balanced pair optimization
This commit is contained in:
@@ -855,8 +855,7 @@ library LMSRStabilized {
|
||||
) internal pure returns (int128) {
|
||||
// Quick sanity checks that decide whether the heterogeneous formula is applicable.
|
||||
// If not, fall back to the closed-form equal-asset formula for stability.
|
||||
int128 one = _one();
|
||||
int128 onePlusS = one.add(targetSlippage);
|
||||
int128 onePlusS = ONE.add(targetSlippage);
|
||||
|
||||
int128 n64 = ABDKMath64x64.fromUInt(nAssets);
|
||||
int128 nMinus1_64 = ABDKMath64x64.fromUInt(nAssets - 1);
|
||||
@@ -896,8 +895,6 @@ library LMSRStabilized {
|
||||
require(f > int128(0), "LMSR: f=0");
|
||||
require(f < ONE, "LMSR: f>=1");
|
||||
|
||||
int128 one = _one();
|
||||
|
||||
// Top-level input debug
|
||||
console2.log("computeBFromSlippageCore: inputs");
|
||||
console2.log("q (64.64)");
|
||||
@@ -921,8 +918,8 @@ library LMSRStabilized {
|
||||
// b = q / y = q * f / (-ln(E))
|
||||
|
||||
int128 nMinus1 = ABDKMath64x64.fromUInt(nAssets - 1);
|
||||
int128 numerator = one.sub(targetSlippage.mul(nMinus1)); // 1 - s*(n-1)
|
||||
int128 denominator = one.add(targetSlippage); // 1 + s
|
||||
int128 numerator = ONE.sub(targetSlippage.mul(nMinus1)); // 1 - s*(n-1)
|
||||
int128 denominator = ONE.add(targetSlippage); // 1 + s
|
||||
|
||||
console2.log("equal-case intermediates:");
|
||||
console2.log("numerator = 1 - s*(n-1)");
|
||||
@@ -937,7 +934,7 @@ library LMSRStabilized {
|
||||
console2.logInt(ratio);
|
||||
|
||||
// E must be strictly between 0 and 1 for a positive y
|
||||
require(ratio > int128(0) && ratio < one, "LMSR: bad E ratio");
|
||||
require(ratio > int128(0) && ratio < ONE, "LMSR: bad E ratio");
|
||||
|
||||
int128 lnE = _ln(ratio); // ln(E) < 0
|
||||
console2.log("ln(E)");
|
||||
@@ -959,7 +956,7 @@ library LMSRStabilized {
|
||||
int128 E_sim = _exp(expArg);
|
||||
int128 n64 = ABDKMath64x64.fromUInt(nAssets);
|
||||
int128 nMinus1_64 = ABDKMath64x64.fromUInt(nAssets - 1);
|
||||
int128 simulatedSlippage = n64.div(nMinus1_64.add(E_sim)).sub(_one());
|
||||
int128 simulatedSlippage = n64.div(nMinus1_64.add(E_sim)).sub(ONE);
|
||||
console2.log("simulatedSlippage (using computed b)");
|
||||
console2.logInt(simulatedSlippage);
|
||||
|
||||
@@ -969,7 +966,7 @@ library LMSRStabilized {
|
||||
// E = exp(-y * f) where y = q / b
|
||||
// and E = (1+s) * (n-1) / (n - (1+s))
|
||||
// so y = -ln(E) / f and b = q / y.
