swap amounts

This commit is contained in:
tim
2025-09-15 18:38:28 -04:00
parent f7e40eee06
commit 070717959e
6 changed files with 175 additions and 93 deletions

View File

@@ -1,6 +1,9 @@
#!/bin/bash #!/bin/bash
CODE_SIZE_LIMIT=65000 CODE_SIZE_LIMIT=65000
PRIVATE_KEY=0xac0974bec39a17e36ba4a6b4d238ff944bacb478cbed5efcae784d7bf4f2ff80 # Dev account #0
#PRIVATE_KEY=0xac0974bec39a17e36ba4a6b4d238ff944bacb478cbed5efcae784d7bf4f2ff80
# Dev account #4
PRIVATE_KEY=0x47e179ec197488593b187f80a00eb0da91f1b9d0b13f8733639f19c30a34926a
# Function to cleanup processes # Function to cleanup processes
cleanup() { cleanup() {

View File

@@ -286,6 +286,8 @@ def plot_static(res):
plt.ylabel("y per x") plt.ylabel("y per x")
plt.legend() plt.legend()
plt.tight_layout() plt.tight_layout()
plt.xlim(right=1)
plt.ylim( bottom=.999,top=1)
plt.figure(figsize=(10, 6)) plt.figure(figsize=(10, 6))
plt.plot(q, res["welfare_gap"] / res["p0"] * 1e4) plt.plot(q, res["welfare_gap"] / res["p0"] * 1e4)

View File

@@ -13,7 +13,6 @@ contract DeployMock is Script {
address constant devAccount0 = 0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266; address constant devAccount0 = 0xf39Fd6e51aad88F6F4ce6aB8827279cffFb92266;
// private key 0x4bbbf85ce3377467afe5d46f804f221813b2bb87f24d81f60f1fcdbf7cbf4356 // private key 0x4bbbf85ce3377467afe5d46f804f221813b2bb87f24d81f60f1fcdbf7cbf4356
address constant devAccount7 = 0x14dC79964da2C08b23698B3D3cc7Ca32193d9955; address constant devAccount7 = 0x14dC79964da2C08b23698B3D3cc7Ca32193d9955;
address constant deployer = devAccount0;
function run() public { function run() public {
vm.startBroadcast(); vm.startBroadcast();
@@ -41,7 +40,7 @@ contract DeployMock is Script {
// initial mint // initial mint
mintAll(address(pool), 10_000); mintAll(address(pool), 10_000);
pool.mint(deployer, deployer, 0, 0); pool.mint(devAccount7, devAccount7, 0, 0);
// give tokens to dev7 // give tokens to dev7
mintAll(devAccount7, 1_000_000); mintAll(devAccount7, 1_000_000);

View File

@@ -60,7 +60,7 @@ interface IPartyPool is IERC20Metadata {
/// @notice Calculate the proportional deposit amounts required for a given LP token amount /// @notice Calculate the proportional deposit amounts required for a given LP token amount
/// @param lpTokenAmount The amount of LP tokens desired /// @param lpTokenAmount The amount of LP tokens desired
/// @return depositAmounts Array of token amounts to deposit (rounded up) /// @return depositAmounts Array of token amounts to deposit (rounded up)
function computeMintAmounts(uint256 lpTokenAmount) external view returns (uint256[] memory depositAmounts); function mintDepositAmounts(uint256 lpTokenAmount) external view returns (uint256[] memory depositAmounts);
/// @notice Proportional mint (or initial supply if first call). /// @notice Proportional mint (or initial supply if first call).
