optimal protocol fee
This commit is contained in:
@@ -12,7 +12,7 @@ Let:
|
|||||||
- $v$ = volume (exogenous, constant)
|
- $v$ = volume (exogenous, constant)
|
||||||
- $F$ = total LP fee rate (exogenous, fixed)
|
- $F$ = total LP fee rate (exogenous, fixed)
|
||||||
- $f$ = LP fee share (fraction of $F$ retained by LPs)
|
- $f$ = LP fee share (fraction of $F$ retained by LPs)
|
||||||
- $g$ = protocol fee share (fraction of $F$ retained by protocol)
|
- $g$ = protocol fee share (fraction of $F$ retained by the protocol)
|
||||||
- $r$ = short-term market rate (exogenous, includes risk premium)
|
- $r$ = short-term market rate (exogenous, includes risk premium)
|
||||||
- $L$ = total value locked (endogenous)
|
- $L$ = total value locked (endogenous)
|
||||||
|
|
||||||
@@ -25,6 +25,7 @@ In equilibrium, LP earnings equal the opportunity cost:
|
|||||||
$$v f = r L$$
|
$$v f = r L$$
|
||||||
|
|
||||||
Thus:
|
Thus:
|
||||||
|
|
||||||
$$L = \frac{v f}{r}$$
|
$$L = \frac{v f}{r}$$
|
||||||
|
|
||||||
The TVL adjusts until LPs are indifferent between deploying capital here versus the outside market rate $r$.
|
The TVL adjusts until LPs are indifferent between deploying capital here versus the outside market rate $r$.
|
||||||
@@ -50,12 +51,12 @@ Setting $h'(g) = 0$ yields critical points at $g = 1$ and $g = \frac{1}{3}$.
|
|||||||
Evaluating:
|
Evaluating:
|
||||||
- $h(0) = 0$
|
- $h(0) = 0$
|
||||||
- $h(1) = 0$
|
- $h(1) = 0$
|
||||||
- $h(1/3) = \frac{1}{3} \cdot \left(\frac{2}{3}\right)^2 = \frac{4}{27}$
|
- $h\!\left(\frac{1}{3}\right) = \frac{1}{3} \cdot \left(\frac{2}{3}\right)^2 = \frac{4}{27}$
|
||||||
|
|
||||||
The maximum occurs at **$g^* = \frac{1}{3}$**, giving:
|
The maximum occurs at **$g^* = \frac{1}{3}$**, giving:
|
||||||
|
|
||||||
| Quantity | Value |
|
| Quantity | Value |
|
||||||
|----------|-------|
|
|-----------------------|---------------------------|
|
||||||
| Protocol fee share | $g^* = \frac{1}{3}$ |
|
| Protocol fee share | $g^* = \frac{1}{3}$ |
|
||||||
| LP fee share | $f^* = \frac{2}{3}$ |
|
| LP fee share | $f^* = \frac{2}{3}$ |
|
||||||
| Equilibrium TVL | $L^* = \frac{2 v}{3 r}$ |
|
| Equilibrium TVL | $L^* = \frac{2 v}{3 r}$ |
|
||||||
@@ -73,17 +74,13 @@ Under the assumptions:
|
|||||||
the protocol’s optimal fee policy is:
|
the protocol’s optimal fee policy is:
|
||||||
|
|
||||||
- **Protocol share of the fee pool:**
|
- **Protocol share of the fee pool:**
|
||||||
\[
|
$\phi_P^* = \frac{1}{3}$
|
||||||
\phi_P^* = \frac{1}{3}
|
|
||||||
\]
|
|
||||||
- **LP share of the fee pool:**
|
- **LP share of the fee pool:**
|
||||||
\[
|
$\phi_L^* = \frac{2}{3}$
|
||||||
\phi_L^* = \frac{2}{3}.
|
|
||||||
\]
|
|
||||||
|
|
||||||
Equivalently, in absolute terms:
|
Equivalently, in absolute terms:
|
||||||
|
|
||||||
- **Optimal protocol fee rate:** \(F/3\),
|
- **Optimal protocol fee rate:** $F/3$,
|
||||||
- **Optimal LP fee rate:** \(2F/3\).
|
- **Optimal LP fee rate:** $2F/3$.
|
||||||
|
|
||||||
This fee split balances extracting revenue from trades against maintaining sufficiently attractive LP returns to support a large equilibrium TVL.
|
This fee split balances extracting revenue from trades against maintaining sufficiently attractive LP returns to support a large equilibrium TVL.
|
||||||
Reference in New Issue
Block a user