|
||||
int128 onePlusS = one.add(targetSlippage);
|
||||
int128 onePlusS = ONE.add(targetSlippage);
|
||||
|
||||
console2.log("heterogeneous intermediates:");
|
||||
console2.log("onePlusS = 1 + s");
|
||||
@@ -1007,7 +1004,7 @@ library LMSRStabilized {
|
||||
|
||||
// Correct E candidate for the slippage relation:
|
||||
// E = (1 - s*(n-1)) / (1 + s)
|
||||
int128 E_candidate = (one.sub(targetSlippage.mul(nMinus1_64))).div(onePlusS);
|
||||
int128 E_candidate = (ONE.sub(targetSlippage.mul(nMinus1_64))).div(onePlusS);
|
||||
console2.log("E candidate ((1 - s*(n-1)) / (1+s))");
|
||||
console2.logInt(E_candidate);
|
||||
|
||||
@@ -1031,7 +1028,7 @@ library LMSRStabilized {
|
||||
// Simulate slippage using this b to verify
|
||||
int128 expArg = y.mul(f).neg();
|
||||
int128 E_sim = _exp(expArg);
|
||||
int128 simulatedSlippage = n64.div(nMinus1_64.add(E_sim)).sub(_one());
|
||||
int128 simulatedSlippage = n64.div(nMinus1_64.add(E_sim)).sub(ONE);
|
||||
console2.log("simulatedSlippage (heterogeneous)");
|
||||
console2.logInt(simulatedSlippage);
|
||||
|
||||
@@ -1055,7 +1052,7 @@ library LMSRStabilized {
|
||||
}
|
||||
|
||||
/// @notice Compute M (shift) and Z (sum of exponentials) dynamically
|
||||
function _computeMAndZ(int128 b, int128[] memory qInternal) private pure returns (int128 M, int128 Z) {
|
||||
function _computeMAndZ(int128 b, int128[] memory qInternal) internal pure returns (int128 M, int128 Z) {
|
||||
require(qInternal.length > 0, "LMSR: no assets");
|
||||
|
||||
// Precompute reciprocal of b to replace divisions with multiplications in the loop
|
||||
@@ -1083,7 +1080,7 @@ library LMSRStabilized {
|
||||
}
|
||||
|
||||
/// @notice Compute all e[i] = exp(z[i]) values dynamically
|
||||
function _computeE(int128 b, int128[] memory qInternal, int128 M) private pure returns (int128[] memory e) {
|
||||
function _computeE(int128 b, int128[] memory qInternal, int128 M) internal pure returns (int128[] memory e) {
|
||||
uint len = qInternal.length;
|
||||
e = new int128[](len);
|
||||
|
||||
@@ -1100,7 +1097,7 @@ library LMSRStabilized {
|
||||
|
||||
/// @notice Compute r0 = e_i / e_j directly as exp((q_i - q_j) / b)
|
||||
/// This avoids computing two separate exponentials and a division
|
||||
function _computeR0(int128 b, int128[] memory qInternal, uint256 i, uint256 j) private pure returns (int128) {
|
||||
function _computeR0(int128 b, int128[] memory qInternal, uint256 i, uint256 j) internal pure returns (int128) {
|
||||
return _exp(qInternal[i].sub(qInternal[j]).div(b));
|
||||
}
|
||||
|
||||
@@ -1110,16 +1107,15 @@ library LMSRStabilized {
|
||||
-------------------- */
|
||||
|
||||
// Precomputed Q64.64 representation of 1.0 (1 << 64).