/// For initial supply: assumes tokens have already been transferred to the pool /// For initial supply: assumes tokens have already been transferred to the pool
@@ -74,7 +74,7 @@ interface IPartyPool is IERC20Metadata {
/// @notice Calculate the proportional withdrawal amounts for a given LP token amount /// @notice Calculate the proportional withdrawal amounts for a given LP token amount
/// @param lpTokenAmount The amount of LP tokens to burn /// @param lpTokenAmount The amount of LP tokens to burn
/// @return withdrawAmounts Array of token amounts to withdraw (rounded down) /// @return withdrawAmounts Array of token amounts to withdraw (rounded down)
function computeBurnAmounts(uint256 lpTokenAmount) external view returns (uint256[] memory withdrawAmounts); function burnReceiveAmounts(uint256 lpTokenAmount) external view returns (uint256[] memory withdrawAmounts);
/// @notice Burn LP tokens and withdraw the proportional basket to receiver. /// @notice Burn LP tokens and withdraw the proportional basket to receiver.
/// Payer must own the LP tokens; withdraw amounts are computed from current proportions. /// Payer must own the LP tokens; withdraw amounts are computed from current proportions.
@@ -86,6 +86,15 @@ interface IPartyPool is IERC20Metadata {
// Swaps // Swaps
/// @notice External view to quote exact-in swap amounts (gross input incl. fee and output), matching swap() computations
function swapAmounts(
uint256 i,
uint256 j,
uint256 maxAmountIn,
int128 limitPrice
) external view returns (uint256 amountIn, uint256 amountOut);
function swap( function swap(
address payer, address payer,
address receiver, address receiver,
@@ -96,6 +105,13 @@ interface IPartyPool is IERC20Metadata {
uint256 deadline uint256 deadline
) external returns (uint256 amountIn, uint256 amountOut); ) external returns (uint256 amountIn, uint256 amountOut);
/// @notice External view to quote swap-to-limit amounts (gross input incl. fee and output), matching swapToLimit() computations
function swapToLimitAmounts(
uint256 i,
uint256 j,
int128 limitPrice
) external view returns (uint256 amountIn, uint256 amountOut);
function swapToLimit( function swapToLimit(
address payer, address payer,
address receiver, address receiver,

View File

@@ -108,7 +108,7 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
/// @notice Calculate the proportional deposit amounts required for a given LP token amount /// @notice Calculate the proportional deposit amounts required for a given LP token amount
/// @param lpTokenAmount The amount of LP tokens desired /// @param lpTokenAmount The amount of LP tokens desired
/// @return depositAmounts Array of token amounts to deposit (rounded up) /// @return depositAmounts Array of token amounts to deposit (rounded up)
function computeMintAmounts(uint256 lpTokenAmount) public view returns (uint256[] memory depositAmounts) { function mintDepositAmounts(uint256 lpTokenAmount) public view returns (uint256[] memory depositAmounts) {
uint256 n = tokens.length; uint256 n = tokens.length;
depositAmounts = new uint256[](n); depositAmounts = new uint256[](n);
@@ -136,11 +136,11 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
/// @notice Calculate the proportional withdrawal amounts for a given LP token amount /// @notice Calculate the proportional withdrawal amounts for a given LP token amount
/// @param lpTokenAmount The amount of LP tokens to burn /// @param lpTokenAmount The amount of LP tokens to burn
/// @return withdrawAmounts Array of token amounts to withdraw (rounded down) /// @return withdrawAmounts Array of token amounts to withdraw (rounded down)
function computeBurnAmounts(uint256 lpTokenAmount) external view returns (uint256[] memory withdrawAmounts) { function burnReceiveAmounts(uint256 lpTokenAmount) external view returns (uint256[] memory withdrawAmounts) {
