ETH-USDC pool_design; uni4 quotes refactor

This commit is contained in:
tim
2025-10-24 17:06:59 -04:00
parent 452b28d165
commit 2972152e58
6 changed files with 599 additions and 4514 deletions

View File

@@ -7,14 +7,15 @@ import numpy as np
log = logging.getLogger(__name__)
LMSR_FEE = 0.0025
# UNISWAP_GAS=0
# LMSR_GAS=0
UNISWAP_GAS=115_000
LMSR_GAS=119_000
ETH_PRICE=4500
LMSR_GAS=150_000
ETH_PRICE=4000
UNISWAP_GAS_COST=UNISWAP_GAS*ETH_PRICE/1e9
LMSR_GAS_COST=LMSR_GAS*ETH_PRICE/1e9
LMSR_FEE = 0.000010
print(f' LMSR gas: ${LMSR_GAS_COST:.2}')
print(f'Uniswap gas: ${UNISWAP_GAS_COST:.2}')
@@ -96,9 +97,9 @@ def lmsr_swap_amount_out(
# No available output to withdraw
return 0.0
# Compute r0 = exp((q_i - q_j) / b)
# Compute r0 = exp((q_j - q_i) / b) so small-trade out/in ≈ marginal price p_j/p_i
try:
r0 = math.exp((qi - qj) / b)
r0 = math.exp((qj - qi) / b)
except OverflowError:
raise ArithmeticError("exponential overflow in r0 computation")
@@ -138,24 +139,81 @@ def lmsr_swap_amount_out(
return float(amount_out)
def lmsr_marginal_price(balances, base_index, quote_index, kappa):
"""
Compute the LMSR marginal price ratio p_quote / p_base for the given balances state.
def compare():
kappa = 10
balance0 = 10_000_000 # estimated from the production pool
balances = [balance0, balance0]
X = np.geomspace(1, 10_000_000, 100)
Y = [max(0, 1 -
(lmsr_swap_amount_out(balances, float(amount_in), 0, 1, LMSR_FEE, kappa) - LMSR_GAS_COST)
/ amount_in)
for amount_in in X]
plt.plot(X, Y, label=f'LMSR {kappa:.2f}')
Formula:
b = kappa * S, where S = sum(balances)
price = exp((q_quote - q_base) / b)
d = pd.read_csv('swap_results_block_23640998.csv')
d.columns = ['block', 'price0', 'price1', 'in0', 'out0', 'in1', 'out1']
uniswap_slippage0 = 1 - (d.out0 - UNISWAP_GAS_COST) / d.in0 / d.iloc[0].price0
plt.plot(d.in0, uniswap_slippage0, label='CP0')
# uniswap_slippage1 = 1 - (d.out1 - UNISWAP_GAS_COST) / d.in1 / d.iloc[0].price1
# plt.plot(d.in1, uniswap_slippage1, label='CP1')
Parameters:
- balances: iterable of per-token balances (q_i)
- base_index: index of the base token
- quote_index: index of the quote token
- kappa: liquidity parameter κ (must be positive)
Returns:
- float: marginal price p_quote / p_base
"""
try:
q = [float(x) for x in balances]
k = float(kappa)
except (TypeError, ValueError) as e:
raise ValueError("Invalid numeric input") from e
n = len(q)
if not (0 <= base_index < n and 0 <= quote_index < n):
raise IndexError("token indices out of range")
if k <= 0.0:
raise ValueError("kappa must be positive")
S = sum(q)
if S <= 0.0:
raise ValueError("size metric (sum balances) must be positive")
b = k * S
if b <= 0.0:
raise ValueError("computed b must be positive")
return float(math.exp((q[quote_index] - q[base_index]) / b))
def compare(file, tvl, kappa):
d = pd.read_csv(file)
d.columns = ['block', 'price0', 'price1', 'in0', 'out0', 'rate']
# Calibrate LMSR balances so that exp((q1 - q0)/b) equals the initial price
p0 = float(d.iloc[0].price0)
S = float(tvl) # choose the LMSR size metric
b = kappa * S
delta = b * math.log(p0) # q1 - q0
q0 = 0.5 * (S - delta)
q1 = 0.5 * (S + delta)
if q0 <= 0.0 or q1 <= 0.0:
raise ValueError("Invalid LMSR calibration: choose kappa such that kappa * ln(price0) < 1.")
balances = [q0, q1]
print(balances)
X = np.geomspace(1, 1_000_000, 100)
orig_price = lmsr_marginal_price(balances, 0, 1, kappa)
in_out = [(float(amount_in), lmsr_swap_amount_out(balances, float(amount_in), 0, 1, LMSR_FEE, kappa)) for amount_in in X]
print(in_out)
# Relative execution price deviation from the initial marginal price:
# slippage = |(amount_out/amount_in)/orig_price - 1|
eps = 1e-12
Y = [max(eps, abs((amount_out / amount_in) / orig_price - 1.0))
for amount_in, amount_out in in_out]
plt.plot(X, Y, label=f'LMSR {LMSR_FEE:.2%} κ={kappa:.2f}', color='cornflowerblue')
# Uniswap execution price deviation from its initial quoted price:
# slippage = |(out/in)/initial_price - 1|
uniswap_exec_price0 = d.out0 / d.in0
uniswap_slippage0 = (uniswap_exec_price0 / d.iloc[0].price0 - 1.0).abs().clip(lower=1e-12)
uniswap_fee = round(uniswap_slippage0.iloc[0], 6)
plt.plot(d.in0, uniswap_slippage0, label=f'Uniswap {uniswap_fee:.2%}', color='hotpink')
# uniswap_slippage1 = |(out1/in1)/price1 - 1|
# plt.plot(d.in1, (d.out1 / d.in1 / d.iloc[0].price1 - 1.0).abs().clip(lower=1e-12), label='CP1')
# Interpolate Uniswap slippage to match LMSR x-coordinates
interp_uniswap = np.interp(X, d.in0, uniswap_slippage0)
@@ -166,6 +224,7 @@ def compare():
plt.yscale('log')
plt.gca().xaxis.set_major_formatter(plt.FuncFormatter(lambda x, _: '{:g}'.format(x)))
plt.gca().yaxis.set_major_formatter(plt.FuncFormatter(lambda y, _: '{:.2%}'.format(y)))
plt.gca().set_ylim(top=.1)
plt.xlabel('Input Amount')
plt.ylabel('Slippage')
plt.title('Pool Slippages')
@@ -197,5 +256,7 @@ def plot_kappa():
if __name__ == '__main__':
compare()
# compare('uni4_quotes/swap_results_block_23640998.csv')
# compare('uni4_quotes/ETH-USDC-30.csv', 53_000_000, 0.1)
compare('uni4_quotes/ETH-USDC-30.csv', 1_00_000, .1)
# plot_kappa()