|
||||
int128 private constant ONE = 0x10000000000000000;
|
||||
int128 internal constant ONE = 0x10000000000000000;
|
||||
// Precomputed Q64.64 representation of 32.0 for exp guard
|
||||
int128 private constant EXP_LIMIT = 0x200000000000000000;
|
||||
int128 internal constant EXP_LIMIT = 0x200000000000000000;
|
||||
|
||||
function _exp(int128 x) private pure returns (int128) { return ABDKMath64x64.exp(x); }
|
||||
function _ln(int128 x) private pure returns (int128) { return ABDKMath64x64.ln(x); }
|
||||
function _one() private pure returns (int128) { return ONE; }
|
||||
function _exp(int128 x) internal pure returns (int128) { return ABDKMath64x64.exp(x); }
|
||||
function _ln(int128 x) internal pure returns (int128) { return ABDKMath64x64.ln(x); }
|
||||
|
||||
/// @notice Compute size metric S(q) = sum of all asset quantities
|
||||
function _computeSizeMetric(int128[] memory qInternal) private pure returns (int128) {
|
||||
function _computeSizeMetric(int128[] memory qInternal) internal pure returns (int128) {
|
||||
int128 total = int128(0);
|
||||
for (uint i = 0; i < qInternal.length; ) {
|
||||
total = total.add(qInternal[i]);
|
||||
@@ -1129,7 +1125,7 @@ library LMSRStabilized {
|
||||
}
|
||||
|
||||
/// @notice Compute b from kappa and current asset quantities
|
||||
function _computeB(State storage s) private view returns (int128) {
|
||||
function _computeB(State storage s) internal view returns (int128) {
|
||||
int128 sizeMetric = _computeSizeMetric(s.qInternal);
|
||||
require(sizeMetric > int128(0), "LMSR: size metric zero");
|
||||
return s.kappa.mul(sizeMetric);
|
||||
|
||||
261
src/LMSRStabilizedBalancedPair.sol
Normal file
261
src/LMSRStabilizedBalancedPair.sol
Normal file
@@ -0,0 +1,261 @@
|
||||
// SPDX-License-Identifier: UNLICENSED
|
||||
pragma solidity ^0.8.30;
|
||||
|
||||
import "forge-std/console2.sol";
|
||||
import "@abdk/ABDKMath64x64.sol";
|
||||
import "./LMSRStabilized.sol";
|
||||
|
||||
/// @notice Specialized functions for the 2-asset stablecoin case
|
||||
library LMSRStabilizedBalancedPair {
|
||||
using ABDKMath64x64 for int128;
|
||||
|
||||
// Precomputed Q64.64 representation of 1.0 (1 << 64).
|
||||
int128 private constant ONE = 0x10000000000000000;
|
||||
|
||||
/// @notice Specialized 2-asset balanced approximation of swapAmountsForExactInput.
|
||||
/// - Assumes exactly two assets and that the two assets' internal balances are within ~1% of parity.
|
||||
/// - Implements a gas-optimized two-tier Taylor approximation to avoid most exp()/ln() calls:
|
||||
/// * Tier 1 (quadratic, cheapest): for small u = a/b (u <= 0.1) we compute
|
||||
/// X = u*(1 + δ) - u^2/2
|
||||
/// ln(1+X) ≈ X - X^2/2
|
||||
/// and return amountOut ≈ b * lnApprox. This Horner-style form minimizes multiplies/divides
|
||||
/// and temporaries compared to the earlier a^2/a^3 expansion.
|
||||
/// * Tier 2 (cubic correction): for moderate u (0.1 < u <= 0.5) we add the X^3/3 term:
|
||||
/// ln(1+X) ≈ X - X^2/2 + X^3/3
|
||||
/// which improves accuracy while still being significantly cheaper than full exp/ln.
|
||||
/// - For cases where |δ| (the per-asset imbalance scaled by b) or u are outside the safe ranges,
|
||||
/// or when limitPrice handling cannot be reliably approximated, the function falls back to the
|
||||
/// numerically-exact swapAmountsForExactInput(...) implementation to preserve correctness.
|
||||
/// - The goal is to keep relative error well below 0.001% in the intended small-u, near-parity regime,
|
||||
/// while substantially reducing gas in the common fast path.
|
||||
function swapAmountsForExactInput(
|
||||
LMSRStabilized.State storage s,
|
||||
uint256 i,
|
||||
uint256 j,
|
||||
int128 a,
|
||||
int128 limitPrice
|
||||
) internal view returns (int128 amountIn, int128 amountOut) {
|
||||
// Quick index check
|
||||
require(i < s.nAssets && j < s.nAssets, "LMSR: idx");
|
||||
|
||||
// If not exactly a two-asset pool, fall back to the general routine.