return _computeBurnAmounts(lpTokenAmount); return _burnReceiveAmounts(lpTokenAmount);
} }
function _computeBurnAmounts(uint256 lpTokenAmount) internal view returns (uint256[] memory withdrawAmounts) { function _burnReceiveAmounts(uint256 lpTokenAmount) internal view returns (uint256[] memory withdrawAmounts) {
uint256 n = tokens.length; uint256 n = tokens.length;
withdrawAmounts = new uint256[](n); withdrawAmounts = new uint256[](n);
@@ -188,7 +188,7 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
if (!isInitialDeposit) { if (!isInitialDeposit) {
// Calculate required deposit amounts for the desired LP tokens // Calculate required deposit amounts for the desired LP tokens
depositAmounts = computeMintAmounts(lpTokenAmount); depositAmounts = mintDepositAmounts(lpTokenAmount);
// Transfer in all token amounts // Transfer in all token amounts
for (uint i = 0; i < n; ) { for (uint i = 0; i < n; ) {
@@ -284,7 +284,7 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
} }
// Compute proportional withdrawal amounts for the requested LP amount (rounded down) // Compute proportional withdrawal amounts for the requested LP amount (rounded down)
uint256[] memory withdrawAmounts = _computeBurnAmounts(lpAmount); uint256[] memory withdrawAmounts = _burnReceiveAmounts(lpAmount);
// Transfer underlying tokens out to receiver according to computed proportions // Transfer underlying tokens out to receiver according to computed proportions
for (uint i = 0; i < n; ) { for (uint i = 0; i < n; ) {
@@ -334,6 +334,119 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
Swaps Swaps
---------------------- */ ---------------------- */
/// @notice Internal quote for exact-input swap that mirrors swap() rounding and fee application
/// @return grossIn amount to transfer in (inclusive of fee), amountOutUint output amount (uint),
/// amountInInternalUsed and amountOutInternal (64.64), amountInUintNoFee input amount excluding fee (uint)
function _quoteSwapExactIn(
uint256 i,
uint256 j,
uint256 maxAmountIn,
int128 limitPrice
)
internal
view
returns (
uint256 grossIn,
uint256 amountOutUint,
int128 amountInInternalUsed,
int128 amountOutInternal,
uint256 amountInUintNoFee
)
{
uint256 n = tokens.length;
require(i < n && j < n, "swap: idx");
require(maxAmountIn > 0, "swap: input zero");
require(lmsr.nAssets > 0, "swap: empty pool");
// Estimate max net input (fee on gross rounded up, then subtract)
(, uint256 netUintForSwap) = _computeFee(maxAmountIn);
// Convert to internal (floor)
int128 deltaInternalI = _uintToInternalFloor(netUintForSwap, bases[i]);
require(deltaInternalI > int128(0), "swap: input too small after fee");
// Compute internal amounts using LMSR (exact-input with price limit)
(amountInInternalUsed, amountOutInternal) = lmsr.swapAmountsForExactInput(i, j, deltaInternalI, limitPrice);
// Convert actual used input internal -> uint (ceil)
amountInUintNoFee = _internalToUintCeil(amountInInternalUsed, bases[i]);
require(amountInUintNoFee > 0, "swap: input zero");
// Compute gross transfer including fee on the used input (ceil)
grossIn = amountInUintNoFee;
if (swapFeePpm > 0) {
grossIn += _ceilFee(amountInUintNoFee, swapFeePpm);
}
// Ensure within user max
require(grossIn <= maxAmountIn, "swap: transfer exceeds max");
// Compute output (floor)
amountOutUint = _internalToUintFloor(amountOutInternal, bases[j]);
require(amountOutUint > 0, "swap: output zero");
}
/// @notice Internal quote for swap-to-limit that mirrors swapToLimit() rounding and fee application
/// @return grossIn amount to transfer in (inclusive of fee), amountOutUint output amount (uint),
/// amountInInternal and amountOutInternal (64.64), amountInUintNoFee input amount excluding fee (uint)
