Q64.64 // Tolerance ~ 4e-5 in Q64.64
int128 tol = ABDKMath64x64.divu(4, 100_000); int128 tol = ABDKMath64x64.divu(4, 100_000);