|
||||
if (s.nAssets != 2) {
|
||||
console2.log('balanced2: fallback nAssets!=n2');
|
||||
return LMSRStabilized.swapAmountsForExactInput(s, i, j, a, limitPrice);
|
||||
}
|
||||
|
||||
// Compute b and inverse early (needed to evaluate delta and limit-price)
|
||||
int128 b = LMSRStabilized._computeB(s);
|
||||
// Guard: if b not positive, fallback to exact implementation (will revert there if necessary)
|
||||
if (!(b > int128(0))) {
|
||||
console2.log("balanced2: fallback b<=0");
|
||||
return LMSRStabilized.swapAmountsForExactInput(s, i, j, a, limitPrice);
|
||||
}
|
||||
int128 invB = ABDKMath64x64.div(ONE, b);
|
||||
|
||||
// Small-signal delta = (q_i - q_j) / b (used to approximate r0 = exp(delta))
|
||||
int128 delta = s.qInternal[i].sub(s.qInternal[j]).mul(invB);
|
||||
|
||||
// If a positive limitPrice is given, attempt a 2-asset near-parity polynomial solution
|
||||
if (limitPrice > int128(0)) {
|
||||
console2.log("balanced2: handling limitPrice via small-delta approx");
|
||||
|
||||
// Approximate r0 = exp(delta) using Taylor: 1 + δ + δ^2/2 + δ^3/6
|
||||
int128 delta_sq = delta.mul(delta);
|
||||
int128 delta_cu = delta_sq.mul(delta);
|
||||
int128 r0_approx = ONE
|
||||
.add(delta)
|
||||
.add(delta_sq.div(ABDKMath64x64.fromUInt(2)))
|
||||
.add(delta_cu.div(ABDKMath64x64.fromUInt(6)));
|
||||
|
||||
console2.log("r0_approx:");
|
||||
console2.logInt(r0_approx);
|
||||
|
||||
// If limitPrice <= r0 (current price) we must revert (same semantic as original)
|
||||
if (limitPrice <= r0_approx) {
|
||||
console2.log("balanced2: limitPrice <= r0_approx -> revert");
|
||||
revert("LMSR: limitPrice <= current price");
|
||||
}
|
||||
|
||||
// Ratio = limitPrice / r0_approx
|
||||
int128 ratio = limitPrice.div(r0_approx);
|
||||
console2.log("limitPrice/r0_approx:");
|
||||
console2.logInt(ratio);
|
||||
|
||||
// x = ratio - 1; use Taylor for ln(1+x) when |x| is small
|
||||
int128 x = ratio.sub(ONE);
|
||||
int128 absX = x >= int128(0) ? x : x.neg();
|
||||
|
||||
// Acceptable range for ln Taylor approx: |x| <= 0.1 (conservative)
|
||||
int128 X_MAX = ABDKMath64x64.divu(1, 10); // 0.1
|
||||
if (absX > X_MAX) {
|
||||
// Too large to safely approximate; fall back to exact computation
|
||||
console2.log("balanced2: fallback limitPrice ratio too far from 1");
|
||||
return LMSRStabilized.swapAmountsForExactInput(s, i, j, a, limitPrice);
|
||||
}
|
||||
|
||||
// ln(1+x) ≈ x - x^2/2 + x^3/3
|
||||
int128 x_sq = x.mul(x);
|
||||
int128 x_cu = x_sq.mul(x);
|
||||
int128 lnRatioApprox = x
|
||||
.sub(x_sq.div(ABDKMath64x64.fromUInt(2)))
|
||||
.add(x_cu.div(ABDKMath64x64.fromUInt(3)));
|
||||
|
||||
console2.log("lnRatioApprox (64x64):");
|
||||
console2.logInt(lnRatioApprox);
|
||||
|
||||
// aLimitOverB = ln(limitPrice / r0) approximated
|
||||
int128 aLimitOverB = lnRatioApprox;
|
||||
|
||||
// Must be > 0; otherwise fall back
|
||||
if (!(aLimitOverB > int128(0))) {
|
||||
console2.log("balanced2: fallback non-positive aLimitOverB");
|
||||
return LMSRStabilized.swapAmountsForExactInput(s, i, j, a, limitPrice);
|
||||
}
|
||||
|
||||
// aLimit = b * aLimitOverB (in Q64.64)
|
||||
int128 aLimit64 = b.mul(aLimitOverB);
|
||||
console2.log("aLimit64 (64x64):");
|
||||
console2.logInt(aLimit64);
|
||||
|
||||
// If computed aLimit is less than requested a, use the truncated value.