function _quoteSwapToLimit(
uint256 i,
uint256 j,
int128 limitPrice
)
internal
view
returns (
uint256 grossIn,
uint256 amountOutUint,
int128 amountInInternal,
int128 amountOutInternal,
uint256 amountInUintNoFee
)
{
uint256 n = tokens.length;
require(i < n && j < n, "swapToLimit: idx");
require(limitPrice > int128(0), "swapToLimit: limit <= 0");
require(lmsr.nAssets > 0, "swapToLimit: pool uninitialized");
// Compute internal maxima at the price limit
(amountInInternal, amountOutInternal) = lmsr.swapAmountsForPriceLimit(i, j, limitPrice);
// Convert input to uint (ceil) and output to uint (floor)
amountInUintNoFee = _internalToUintCeil(amountInInternal, bases[i]);
require(amountInUintNoFee > 0, "swapToLimit: input zero");
grossIn = amountInUintNoFee;
if (swapFeePpm > 0) {
grossIn += _ceilFee(amountInUintNoFee, swapFeePpm);
}
amountOutUint = _internalToUintFloor(amountOutInternal, bases[j]);
require(amountOutUint > 0, "swapToLimit: output zero");
}
/// @notice External view to quote exact-in swap amounts (gross input incl. fee and output), matching swap() computations
function swapAmounts(
uint256 i,
uint256 j,
uint256 maxAmountIn,
int128 limitPrice
) external view returns (uint256 amountIn, uint256 amountOut) {
(uint256 grossIn, uint256 outUint,,,) = _quoteSwapExactIn(i, j, maxAmountIn, limitPrice);
return (grossIn, outUint);
}
/// @notice External view to quote swap-to-limit amounts (gross input incl. fee and output), matching swapToLimit() computations
function swapToLimitAmounts(
uint256 i,
uint256 j,
int128 limitPrice
) external view returns (uint256 amountIn, uint256 amountOut) {
(uint256 grossIn, uint256 outUint,,,) = _quoteSwapToLimit(i, j, limitPrice);
return (grossIn, outUint);
}
/// @notice Swap input token i -> token j. Payer must approve token i. /// @notice Swap input token i -> token j. Payer must approve token i.
/// @param payer address of the account that pays for the swap /// @param payer address of the account that pays for the swap
/// @param receiver address that will receive the output tokens /// @param receiver address that will receive the output tokens
@@ -361,47 +474,15 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
uint256 prevBalI = IERC20(tokens[i]).balanceOf(address(this)); uint256 prevBalI = IERC20(tokens[i]).balanceOf(address(this));
uint256 prevBalJ = IERC20(tokens[j]).balanceOf(address(this)); uint256 prevBalJ = IERC20(tokens[j]).balanceOf(address(this));
// Calculate fee (ceiling) and net amount // Compute amounts using the same path as views
(, uint256 netUintForSwap) = _computeFee(maxAmountIn); (uint256 totalTransferAmount, uint256 amountOutUint, int128 amountInInternalUsed, int128 amountOutInternal, ) =
_quoteSwapExactIn(i, j, maxAmountIn, limitPrice);
// Convert the net amount to internal (floor)
int128 deltaInternalI = _uintToInternalFloor(netUintForSwap, bases[i]);
require(deltaInternalI > int128(0), "swap: input too small after fee");
// Make sure LMSR state exists
require(lmsr.nAssets > 0, "swap: empty pool");
// Compute swap amounts in internal space using exact-input logic (with limitPrice)
(int128 amountInInternalUsed, int128 amountOutInternal) = lmsr.swapAmountsForExactInput(
i,
j,
deltaInternalI,
limitPrice
);
// Convert actual used input internal -> uint (ceiling to protect the pool)
uint256 amountInUint = _internalToUintCeil(amountInInternalUsed, bases[i]);
// Total transfer amount includes fee calculated on the actual used input (ceiling)
uint256 totalTransferAmount = amountInUint;
if (swapFeePpm > 0) {
uint256 feeOnUsed = _ceilFee(amountInUint, swapFeePpm);
totalTransferAmount += feeOnUsed;
}
// Ensure we do not attempt to transfer more than the caller specified as maximum
