optimal protocol fee
This commit is contained in:
@@ -12,7 +12,7 @@ Let:
|
||||
- $v$ = volume (exogenous, constant)
|
||||
- $F$ = total LP fee rate (exogenous, fixed)
|
||||
- $f$ = LP fee share (fraction of $F$ retained by LPs)
|
||||
- $g$ = protocol fee share (fraction of $F$ retained by protocol)
|
||||
- $g$ = protocol fee share (fraction of $F$ retained by the protocol)
|
||||
- $r$ = short-term market rate (exogenous, includes risk premium)
|
||||
- $L$ = total value locked (endogenous)
|
||||
|
||||
@@ -25,7 +25,8 @@ In equilibrium, LP earnings equal the opportunity cost:
|
||||
$$v f = r L$$
|
||||
|
||||
Thus:
|
||||
$$L = \frac{vf}{r}$$
|
||||
|
||||
$$L = \frac{v f}{r}$$
|
||||
|
||||
The TVL adjusts until LPs are indifferent between deploying capital here versus the outside market rate $r$.
|
||||
|
||||
@@ -33,15 +34,15 @@ The TVL adjusts until LPs are indifferent between deploying capital here versus
|
||||
|
||||
Protocol profit is:
|
||||
|
||||
$$p = fgL = fg \cdot \frac{vf}{r} = \frac{v}{r} f^2 g$$
|
||||
$$p = f g L = f g \cdot \frac{v f}{r} = \frac{v}{r} f^2 g$$
|
||||
|
||||
Substituting $f = 1 - g$:
|
||||
|
||||
$$p(g) = \frac{v}{r} (1-g)^2 g \quad \text{for } g \in [0,1]$$
|
||||
$$p(g) = \frac{v}{r} (1 - g)^2 g \quad \text{for } g \in [0,1]$$
|
||||
|
||||
Let $h(g) = g(1-g)^2$. Taking the derivative:
|
||||
Let $h(g) = g(1 - g)^2$. Taking the derivative:
|
||||
|
||||
$$h'(g) = (1-g)^2 - 2g(1-g) = (1-g)(1-3g)$$
|
||||
$$h'(g) = (1 - g)^2 - 2 g (1 - g) = (1 - g)(1 - 3 g)$$
|
||||
|
||||
## 4. Solution
|
||||
|
||||
@@ -50,16 +51,16 @@ Setting $h'(g) = 0$ yields critical points at $g = 1$ and $g = \frac{1}{3}$.
|
||||
Evaluating:
|
||||
- $h(0) = 0$
|
||||
- $h(1) = 0$
|
||||
- $h(1/3) = \frac{1}{3} \cdot \left(\frac{2}{3}\right)^2 = \frac{4}{27}$
|
||||
- $h\!\left(\frac{1}{3}\right) = \frac{1}{3} \cdot \left(\frac{2}{3}\right)^2 = \frac{4}{27}$
|
||||
|
||||
The maximum occurs at **$g^* = \frac{1}{3}$**, giving:
|
||||
|
||||
| Quantity | Value |
|
||||
|----------|-------|
|
||||
|-----------------------|---------------------------|
|
||||
| Protocol fee share | $g^* = \frac{1}{3}$ |
|
||||
| LP fee share | $f^* = \frac{2}{3}$ |
|
||||
| Equilibrium TVL | $L^* = \frac{2v}{3r}$ |
|
||||
| Max protocol profit | $p^* = \frac{4v}{27r}$ |
|
||||
| Equilibrium TVL | $L^* = \frac{2 v}{3 r}$ |
|
||||
| Max protocol profit | $p^* = \frac{4 v}{27 r}$ |
|
||||
|
||||
## Conclusion
|
||||
|
||||
@@ -73,17 +74,13 @@ Under the assumptions:
|
||||
the protocol’s optimal fee policy is:
|
||||
|
||||
- **Protocol share of the fee pool:**
|
||||
\[
|
||||
\phi_P^* = \frac{1}{3}
|
||||
\]
|
||||
$\phi_P^* = \frac{1}{3}$
|
||||
- **LP share of the fee pool:**
|
||||
\[
|
||||
\phi_L^* = \frac{2}{3}.
|
||||
\]
|
||||
$\phi_L^* = \frac{2}{3}$
|
||||
|
||||
Equivalently, in absolute terms:
|
||||
|
||||
- **Optimal protocol fee rate:** \(F/3\),
|
||||
- **Optimal LP fee rate:** \(2F/3\).
|
||||
- **Optimal protocol fee rate:** $F/3$,
|
||||
- **Optimal LP fee rate:** $2F/3$.
|
||||
|
||||
This fee split balances extracting revenue from trades against maintaining sufficiently attractive LP returns to support a large equilibrium TVL.
|
||||
Reference in New Issue
Block a user