|
||||
if (aLimit64 < a) {
|
||||
console2.log("balanced2: truncating input a to aLimit64 due to limitPrice");
|
||||
console2.log("original a:");
|
||||
console2.logInt(a);
|
||||
console2.log("truncated aLimit64:");
|
||||
console2.logInt(aLimit64);
|
||||
a = aLimit64;
|
||||
} else {
|
||||
console2.log("balanced2: limitPrice does not truncate input");
|
||||
}
|
||||
|
||||
// Note: after potential truncation we continue with the polynomial approximation below
|
||||
}
|
||||
|
||||
// Debug: entry trace
|
||||
console2.log("balanced2: enter");
|
||||
console2.log("i", i);
|
||||
console2.log("j", j);
|
||||
console2.log("nAssets", s.nAssets);
|
||||
console2.log("a (64x64):");
|
||||
console2.logInt(a);
|
||||
console2.log("b (64x64):");
|
||||
console2.logInt(b);
|
||||
console2.log("invB (64x64):");
|
||||
console2.logInt(invB);
|
||||
|
||||
// Small-signal delta already computed above; reuse it
|
||||
int128 absDelta = delta >= int128(0) ? delta : delta.neg();
|
||||
|
||||
console2.log("delta (q_i - q_j)/b:");
|
||||
console2.logInt(delta);
|
||||
console2.log("absDelta:");
|
||||
console2.logInt(absDelta);
|
||||
|
||||
// Allow balanced pools only: require |delta| <= 1% (approx ln(1.01) ~ 0.00995; we use conservative 0.01)
|
||||
int128 DELTA_MAX = ABDKMath64x64.divu(1, 100); // 0.01
|
||||
if (absDelta > DELTA_MAX) {
|
||||
// Not balanced within 1% -> use exact routine
|
||||
console2.log("balanced2: fallback delta too large");
|
||||
return LMSRStabilized.swapAmountsForExactInput(s, i, j, a, limitPrice);
|
||||
}
|
||||
|
||||
// Scaled input u = a / b (Q64.64). For polynomial approximation we require moderate u.
|
||||
int128 u = a.mul(invB);
|
||||
if (u <= int128(0)) {
|
||||
// Non-positive input -> behave like exact implementation (will revert if invalid)
|
||||
console2.log("balanced2: fallback u<=0");
|
||||
return LMSRStabilized.swapAmountsForExactInput(s, i, j, a, limitPrice);
|
||||
}
|
||||
|
||||
console2.log("u = a/b (64x64):");
|
||||
console2.logInt(u);
|
||||
|
||||
// Restrict to a conservative polynomial radius for accuracy; fallback otherwise.
|
||||
// We choose u <= 0.5 (0.5 in Q64.64) as safe for cubic approximation in typical parameters.
|
||||
int128 U_MAX = ABDKMath64x64.divu(1, 2); // 0.5
|
||||
if (u > U_MAX) {
|
||||
console2.log("balanced2: fallback u too large");
|
||||
return LMSRStabilized.swapAmountsForExactInput(s, i, j, a, limitPrice);
|
||||
}
|
||||
|
||||
// Now compute a two-tier approximation using Horner-style evaluation to reduce mul/divs.