require(totalTransferAmount > 0, 'swap: input zero');
require(totalTransferAmount <= maxAmountIn, "swap: transfer exceeds max");
// Transfer the exact amount from payer and require exact receipt (revert on fee-on-transfer) // Transfer the exact amount from payer and require exact receipt (revert on fee-on-transfer)
_safeTransferFrom(tokens[i], payer, address(this), totalTransferAmount); _safeTransferFrom(tokens[i], payer, address(this), totalTransferAmount);
uint256 balIAfter = IERC20(tokens[i]).balanceOf(address(this)); uint256 balIAfter = IERC20(tokens[i]).balanceOf(address(this));
require(balIAfter == prevBalI + totalTransferAmount, "swap: non-standard tokenIn"); require(balIAfter == prevBalI + totalTransferAmount, "swap: non-standard tokenIn");
// Compute output uint amount (floor)
uint256 amountOutUint = _internalToUintFloor(amountOutInternal, bases[j]);
require(amountOutUint > 0, "swap: output zero");
// Transfer output to receiver and verify exact decrease // Transfer output to receiver and verify exact decrease
_safeTransfer(tokens[j], receiver, amountOutUint); _safeTransfer(tokens[j], receiver, amountOutUint);
uint256 balJAfter = IERC20(tokens[j]).balanceOf(address(this)); uint256 balJAfter = IERC20(tokens[j]).balanceOf(address(this));
@@ -411,8 +492,7 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
cachedUintBalances[i] = balIAfter; cachedUintBalances[i] = balIAfter;
cachedUintBalances[j] = balJAfter; cachedUintBalances[j] = balJAfter;
// Apply swap to LMSR state with the internal amounts actually used // Apply swap to LMSR state with the internal amounts actually used
// (fee is already accounted for in the reduced input amount)
lmsr.applySwap(i, j, amountInInternalUsed, amountOutInternal); lmsr.applySwap(i, j, amountInInternalUsed, amountOutInternal);
emit Swap(payer, receiver, tokens[i], tokens[j], totalTransferAmount, amountOutUint); emit Swap(payer, receiver, tokens[i], tokens[j], totalTransferAmount, amountOutUint);
@@ -437,37 +517,19 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
require(limitPrice > int128(0), "swapToLimit: limit <= 0"); require(limitPrice > int128(0), "swapToLimit: limit <= 0");
require(deadline == 0 || block.timestamp <= deadline, "swapToLimit: deadline exceeded"); require(deadline == 0 || block.timestamp <= deadline, "swapToLimit: deadline exceeded");
// Ensure LMSR state exists
require(lmsr.nAssets > 0, "swapToLimit: pool uninitialized");
// Read previous balances for affected assets // Read previous balances for affected assets
uint256 prevBalI = IERC20(tokens[i]).balanceOf(address(this)); uint256 prevBalI = IERC20(tokens[i]).balanceOf(address(this));
uint256 prevBalJ = IERC20(tokens[j]).balanceOf(address(this)); uint256 prevBalJ = IERC20(tokens[j]).balanceOf(address(this));
// Compute maxima in internal space using library // Compute amounts using the same path as views
(int128 amountInInternalMax, int128 amountOutInternal) = lmsr.swapAmountsForPriceLimit(i, j, limitPrice); (uint256 totalTransferAmount, uint256 amountOutUint, int128 amountInInternalMax, int128 amountOutInternal, uint256 amountInUsedUint) =
_quoteSwapToLimit(i, j, limitPrice);
// Calculate how much input will be needed with fee included (ceiling to protect the pool)
uint256 amountInUsedUint = _internalToUintCeil(amountInInternalMax, bases[i]);
require(amountInUsedUint > 0, "swapToLimit: input zero");
// Total transfer amount is the input amount including what will be taken as fee (ceiling)
uint256 totalTransferAmount = amountInUsedUint;
if (swapFeePpm > 0) {
uint256 feeOnUsed = _ceilFee(amountInUsedUint, swapFeePpm);
totalTransferAmount += feeOnUsed;
}
// Transfer the exact amount needed from payer and require exact receipt (revert on fee-on-transfer) // Transfer the exact amount needed from payer and require exact receipt (revert on fee-on-transfer)