|
||||
// Primary tier (cheap quadratic): accurate for small u = a/b.
|
||||
// Secondary tier (cubic correction): used when u is moderate but still within U_MAX.
|
||||
int128 one = ONE;
|
||||
int128 HALF = ABDKMath64x64.divu(1, 2); // 0.5
|
||||
int128 THIRD = ABDKMath64x64.divu(1, 3); // ~0.333...
|
||||
|
||||
// Precomputed thresholds
|
||||
int128 U_TIER1 = ABDKMath64x64.divu(1, 10); // 0.1 -> cheap quadratic tier
|
||||
int128 U_MAX_LOCAL = ABDKMath64x64.divu(1, 2); // 0.5 -> still allowed cubic tier
|
||||
|
||||
// u is already computed above
|
||||
// Compute X = u*(1 + delta) - u^2/2
|
||||
int128 u2 = u.mul(u);
|
||||
int128 X = u.mul(one.add(delta)).sub(u2.div(ABDKMath64x64.fromUInt(2)));
|
||||
|
||||
// Compute X^2 once
|
||||
int128 X2 = X.mul(X);
|
||||
|
||||
int128 lnApprox;
|
||||
if (u <= U_TIER1) {
|
||||
// Cheap quadratic ln(1+X) ≈ X - X^2/2
|
||||
lnApprox = X.sub(X2.div(ABDKMath64x64.fromUInt(2)));
|
||||
console2.log("balanced2: using tier1 quadratic approx");
|
||||
} else if (u <= U_MAX_LOCAL) {
|
||||
// Secondary cubic correction: ln(1+X) ≈ X - X^2/2 + X^3/3
|
||||
int128 X3 = X2.mul(X);
|
||||
lnApprox = X.sub(X2.div(ABDKMath64x64.fromUInt(2))).add(X3.div(ABDKMath64x64.fromUInt(3)));
|
||||
console2.log("balanced2: using tier2 cubic approx");
|
||||
} else {
|
||||
// u beyond allowed range - fallback
|
||||
console2.log("balanced2: fallback u too large for approximation");
|
||||
return LMSRStabilized.swapAmountsForExactInput(s, i, j, a, limitPrice);
|
||||
}
|
||||
|
||||
console2.log("lnApprox (64x64):");
|
||||
console2.logInt(lnApprox);
|
||||
|
||||
int128 approxOut = b.mul(lnApprox);
|
||||
|
||||
console2.log("approxOut (64x64):");
|
||||
console2.logInt(approxOut);
|
||||
|
||||
// Safety sanity: approximation must be > 0
|
||||
if (approxOut <= int128(0)) {
|
||||
console2.log("balanced2: fallback approxOut <= 0");
|
||||
return LMSRStabilized.swapAmountsForExactInput(s, i, j, a, limitPrice);
|
||||
}
|
||||
|
||||
// Cap to available j balance: if approximated output exceeds q_j, it's likely approximation break;
|
||||
// fall back to the exact solver to handle capping/edge cases.
|
||||
int128 qj64 = s.qInternal[j];
|
||||
console2.log("qj64 (64x64):");
|
||||
console2.logInt(qj64);
|
||||
if (approxOut >= qj64) {
|
||||
console2.log("balanced2: fallback approxOut >= qj");
|
||||
return LMSRStabilized.swapAmountsForExactInput(s, i, j, a, limitPrice);
|
||||
}
|
||||
|
||||
// Everything looks fine; return approximated amountOut and used amountIn (a)
|
||||
amountIn = a;
|
||||
amountOut = approxOut;
|
||||
|
||||
console2.log("balanced2: returning approx results");
|
||||
console2.log("amountIn (64x64):");
|
||||
console2.logInt(amountIn);
|
||||
console2.log("amountOut (64x64):");
|
||||
console2.logInt(amountOut);
|
||||
|
||||
// Final guard: ensure output is sensible and not NaN-like (rely on positivity checks above)
|
||||
if (amountOut < int128(0)) {
|
||||
console2.log("balanced2: fallback final guard amountOut<0");
|
||||
return LMSRStabilized.swapAmountsForExactInput(s, i, j, a, limitPrice);
|
||||
}
|
||||
|
||||
return (amountIn, amountOut);
|
||||
}
|
||||
|
||||
}
|
||||
@@ -8,6 +8,7 @@ import "@openzeppelin/contracts/token/ERC20/IERC20.sol";
|
||||
import "@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol";
|
||||
import "@openzeppelin/contracts/utils/ReentrancyGuard.sol";
|
||||
import "./LMSRStabilized.sol";
|
||||
import "./LMSRStabilizedBalancedPair.sol";
|
||||
import "./IPartyPool.sol";
|
||||
import "./IPartyFlashCallback.sol";
|
||||
|
||||
@@ -46,6 +47,7 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
|
||||
//
|
||||
|
||||
LMSRStabilized.State internal lmsr;
|
||||
bool immutable private _stablePair; // if true, the optimized LMSRStabilizedBalancedPair optimization path is enabled
|
||||
|
||||
// Cached on-chain balances (uint) and internal 64.64 representation
|
||||
// balance / base = internal
|
||||
@@ -65,6 +67,7 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
|
||||
/// @param _targetSlippage target slippage in 64.64 fixed-point (as used by LMSR)
|
||||
/// @param _swapFeePpm fee in parts-per-million, taken from swap input amounts before LMSR calculations
|
||||
/// @param _flashFeePpm fee in parts-per-million, taken for flash loans
|
||||
/// @param _stable if true and assets.length==2, then the optimization for 2-asset stablecoin pools is activated.
|
||||
constructor(
|
||||
string memory name_,
|
||||
string memory symbol_,
|
||||
@@ -73,7 +76,8 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
|
||||
int128 _tradeFrac,
|
||||
int128 _targetSlippage,
|
||||
uint256 _swapFeePpm,
|
||||
uint256 _flashFeePpm
|
||||
uint256 _flashFeePpm,
|
||||
bool _stable
|
||||
) ERC20(name_, symbol_) {
|
||||
require(_tokens.length > 1, "Pool: need >1 asset");
|
||||
require(_tokens.length == _bases.length, "Pool: lengths mismatch");
|
||||
@@ -85,6 +89,7 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
|
||||
swapFeePpm = _swapFeePpm;
|
||||
require(_flashFeePpm < 1_000_000, "Pool: flash fee >= ppm");
|
||||
flashFeePpm = _flashFeePpm;
|
||||
_stablePair = _stable && _tokens.length == 2;
|
||||
|
||||
uint256 n = _tokens.length;
|
||||
|
||||
@@ -369,7 +374,11 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
|
||||
require(deltaInternalI > int128(0), "swap: input too small after fee");
|
||||
|
||||
// Compute internal amounts using LMSR (exact-input with price limit)
|
||||
(amountInInternalUsed, amountOutInternal) = lmsr.swapAmountsForExactInput(i, j, deltaInternalI, limitPrice);
|
||||
// if _stablePair is true, use the optimized path
|
||||
console2.log('stablepair optimization?', _stablePair);
|
||||
(amountInInternalUsed, amountOutInternal) =
|
||||
_stablePair ? LMSRStabilizedBalancedPair.swapAmountsForExactInput(lmsr, i, j, deltaInternalI, limitPrice)
|
||||
: lmsr.swapAmountsForExactInput(i, j, deltaInternalI, limitPrice);
|
||||
|
||||
// Convert actual used input internal -> uint (ceil)
|
||||
amountInUintNoFee = _internalToUintCeil(amountInInternalUsed, bases[i]);
|
||||
|
||||
Reference in New Issue
Block a user