_safeTransferFrom(tokens[i], payer, address(this), totalTransferAmount); _safeTransferFrom(tokens[i], payer, address(this), totalTransferAmount);
uint256 balIAfter = IERC20(tokens[i]).balanceOf(address(this)); uint256 balIAfter = IERC20(tokens[i]).balanceOf(address(this));
require(balIAfter == prevBalI + totalTransferAmount, "swapToLimit: non-standard tokenIn"); require(balIAfter == prevBalI + totalTransferAmount, "swapToLimit: non-standard tokenIn");
// Compute output amount (floor)
uint256 amountOutUint = _internalToUintFloor(amountOutInternal, bases[j]);
require(amountOutUint > 0, "swapToLimit: output zero");
// Transfer output to receiver and verify exact decrease // Transfer output to receiver and verify exact decrease
_safeTransfer(tokens[j], receiver, amountOutUint); _safeTransfer(tokens[j], receiver, amountOutUint);
uint256 balJAfter = IERC20(tokens[j]).balanceOf(address(this)); uint256 balJAfter = IERC20(tokens[j]).balanceOf(address(this));
@@ -478,9 +540,9 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
cachedUintBalances[j] = balJAfter; cachedUintBalances[j] = balJAfter;
// Apply swap to LMSR state with the internal amounts // Apply swap to LMSR state with the internal amounts
// (fee is already part of the reduced effective input)
lmsr.applySwap(i, j, amountInInternalMax, amountOutInternal); lmsr.applySwap(i, j, amountInInternalMax, amountOutInternal);
// Maintain original event semantics (logs input without fee)
emit Swap(payer, receiver, tokens[i], tokens[j], amountInUsedUint, amountOutUint); emit Swap(payer, receiver, tokens[i], tokens[j], amountInUsedUint, amountOutUint);
return (amountInUsedUint, amountOutUint); return (amountInUsedUint, amountOutUint);
@@ -685,7 +747,7 @@ contract PartyPool is IPartyPool, ERC20, ReentrancyGuard {
} }
function computeFlashRepaymentAmounts(uint256[] memory loanAmounts) external view function flashRepaymentAmounts(uint256[] memory loanAmounts) external view
returns (uint256[] memory repaymentAmounts) { returns (uint256[] memory repaymentAmounts) {
repaymentAmounts = new uint256[](tokens.length); repaymentAmounts = new uint256[](tokens.length);
for (uint256 i = 0; i < tokens.length; i++) { for (uint256 i = 0; i < tokens.length; i++) {

View File

@@ -316,7 +316,7 @@ contract PartyPoolTest is Test {
token2.approve(address(pool), type(uint256).max); token2.approve(address(pool), type(uint256).max);
// Inspect the deposit amounts that the pool will require (these are rounded up) // Inspect the deposit amounts that the pool will require (these are rounded up)
uint256[] memory deposits = pool.computeMintAmounts(1); uint256[] memory deposits = pool.mintDepositAmounts(1);
// Basic sanity: deposits array length must match token count and not all zero necessarily // Basic sanity: deposits array length must match token count and not all zero necessarily
assertEq(deposits.length, 3); assertEq(deposits.length, 3);
@@ -358,7 +358,7 @@ contract PartyPoolTest is Test {
uint256 totalLpBefore = pool.totalSupply(); uint256 totalLpBefore = pool.totalSupply();
// Compute required deposits and perform mint for 1 wei // Compute required deposits and perform mint for 1 wei
uint256[] memory deposits = pool.computeMintAmounts(1); uint256[] memory deposits = pool.mintDepositAmounts(1);
// Sum deposits as deposited_value // Sum deposits as deposited_value
uint256 depositedValue = 0; uint256 depositedValue = 0;
@@ -392,14 +392,14 @@ contract PartyPoolTest is Test {
vm.stopPrank(); vm.stopPrank();
} }
/// @notice computeMintAmounts should round up deposit amounts to protect the pool. /// @notice mintDepositAmounts should round up deposit amounts to protect the pool.
function testComputeMintAmountsRoundingUp() public view { function testMintDepositAmountsRoundingUp() public view {
uint256 totalLp = pool.totalSupply(); uint256 totalLp = pool.totalSupply();
assertTrue(totalLp > 0, "precondition: total supply > 0"); assertTrue(totalLp > 0, "precondition: total supply > 0");
// Request half of LP supply // Request half of LP supply
uint256 want = totalLp / 2; uint256 want = totalLp / 2;
uint256[] memory deposits = pool.computeMintAmounts(want); uint256[] memory deposits = pool.mintDepositAmounts(want);
// We expect each deposit to be roughly half the pool balance, but due to rounding up it should satisfy: // We expect each deposit to be roughly half the pool balance, but due to rounding up it should satisfy:
// deposits[i] * 2 >= cached balance (i.e., rounding up) // deposits[i] * 2 >= cached balance (i.e., rounding up)
@@ -416,7 +416,7 @@ contract PartyPoolTest is Test {
assertTrue(totalLp > 0, "precondition: LP > 0"); assertTrue(totalLp > 0, "precondition: LP > 0");
// Compute amounts required to redeem entire supply (should be current balances) // Compute amounts required to redeem entire supply (should be current balances)
uint256[] memory withdrawAmounts = pool.computeBurnAmounts(totalLp); uint256[] memory withdrawAmounts = pool.burnReceiveAmounts(totalLp);
// Sanity: withdrawAmounts should equal pool balances (or very close due to rounding) // Sanity: withdrawAmounts should equal pool balances (or very close due to rounding)
for (uint i = 0; i < withdrawAmounts.length; i++) { for (uint i = 0; i < withdrawAmounts.length; i++) {
@@ -632,8 +632,8 @@ contract PartyPoolTest is Test {
vm.stopPrank(); vm.stopPrank();
} }
/// @notice Verify computeMintAmounts matches the actual token transfers performed by mint() /// @notice Verify mintDepositAmounts matches the actual token transfers performed by mint()
function testComputeMintAmountsMatchesMint_3TokenPool() public { function testMintDepositAmountsMatchesMint_3TokenPool() public {
// Use a range of LP requests (tiny to large fraction) // Use a range of LP requests (tiny to large fraction)
uint256 totalLp = pool.totalSupply(); uint256 totalLp = pool.totalSupply();
uint256[] memory requests = new uint256[](4); uint256[] memory requests = new uint256[](4);
@@ -646,7 +646,7 @@ contract PartyPoolTest is Test {
if (req == 0) req = 1; if (req == 0) req = 1;
// Compute expected deposit amounts via view // Compute expected deposit amounts via view
uint256[] memory expected = pool.computeMintAmounts(req); uint256[] memory expected = pool.mintDepositAmounts(req);
// Ensure alice has tokens and approve pool // Ensure alice has tokens and approve pool
vm.startPrank(alice); vm.startPrank(alice);
@@ -660,7 +660,7 @@ contract PartyPoolTest is Test {
uint256 a2Before = token2.balanceOf(alice); uint256 a2Before = token2.balanceOf(alice);
// Perform mint (may revert for zero-request; ensure req>0 above) // Perform mint (may revert for zero-request; ensure req>0 above)
// Guard: if computeMintAmounts returned all zeros, skip (nothing to transfer) // Guard: if mintDepositAmounts returned all zeros, skip (nothing to transfer)
bool allZero = (expected[0] == 0 && expected[1] == 0 && expected[2] == 0); bool allZero = (expected[0] == 0 && expected[1] == 0 && expected[2] == 0);
if (!allZero) { if (!allZero) {
uint256 lpBefore = pool.balanceOf(alice); uint256 lpBefore = pool.balanceOf(alice);
@@ -679,8 +679,8 @@ contract PartyPoolTest is Test {
} }
} }
/// @notice Verify computeMintAmounts matches the actual token transfers performed by mint() for 10-token pool /// @notice Verify mintDepositAmounts matches the actual token transfers performed by mint() for 10-token pool
function testComputeMintAmountsMatchesMint_10TokenPool() public { function testMintDepositAmountsMatchesMint_10TokenPool() public {
uint256 totalLp = pool10.totalSupply(); uint256 totalLp = pool10.totalSupply();
uint256[] memory requests = new uint256[](4); uint256[] memory requests = new uint256[](4);
requests[0] = 1; requests[0] = 1;
@@ -691,7 +691,7 @@ contract PartyPoolTest is Test {
uint256 req = requests[k]; uint256 req = requests[k];
if (req == 0) req = 1; if (req == 0) req = 1;
uint256[] memory expected = pool10.computeMintAmounts(req); uint256[] memory expected = pool10.mintDepositAmounts(req);
// Approve all tokens from alice // Approve all tokens from alice
vm.startPrank(alice); vm.startPrank(alice);
@@ -742,8 +742,8 @@ contract PartyPoolTest is Test {
} }
} }
/// @notice Verify computeBurnAmounts matches actual transfers performed by burn() for 3-token pool /// @notice Verify burnReceiveAmounts matches actual transfers performed by burn() for 3-token pool
function testComputeBurnAmountsMatchesBurn_3TokenPool() public { function testBurnReceiveAmountsMatchesBurn_3TokenPool() public {
// Use address(this) as payer (holds initial LP from setUp) // Use address(this) as payer (holds initial LP from setUp)
uint256 totalLp = pool.totalSupply(); uint256 totalLp = pool.totalSupply();
uint256[] memory burns = new uint256[](4); uint256[] memory burns = new uint256[](4);
@@ -769,7 +769,7 @@ contract PartyPoolTest is Test {
} }
// Recompute withdraw amounts via view after any top-up // Recompute withdraw amounts via view after any top-up
uint256[] memory expected = pool.computeBurnAmounts(req); uint256[] memory expected = pool.burnReceiveAmounts(req);
// If expected withdraws are all zero (rounding edge), skip this iteration // If expected withdraws are all zero (rounding edge), skip this iteration
if (expected[0] == 0 && expected[1] == 0 && expected[2] == 0) { if (expected[0] == 0 && expected[1] == 0 && expected[2] == 0) {
@@ -795,8 +795,8 @@ contract PartyPoolTest is Test {
} }
} }
/// @notice Verify computeBurnAmounts matches actual transfers performed by burn() for 10-token pool /// @notice Verify burnReceiveAmounts matches actual transfers performed by burn() for 10-token pool
function testComputeBurnAmountsMatchesBurn_10TokenPool() public { function testBurnReceiveAmountsMatchesBurn_10TokenPool() public {
uint256 totalLp = pool10.totalSupply(); uint256 totalLp = pool10.totalSupply();
uint256[] memory burns = new uint256[](4); uint256[] memory burns = new uint256[](4);
burns[0] = 1; burns[0] = 1;
@@ -826,7 +826,7 @@ contract PartyPoolTest is Test {
vm.stopPrank(); vm.stopPrank();
} }
uint256[] memory expected = pool10.computeBurnAmounts(req); uint256[] memory expected = pool10.burnReceiveAmounts(req);
// If expected withdraws are all zero (rounding edge), skip this iteration // If expected withdraws are all zero (rounding edge), skip this iteration
bool allZero = true; bool allZero = true;
@@ -1311,8 +1311,8 @@ contract PartyPoolTest is Test {
); );
} }
/// @notice Test computeFlashRepaymentAmounts matches flash implementation /// @notice Test flashRepaymentAmounts matches flash implementation
function testComputeFlashRepaymentAmounts() public view { function testFlashRepaymentAmounts() public view {
// Create different loan amount scenarios // Create different loan amount scenarios
uint256[][] memory testCases = new uint256[][](3); uint256[][] memory testCases = new uint256[][](3);
@@ -1336,7 +1336,7 @@ contract PartyPoolTest is Test {
for (uint256 i = 0; i < testCases.length; i++) { for (uint256 i = 0; i < testCases.length; i++) {
uint256[] memory loanAmounts = testCases[i]; uint256[] memory loanAmounts = testCases[i];
uint256[] memory repaymentAmounts = pool.computeFlashRepaymentAmounts(loanAmounts); uint256[] memory repaymentAmounts = pool.flashRepaymentAmounts(loanAmounts);
// Verify each repayment amount is correctly calculated // Verify each repayment amount is correctly calculated
for (uint256 j = 0; j < loanAmounts.length; j++) { for (uint256 j = 0; j < loanAmounts.length; j++) {